Math 1550 Final Exam Spring 2017

Work all questions completely. Show all work as described in class. Answer questions in your blue book in **order**. Be neat, use proper notation, and **circle** your answers. You may leave answers as radicals or trigonometric functions if they cannot be simplified. Write out any formulas you use. Electronic devices are **not** allowed on this exam. Point values for each problem are given in the boxes in the margin.

Copyright 2017 Dept of Mathematics and Statistics, Texas Tech University. Unauthorized reproduction prohibited.

- 6 1. Solve $(x-3)(x+2) \ge 0$. Write your answer in interval notation.
- 6 2. Find the center and radius of the circle $x^2 + y^2 5y + 6 = 0$.
- 8 3. Consider the function $f(x) = \frac{x}{x^2 1}$. Give
 - (a) the domain of f;
 - (b) any intercepts;
 - (c) any vertical asymptotes of f;
 - (d) any horizontal asymptotes of f;
 - (e) and a sketch of the graph of f.
- 8 4. Consider the function $f(x) = 2x^4 8x^2$. Give
 - (a) any intercepts;
 - (b) all zeros with the multiplicity;
 - (c) and a sketch of the graph of f.
 - 5. A 1 week-old sorghum plant has an average height of 2 inches. A 4 week-old sorghum plant has an average height of 8 inches. Assuming that the growth is linear,
- (a) find an equation for the height of an average sorghum plant as a function of time;
- (b) and use part (a) to predict how tall a 5 week-old plant will be.
- 4 6. Describe how the graph of 4f(x-2)+3 is related to the graph of f(x).
- 6 7. Solve $2^{x^2+3} = 16$.
- 6 8. Solve $\log_2(x) + \log_2(x 15) = 4$.
- 8 9. Suppose you have 100 linear feet of fence to enclose three sides of a rectangular flower bed; the fourth side is your house. Determine the dimensions that will yield the greatest area. **Draw a figure** to describe the scenario and **clearly** label the length and the width.

- 8 10. Give exact values for the following
 - (a) $\tan (60^{\circ})$

(b) $\cos\left(-\frac{3\pi}{4}\right)$

(c) $\arcsin\left(-\frac{1}{2}\right)$

- (d) $\sin \left(\arctan \left(\frac{1}{3}\right)\right)$
- 8 11. Find all values of x in radians, $0 \le x < 2\pi$, that satisfy $\sin(2x) = \cos(x)$.
- 4 12. Convert the point $\left(2, \frac{3\pi}{4}\right)$ from polar coordinates to rectangular coordinates.
- 4 13. If $\cos(x) = \frac{3}{5}$, find $\cos(2x)$.
- [6] 14. If θ is an angle in the fourth quadrant and $\cos(\theta) = \frac{5}{13}$, find exact values for the remaining five trigonometric functions.
 - 15. If $\mathbf{u} = \langle 2, -3 \rangle$ and $\mathbf{v} = \langle 3, 4 \rangle$,
- $\boxed{4} \qquad \text{(a) find } 3\mathbf{u} \frac{1}{2}\mathbf{v};$
- $\boxed{4}$ (b) find the magnitude of \mathbf{u} ;
- $\boxed{2}$ (c) and express \mathbf{v} in terms of unit vectors.
- 6 16. Solve the following system

$$2m - 3n = -2$$

$$4m + n = 24.$$

- 8 17. Find the partial fraction decomposition for $\frac{8x-1}{x^2-x-2}$.
 - 18. Consider the following geometric series

$$4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$$

- (a) Express the above geometric series using sigma notation.
- (b) Determine whether the sum exists for the geometric series. Justify your answer.