Departmental Final Exam for MATH 2300 - Fall 2013 Version A

Part I

Please answer all 40 multiple choice questions in part I. Each question is worth 2 points. For each question in this part I of the exam, only the correct answer matters(A, B, C, D, or E), and no partial credit will be given. Please follow the instructions of your teacher as to where to report your final answers.

MULTIPLE CHOICE.	Choose the one alternative that best completes the	e statement or answers the question

Find the requested value.

1)	A researcher for a car insurance company wishes to estimate the mean annual premium that men
	aged 20-24 pay for their car insurance. A random sample of 16 men aged between 20 and 24 yields
	the following annual premiums, in dollars.

1)

812 913 908 901

601 926 742 591

905 420 580 725

856 610 720 985

Use the data to obtain a point estimate of the mean annual premium for all men aged between 20 and 24. Round your answer to the nearest dollar.

A) \$753

B) \$744

C) \$739

D) \$762

A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to perform the required hypothesis test about the mean, μ , of the population from which the sample was drawn. Use the critical-value approach.

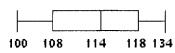
2)
$$\bar{x} = 3.16$$
, $s = 0.51$, $n = 9$, H_0 : $\mu = 2.85$, H_a : $\mu > 2.85$, $\alpha = 0.01$

- A) Test statistic: t = 1.82. Critical value: t = 2.821. Do not reject H₀. There is not sufficient evidence to support the claim that the mean is greater than 2.85.
- B) Test statistic: t = 1.82. Critical value: t = 2.33. Do not reject H₀. There is not sufficient evidence to support the claim that the mean is greater than 2.85.
- C) Test statistic: t = 1.82. Critical value: t = 2.896. Do not reject H₀. There is not sufficient evidence to support the claim that the mean is greater than 2.85.
- D) Test statistic: t = 1.82. Critical value: t = 2.896. Reject H₀. There is sufficient evidence to support the claim that the mean is greater than 2.85.

Construct and interpret a boxplot or a modified boxplot as specified.

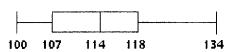
3) The highest temperatures ever recorded (in °F) in 32 different U.S. states are shown below. Construct a boxplot for the data.

3)

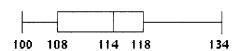

 100
 100
 105
 105
 106
 106
 107
 107

 109
 110
 110
 112
 112
 112
 113
 113

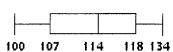
 115
 115
 116
 117
 118
 118
 118
 118
 118


 118
 119
 120
 121
 122
 125
 128
 134

 A)


The data is fairly symmetrical.

B)


The data is slightly right-skewed.

C)

The data is slightly right-skewed.

D)

The data is fairly symmetrical.

Use a table of areas for the standard normal curve to find the required z-score.

4) Find the z-score for having area 0.07 to its right under the standard normal curve, that is, find

4) _____

Identify potential outliers, if any, for the given data.

5) The National Education Association collects data on the number of years of teaching experience of high-school teachers. A sample taken this year of 19 high-school teachers yielded the following data on number of years of teaching experience.

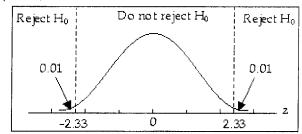
	sample standard deviati bservations.	ion for the given data. Rour	nd your final answer	to one more decimal plac	e than that used		
6	6) To get the best deal on a CD player, Tom called eight appliance stores and asked the cost of a specific model. The prices he was quoted are listed below:						
	\$426 \$123 \$181 \$40 A) \$304.0	6 \$307 \$336 \$226 \$301 B) \$664,704.5	C) \$105.8	D) \$743,024.0			
Comput	e the specified sum of sq	uares.					
7) The regression equation	n for the data below is $\hat{y} = 3$.	000x.		7)		
	x 2 4 5 6 y 7 11 13 20						
	SSR A) 78.75	B) 10.00	C) 72.45	D) 88.75			
8) The regression equation	for the data below is $\hat{y} = 3.6$	000x.		8)		
	x 2 4 5 6 y 7 11 13 20						
	SST						
	A) 10.00	B) 78.75	C) 92.25	D) 88.75			
	indicated probability. If two balanced die are r	rolled, the possible outcome	s can be represented	as follows.	9)		
	(1, 1) (2, 1) (3, 1) (4, 1) (5 (1, 2) (2, 2) (3, 2) (4, 2) (5						
	(1, 3) (2, 3) (3, 3) (4, 3) (5 (1, 4) (2, 4) (3, 4) (4, 4) (5						
	(1, 5) (2, 5) (3, 5) (4, 5) (5						
	(1, 6) (2, 6) (3, 6) (4, 6) (5	, 6) (6, 6)					
	•	y that the sum of the dice is	7.				
	A) $\frac{5}{36}$	B) $\frac{7}{36}$	C) $\frac{2}{9}$	D) $\frac{1}{6}$			
	n appropriate response.						
10)	Find the value of α that α A) 0.016	corresponds to a confidence B) 16		D) 0.40	10)		
	7.0 0.010	<i>b)</i> 10	C) 0.84	D) 0.16			
11)		to the sampling error as the			11)		
	A) It gets larger.C) It gets more predict	table.	B) It gets less predD) It gets smaller.	ictable.			

12) Suppose you have obtained a 95% confidence interval for μ . Which of the following statements is/are true regarding the relationship between precision and confidence level? Assume that the sample size is fixed.									
	 A. Increasing the confidence B. Decreasing the confidence C. Decreasing the precision D. Increasing the precision A) B and D 	ce level to 90% will I will result in a higl	result in greater precision. her confidence level.	al. D) B and C					
13)	13) The amount of money, in dollars, that an employee of a bank spent on lunch on six randomly selected days yielded the following data set:								
	8, 13, 14, 12, 6, 16								
	the squares of the data B) 4624 and 69; $\left(\sum x_i\right)^2$ is the squares of the data C) 865 and 4761; $\left(\sum x_i\right)^2$ square of the sum of the	s the square of the s the square of the su is the sum of the sq ne data. s the sum of the squ	nce between the two quant sum of the data, whereas \sum am of the data, whereas \sum x uares of the data, whereas	x_i^2 represents the sum of x_i^2 represents the sum of $\sum x_i^2$ represents the					
14)	Thirty of the 198 students er take-home or an in-class as: preference for an in-class ex 101 would prefer an in-class descriptive study or an infer A) Descriptive	sessment. Twenty, c am. The professor c s examination for th	or about 67%, of the student concluded that the majority	ts polled indicated a of students in Statistics	14)				
15)	Which of the following coul	d not possibly be pr	obabilities?		15)				
	 A0.74 B. 11/7 C. 0 D. 0.36 A) B and C 	B) A and B	C) A and C	D) A and D					
	7 y D al ia C								

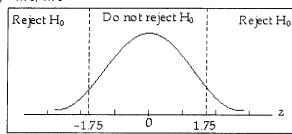
17)

Rank	Last week	Movie title	Studio	Box office sales (\$ millions)
1	N/A	Pirate Adventure	Movie Giant	35.2
2	2	Secret Agent Files	G.M.G.	19.5
3	1	Epic Super Hero Team	21st Century	14.3
4	5	Reptile Ride	Movie Giant	10.1
5	4	Must Love Cats	Dreamboat	9.9

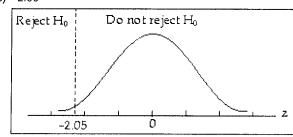
What kind of data is provided by the information in the first column?

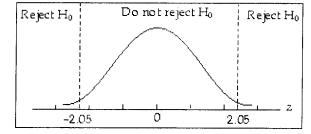

A) Qualitative

B) Quantitative and discrete


Determine the critical value(s) for a one-mean z-test.

17) Find the critical value(s) for a two-tailed test with α = 0.02 and draw a graph that illustrates your answer.


A) -2.33, 2.33


B) -1.75, 1.75

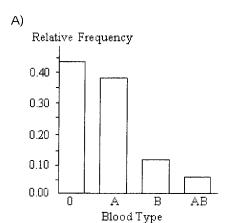
C) -2.05

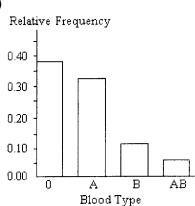
D) -2.05, 2.05

18) The data in the following table show the results of a survey of college students asking which vacation destination they would choose given the eight choices shown. Determine the value that should be entered in the relative frequency column for California.

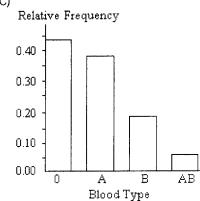
18)	

Destination | Frequency | Relative frequency


Destination	Frequency	Relative frequency
Florida	34	
Mexico	80	
Belize	18	
Puerto Rico	26	
Alaska	4	
California	20	
Colorado	12	
Arizona	6	
'		1


- A) 0.003
- B) 0.06
- C) 0.03
- D) 0.1

Identify the distribution of the sample mean. In particular, state whether the distribution of \overline{x} is normal or approximately normal and give its mean and standard deviation.


- 19) The heights of people in a certain population are normally distributed with a mean of 68 inches and a standard deviation of 3.1 inches. Determine the sampling distribution of the mean for samples of size 44.
 - A) Normal, mean = 68 inches, standard deviation = 0.47 inches
 - B) Normal, mean = 68 inches, standard deviation = 3.1 inches
 - C) Approximately normal, mean = 68 inches, standard deviation = 0.07 inches
 - D) Normal, mean = 68 inches, standard deviation = 0.07 inches
- 20) Construct a bar graph for the relative frequencies given.

Blood	Frequency	Relative		
type		frequency		
0	22	0.44		
Α	19	0.38		
В	6	0.12		
AB	3	0.06		

C)

A hypothesis test is to be performed. Determine the null and alternative hypotheses.

21)

22)

23)

21) In the past, the mean running time for a certain type of flashlight battery has been 9.0 hours. The manufacturer has introduced a change in the production method and wants to perform a hypothesis test to determine whether the mean running time has changed as a result.

A)
$$H_0: \mu \ge 9.0$$
 hours

$$H_a: \mu = 9.0 \text{ hours}$$

C)
$$H_0^a : \mu = 9.0 \text{ hours}$$

$$H_a: \mu \neq 9.0 \text{ hours}$$

B) $H_0: \mu = 9.0 \text{ hours}$

$$H_a: \mu > 9.0 \text{ hours}$$

D)
$$H_0 : \mu \neq 9.0 \text{ hours}$$

 $H_a : \mu = 9.0 \text{ hours}$

Compute the coefficient of determination. Round your answer to four decimal places.

22) A regression equation is obtained for a set of data points. It is found that the total sum of squares is 138.7, the regression sum of squares is 81.8, and the error sum of squares is 56.9.

- A) 0.6956
- B) 1.6956
- C) 0.4102
- D) 0.5898

Assume that you wish to estimate a population proportion, p. For the given margin of error and confidence level, determine the sample size required.

23) You wish to estimate the proportion of shoppers that use credit cards. Obtain a sample size that will ensure a margin of error of at most 0.04 for a 95% confidence interval. It is deemed reasonable to presume that of those sampled, the percentage using credit cards will be at least 54%.

- A) 597
- B) 1297
- C) 1030
- D) 537

The significance level and P-value of a hypothesis test are given. Decide whether the null hypothesis should be rejected. 24) $\alpha = 0.01$, P-value = 0.005 24) A) Reject the null hypothesis. B) Do not reject the null hypothesis. List all possible samples from the specified population. 25) Given a group of students: Allen (A), Brenda (B), Chad (C), Dorothy (D), and Eric (E), list all of the possible samples (without replacement) of size four that can be obtained from the group. A) A,B,C,D A,B,C,E A,C,D,E A,D,E,B B,C,D,E B,C,E,A B,D,E,A C,A,B,D C,E,D,B D,A,C,E B) A,B,C,D A,B,C,E A,C,D,E A,D,E,B C) A,B,C,D D) A,B,C,D A,B,C,E A,C,D,E A,D,E,B B,C,D,E A sample mean, sample size, and population standard deviation are given. Use the one-mean z-test to perform the required hypothesis test at the given significance level. Use the P-value approach. 26) x = 21, n = 18, $\sigma = 7$, H_0 : $\mu = 24$, H_a : $\mu < 24$, $\alpha = 0.05$ 26) A) z = -1.82; P-value = 0.0344; reject H₀ B) z = -0.43; P-value = 0.3336; do not reject H₀ C) z = -1.82; P-value = 0.0688; do not reject H₀ D) z = -0.43; P-value = 0.0336; reject H₀. Find the indicated probability by using the complementation rule. 27) A percentage distribution is given below for the size of families in one U.S. city. 27) Size Percentage 2 43.3 22.7 3 4 19.8 5 8.6 4.0 6 7+ 1.6 A family is selected at random. Find the probability that the size of the family is less than 6. Round results to three decimal places. A) 0.984 B) 0.040 C) 0.944 D) 0.056 Find the median for the given sample data. 28) The normal monthly precipitation (in inches) for August is listed for 20 different U.S. cities. 28) 3.5 1.6 2.4 3.7 4.1 3.9 1.0 3.6 4.2 3.4 3.7 2.2 1.5 4.2 3.4 2.7 0.4 3.7 2.0 3.6 A) 3.45 in. B) 2.94 in. C) 3.40 in. D) 3.50 in.

A hypoth	esis test is to be performe	d for a population propor	tion. For the given sample	data and null hypothe	esis, compute				
the value	of the test statistic, $z = \frac{1}{\sqrt{1 - x^2}}$	p - p0							
trie varue	For the test statistic, $z = \frac{1}{\sqrt{1}}$	p ₀ (1 - p ₀)/n							
	Out of 187 observations, 5		= 0.55.		29)				
,	A) 0.001	B) 1.723	C) 0.550	D) 1.291					
	, ,	,	,						
Find the	indicated probability by u	sing the general addition	rule.						
30) Of the 72 people who answered "yes" to a question, 11 were male. Of the 86 people who answered									
	"no" to the question, 12 were male. If one person is selected at random from the group, what is the probability that the person answered "yes" or was male?								
		-		D) 0.505					
	A) 0.146	B) 0.153	C) 0.601	D) 0.595					
_									
	necessary sample size.	a a amanally, diatributed wit	havariance of 100 A roses	archar wishas ta	31)				
31,	Scores on a certain test are		e test. Find the sample size		31)				
			III not differ from the popu						
	than 4 units.	o that the same	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, J					
	A) 2401	B) 25	C) 97	D) 10					
	problem.								
32)	A sample of 44 washing n				32)				
			µ at the 90% level of confic						
	A) 0.6 years	B) 0.5 years	C) 2.6 years	D) 0.1 years					
	_				22)				
33)	The mean of a set of data			z-score for a value	33)				
	A) 0.89	al answer to two decimal p B) 1.19	C) 0.98	D) 0.80					
	A) 0.00	<i>b)</i> 1.10	0, 0.00	<i>D</i>) 0.00					
Determin	ne the number of outcomes	s that comprise the specifi	ed event.						
	The age distribution of stu				34)				
•	3	•	v						
	Age (years) Number of	students (f)							
	Under 21 218								
	21-25 203								
	26-30 107								
	31-35 85 Over 35 22								
	OVEI 33 22	·I							
	A student from the comm	unity college is selected at	random. The event A is de	efined as follows.					
		, 3							
	A = event the student is be	etween 26 and 35 inclusive).						
		outcomes that comprise th		D) 4000					
	A) 4441	B) 1926	C) 5294	D) 4220					
=.			4						
	indicated probability or pe	-		hutad with a maan of	35)				
35)	A bank's loan officer rates		raungs are normally distri randomly selected, find th						
	rating that is between 200		randomy scienced, find th	io probability of a					
	A) 0.9332	B) 0.4332	C) 0.5	D) 0.0668					
	· y	,	•	,					

Determine the possible values of the random variable.

36) The following frequency distribution analyzes the scores on a math test. For a randomly selected score between 40 and 99, let Y denote the number of students with that score on the test. What are the possible values of the random variable Y?

36)	

Scores	Number of students
40-59 60-75 76-82 83-94 95-99	2 4 6 15 5

- A) 2, 4, 6, 15, 5
- B) 2, 4, 6, 5
- C) 32

D) 2, 4, 6, 15

Determine the regression equation for the data. Round the final values to three significant digits, if necessary.

37)
$$\frac{x \mid 0 \quad 3 \quad 4 \quad 5 \quad 12}{y \mid 8 \quad 2 \quad 6 \quad 9 \quad 12}$$

A) $\hat{y} = 4.98 + 0.425x$
C) $\hat{y} = 4.98 + 0.725x$

C)
$$\hat{v} = 4.98 + 0.725x$$

B) $\hat{y} = 4.88 + 0.625x$ D) $\hat{y} = 4.88 + 0.525x$

D)
$$\hat{v} = 4.88 + 0.525$$

You are given information about a straight line. Determine whether the line slopes upward, slopes downward, or is horizontal.

38) The equation of the line is y = 6.

A) Slopes upward

B) Is horizontal

C) Slopes downward

39)

37)

Find the indicated margin of error.

39) In a survey of 2800 T.V. viewers, 1120 said they watch network news programs. Find the margin of error for the 99% confidence interval used to estimate the population proportion.

A) 0.0208

B) 0.0136

C) 0.0181

D) 0.0238

Answer the question.

40) An employee at the local ice cream parlor asks three customers if they like chocolate ice cream. Identify the sample and population.

- A) Sample: the 3 selected customers; population: the customers who like chocolate ice cream
- B) Sample: the 3 selected customers; population: all customers
- C) Sample: the customers who like chocolate ice cream; population: all customers
- D) Sample: all customers; population: the 3 selected customers

MATH 2300 Final Exam (Version A) - Part II - FALL 2013

<u>INSTRUCTIONS</u>: There are 5 questions in part II, 5 points per question. You must do ONLY 4 questions in order to get full credit. If you do all the questions in part II, only the first 4 will be graded. Show ALL your work and give precise answers.

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

- A researcher is investigating the average height of male students in TTU, and 15 students are ranomly selected from campus and their heights are measureed as below (in meter):
 1.80, 1.89, 1.67, 1.90, 1.95, 1.88, 1.80, 1.81, 1.85, 1.80, 1.77, 1.78, 1.99, 1.97, 1.90.
 Answer the following questions (round two decimal places).
 - (a) Compare the mode, median and mean of this sample. Which one is not resistent with respect to outliers?
 - (b) What's the standard deviation of this sample? Is it a statistic or parameter?

Determine the regression equation for the data. Round the final values to three significant digits, if necessary.

Provide an appropriate response.

- 3) Suppose that scores on a test are normally distributed with a mean of 80 and a standard deviation of 8. Read the two questions below.
 - (a) What is the 90th percentile?
 - (b) What percentage of students score less than 90?
 - (c) Explain the difference between the two questions. Describe how the method for solving A would differ from the the method for solving B. Be sure to include in your explanation a description of how the table of areas would be used in each case.

Find the confidence interval specified. Assume that the population is normally distributed.

- 4) A questionnaire of spending habits was given to a random sample of college students. Each student was asked to record and report the amount of money they spent on textbooks in a semester. The sample of 130 students resulted in an average of \$422 with standard deviation of \$57(Assume that \$57 is also the value of the population standard deviation.).
 - (a) Give a 90% confidence interval for the mean amount of money spent by college students on textbooks.
 - (b) What is the margin of error for the 90% confidence interval?
 - (c) How many students should you sample if you want a margin of error of \$5 for a 90% confidence interval?

Use the one-proportion z-test to perform the required hypothesis test. Use the critical-value approach.

5) A poll of 1,068 adult Americans reveals that 48% of the voters surveyed prefer the Democratic candidate for the presidency. At the 0.05 level of significance, do the data provide sufficient evidence that the percentage of all voters who prefer the Democrat is less than 50%?(State clearly: null and alternate hypothesis, test statistic, critical values, conclusion.)

Notation

n = sample size

 \bar{x} = sample mean s = sample stdev

 $Q_j = j$ th quartile

N =population size

 $\mu = \text{population mean}$

 σ = population stdev

d =paired difference

 $\hat{p} = \text{sample proportion}$

p = population proportion

O =observed frequency

E = expected frequency

Chapter 3 Descriptive Measures

• Sample mean:
$$\bar{x} = \frac{\sum x_i}{n}$$

- Range: Range = Max Min
- Sample standard deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \quad \text{or} \quad s = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2 / n}{n - 1}}$$

• Interquartile range: $IQR = Q_3 - Q_1$

- Lower limit = $Q_1 1.5 \cdot IQR$, Upper limit = $Q_3 + 1.5 \cdot IQR$
- Population mean (mean of a variable): $\mu = \frac{\sum x_i}{N}$
- Population standard deviation (standard deviation of a variable):

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$
 or $\sigma = \sqrt{\frac{\sum x_i^2}{N} - \mu^2}$

• Standardized variable: $z = \frac{x - \mu}{\sigma}$

Chapter 4 Descriptive Methods in Regression and Correlation

• S_{xx} , S_{xy} , and S_{yy} :

$$S_{xy} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - (\sum x_i)^2 / n$$

$$S_{xy} = \Sigma(x_i - \overline{x})(y_i - \overline{y}) = \Sigma x_i y_i - (\Sigma x_i)(\Sigma y_i)/n$$

$$S_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - (\sum y_i)^2 / n$$

• Regression equation: $\hat{y} = b_0 + b_1 x$, where

$$b_1 = \frac{S_{xy}}{S_{yy}}$$
 and $b_0 = \frac{1}{n} (\Sigma y_i - b_1 \Sigma x_i) = \bar{y} - b_1 \bar{x}$

• Total sum of squares: $SST = \sum (y_i - \bar{y})^2 = S_{yi}$

- Regression sum of squares: $SSR = \sum (\hat{y}_i \bar{y})^2 = S_m^2 / S_m$
- Error sum of squares: $SSE = \sum (y_i \hat{y}_i)^2 = S_{vv} S_{xv}^2 / S_{xx}$
- Regression identity: SST = SSR + SSE
- Coefficient of determination: $r^2 = \frac{SSR}{SST}$
- Linear correlation coefficient:

$$r = \frac{\frac{1}{n-1} \sum (x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} \quad \text{or} \quad r = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}$$

Chapter 5 Probability and Random Variables

• Probability for equally likely outcomes:

$$P(E) = \frac{f}{N}$$

where f denotes the number of ways event E can occur and N denotes the total number of outcomes possible.

• Special addition rule:

$$P(A \text{ or } B \text{ or } C \text{ or } \cdots) = P(A) + P(B) + P(C) + \cdots$$

(A, B, C, ... mutually exclusive)

- Complementation rule: P(E) = 1 P(not E)
- General addition rule: P(A or B) = P(A) + P(B) P(A & B)
- Mean of a discrete random variable X: $\mu = \sum x P(X = x)$
- Standard deviation of a discrete random variable *X*:

$$\sigma = \sqrt{\sum (x - \mu)^2 P(X = x)}$$
 or $\sigma = \sqrt{\sum x^2 P(X = x) - \mu^2}$

- Factorial: $k! = k(k-1) \cdots 2 \cdot 1$
- Binomial coefficient: $\binom{n}{x} = \frac{n!}{x!(n-x)!}$
- Binomial probability formula:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}$$

where n denotes the number of trials and p denotes the success probability.

- Mean of a binomial random variable: $\mu = np$
- Standard deviation of a binomial random variable:

$$\sigma = \sqrt{np(1-p)}$$

Chapter 6 The Normal Distribution

• z-score for an x-value: $z = \frac{x - \mu}{\sigma}$

• x-value for a z-score: $x = \mu + z \cdot \sigma$

Chapter 7 The Sampling Distribution of the Sample Mean

• Mean of the variable \bar{x} : $\mu_x = \mu$

• Standard deviation of the variable x: $\sigma_{\bar{x}} = \sigma / \sqrt{n}$

Chapter 8 Confidence Intervals for One Population Mean

• Standardized version of the variable \bar{x} :

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

• z-interval for μ (σ known, normal population or large sample):

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

• Margin of error for the estimate of μ : $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$

• Sample size for estimating μ :

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$$

rounded up to the nearest whole number.

• Studentized version of the variable \bar{x} :

$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$

• *t*-interval for μ (σ unknown, normal population or large sample):

$$\bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

with df = n - 1.

Chapter 9 Hypothesis Tests for One Population Mean

• z-test statistic for H_0 : $\mu = \mu_0$ (σ known, normal population or large sample):

$$z = \frac{x - \mu_0}{\sigma / \sqrt{n}}$$

• *t*-test statistic for H_0 : $\mu = \mu_0$ (σ unknown, normal population or large sample):

$$t = \frac{x - \mu_0}{s / \sqrt{n}}$$

with df = n - 1.

Chapter 10 Inferences for Two Population Means

• Pooled sample standard deviation

$$s_{\rm p} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

• Pooled *t*-test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples, normal populations or large samples, and equal population standard deviations):

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}}$$

with df = $n_1 + n_2 - 2$

• Pooled *t*-interval for $\mu_1 = \mu_2$ (independent samples, normal populations or large samples, and equal population standard deviations):

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{(1/n_1) + (1/n_2)}$$

with df = $n_1 + n_2 - 2$.

• Degrees of freedom for nonpooled t-procedures:

$$\Delta = \frac{\left[(s_1^2/n_1) + (s_2^2/n_2) \right]^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

rounded down to the nearest integer.

• Nonpooled *t*-test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples, and normal populations or large samples):

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2/n_1) - (s_2^2/n_2)}}$$

with df = Δ .

 Nonpooled t-interval for μ₁ = μ₂ (independent samples, and normal populations or large samples):

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot \sqrt{(s_1^2/n_1) + (s_2^2/n_2)}$$

with $df = \Delta$.

• Paired *t*-test statistic for H_0 : $\mu_1 = \mu_2$ (paired sample, and normal differences or large sample):

$$t = \frac{d}{s_d / \sqrt{n}}$$

with df = n - 1.

• Paired *t*-interval for $\mu_1 = \mu_2$ (paired sample, and normal differences or large sample):

$$\overline{d} \pm t_{\alpha,2} \cdot \frac{s_d}{\sqrt{n}}$$

with df = n - 1.

Chapter 11 Inferences for Population Proportions

- Sample proportion: $\hat{p} = x/n$, where x denotes the number of members in the sample that have the specified attribute.
- z-interval for p:

$$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\hat{p}(1-\hat{p})/n}$$

(Assumption: both x and n - x are 5 or greater)

• Margin of error for the estimate of p:

$$E = z_{\alpha/2} \cdot \sqrt{\hat{p}(1 - \hat{p})/n}$$

• Sample size for estimating *p*:

$$n = 0.25 \left(\frac{z_{\alpha/2}}{E}\right)^2$$
 or $n = \hat{p}_g(1 - \hat{p}_g) \left(\frac{z_{\alpha/2}}{E}\right)^2$

rounded up to the nearest whole number (g = "educated guess")

• z-test statistic for H_0 : $p = p_0$:

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

(Assumption: both np_0 and $n(1 - p_0)$ are 5 or greater)

F-4 APPENDIX F Formulas

• Pooled sample proportion: $\hat{p}_{\rm p} = \frac{x_1 + x_2}{n_1 + n_2}$

• z-test statistic for H_0 : $p_1 = p_2$:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}_p(1 - \hat{p}_p)}\sqrt{(1/n_1) + (1/n_2)}}$$

(Assumptions: independent samples; x_1 , $n_1 = x_1$, x_2 , $n_2 = x_2$ are all 5 or greater)

• z-interval for $p_1 - p_2$:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1 - \hat{p}_1)/n_1 + \hat{p}_2(1 - \hat{p}_2)/n_2}$$
 (Assumptions: independent samples; $x_1, n_1 = x_1, x_2, n_2 = x_2$ are all 5 or greater)

• Margin of error for the estimate of $p_1 - p_2$:

$$E = z_{\alpha/2} \cdot \sqrt{\hat{p}_1(1 - \hat{p}_1)/n_1 + \hat{p}_2(1 - \hat{p}_2)/n_2}$$

TABLE II

Areas under the standard normal curve

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.010.00 z 0.0000° -3.9 $0.0001 \quad 0.0001 \quad 0.0001$ -3.8 $0.0001 \quad 0.0001 \quad 0.0001$ -3.7 $0.0001 \quad 0.0001 \quad 0.0002 \quad 0.0002$ -3.6 $0.0002 \quad 0.0002 \quad 0.0002$ -3.5 $0.0002 \quad 0.0003 \quad 0.0003$ -3.4 $0.0003 \quad 0.0004 \quad 0.0004 \quad 0.0004 \quad 0.0004 \quad 0.0004 \quad 0.0004 \quad 0.0005 \quad 0.0005 \quad 0.0005$ -3.3 $0.0005 \quad 0.0005 \quad 0.0005 \quad 0.0006 \quad 0.0006 \quad 0.0006 \quad 0.0006 \quad 0.0006 \quad 0.0007 \quad 0.0007$ -3.2 $0.0007 \quad 0.0007 \quad 0.0008 \quad 0.0008 \quad 0.0008 \quad 0.0008 \quad 0.0009 \quad 0.0009 \quad 0.0009 \quad 0.0010$ -3.1 $0.0010 \quad 0.0010 \quad 0.0011 \quad 0.0011 \quad 0.0011 \quad 0.0012 \quad 0.0012 \quad 0.0013 \quad 0.0013 \quad 0.0013$ -3.0 $0.0014 \quad 0.0014 \quad 0.0015 \quad 0.0015 \quad 0.0016 \quad 0.0016 \quad 0.0017 \quad 0.0018 \quad 0.0018 \quad 0.0019$ -2.9 $0.0019 \quad 0.0020 \quad 0.0021 \quad 0.0021 \quad 0.0022 \quad 0.0023 \quad 0.0023 \quad 0.0024 \quad 0.0025 \quad 0.0026$ -2.8 $0.0026 \quad 0.0027 \quad 0.0028 \quad 0.0029 \quad 0.0030 \quad 0.0031 \quad 0.0032 \quad 0.0033 \quad 0.0034 \quad 0.0035$ -2.70.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047-2.60.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060 0.0062-2.50.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082-2.40.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107-2.3 $0.0110 \quad 0.0113 \quad 0.0116 \quad 0.0119 \quad 0.0122 \quad 0.0125 \quad 0.0129 \quad 0.0132 \quad 0.0136 \quad 0.0139$ -2.2 $0.0143 \quad 0.0146 \quad 0.0150 \quad 0.0154 \quad 0.0158 \quad 0.0162 \quad 0.0166 \quad 0.0170 \quad 0.0174 \quad 0.0179$ -2.1 $0.0183 \quad 0.0188 \quad 0.0192 \quad 0.0197 \quad 0.0202 \quad 0.0207 \quad 0.0212 \quad 0.0217 \quad 0.0222 \quad 0.0228$ -2.00.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 -1.90.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359-1.8 $0.0367 \quad 0.0375 \quad 0.0384 \quad 0.0392 \quad 0.0401 \quad 0.0409 \quad 0.0418 \quad 0.0427 \quad 0.0436 \quad 0.0446$ -1.7 $0.0455 \quad 0.0465 \quad 0.0475 \quad 0.0485 \quad 0.0495 \quad 0.0505 \quad 0.0516 \quad 0.0526 \quad 0.0537 \quad 0.0548$ -1.6-1.50.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655 0.06680.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808-1.40.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968-1.30.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 -1.2 $0.1170 \quad 0.1190 \quad 0.1210 \quad 0.1230 \quad 0.1251 \quad 0.1271 \quad 0.1292 \quad 0.1314 \quad 0.1335 \quad 0.1357$ -1.1 $0.1379 \quad 0.1401 \quad 0.1423 \quad 0.1446 \quad 0.1469 \quad 0.1492 \quad 0.1515 \quad 0.1539 \quad 0.1562 \quad 0.1587$ -1.00.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 -0.9 $0.1867 \quad 0.1894 \quad 0.1922 \quad 0.1949 \quad 0.1977 \quad 0.2005 \quad 0.2033 \quad 0.2061 \quad 0.2090 \quad 0.2119$ -0.8

 $0.2148 \quad 0.2177 \quad 0.2206 \quad 0.2236 \quad 0.2266 \quad 0.2296 \quad 0.2327 \quad 0.2358 \quad 0.2389 \quad 0.2420$

0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743

0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050 0.3085

0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446

0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207

 $0.4247 \quad 0.4286 \quad 0.4325 \quad 0.4364 \quad 0.4404 \quad 0.4443 \quad 0.4483 \quad 0.4522 \quad 0.4562 \quad 0.4602$

 $0.4641 \quad 0.4681 \quad 0.4721 \quad 0.4761 \quad 0.4801 \quad 0.4840 \quad 0.4880 \quad 0.4920 \quad 0.4960 \quad 0.5000$

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

Second decimal place in z

[†] For $z \le -3.90$, the areas are 0.0000 to four decimal places.

TABLE II (cont.)
Areas under the standard normal curve

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5389 0.1 0.5398 0.5438 0.5478 0.5517 0.5596 0.5636 0.5675 0.5714 0.5736 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6631 0.6638 0.6406 0.6443 0.6480 0.6611 0.4 0.6524 0.6628 0.6664 0.6700 0.6736 0.7127 0.6808 0.6841 0.6673 0.6736 0.7422 0.7444 0.7486 0.7517 0.7590 0.7324 0.7339 0.7422 0.7442 0.7744 0.7754 0.7754 0.7754 0.7764 0.7794 0.7793 0.7767 0.7959 0.8231 0.8816 0.8106 0.8113 0.8943 0.8806 0.8818 0.8210		Second decimal place in z									
0.7 0.5398 0.5438 0.5478 0.5517 0.5557 0.5556 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6604 0.6143 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6814 0.4 0.6554 0.6591 0.6628 0.6640 0.6702 0.6638 0.6640 0.6440 0.6406 0.6440 0.6628 0.6819 0.6628 0.7019 0.7054 0.7734 0.7754 0.7746 0.7754 0.7754 0.7540 0.7734 0.7752 0.7822 0.7867 0.7862 0.8816 <th>z</th> <th>0.00</th> <th>0.01</th> <th>0.02</th> <th></th> <th></th> <th></th> <th></th> <th>0.07</th> <th>0.08</th> <th>0.09</th>	z	0.00	0.01	0.02					0.07	0.08	0.09
0.2 0.5398 0.5438 0.5478 0.5517 0.5597 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5510 0.5948 0.5987 0.6026 0.6644 0.6443 0.6484 0.6541 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6849 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7334 0.7734 0.7734 0.7744 0.7744 0.7794	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.2 0.5793 0.5882 0.5871 0.5910 0.5948 0.5987 0.6026 0.6044 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.64040 0.6480 0.6648 0.6679 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7034 0.7088 0.7123 0.7517 0.7549 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7422 0.7486 0.7517 0.7549 0.8 0.7881 0.7910 0.7939 0.7670 0.7995 0.8023 0.8051 0.8016 0.8130 0.9 0.8159 0.8186 0.8212 0.8238 0.8231 0.8351 0.8340 0.8365 0.8333 1.0 0.8413 0.8489 0.8888 0.8907 0.8925	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596				
0.4 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7254 0.7 0.7580 0.7611 0.7642 0.7763 0.7794 0.7734 0.7744 0.7794 0.75823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8011 0.8066 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8261 0.8875 0.8815 0.8370 0.8315 1.0 0.8413 0.8869 0.8861 0.8870 0.8729 0.8749 0.8770 0.8770 0.8810 0.8831 1.2 0.88419 0.88669 0.8861 0.8870	0.2	0.5793	0.5832	0.5871	0.5910	0.5948					
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7337 0.7380 0.7424 0.7454 0.7454 0.7454 0.7794 0.7830 0.7794 0.7534 0.7734 0.7734 0.7764 0.7734 0.7764 0.7795 0.8023 0.8015 0.8016 0.8133 0.8581 0.7910 0.7939 0.7967 0.7734 0.7734 0.7744 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7794 0.7744 0.7794 0.7794 0.7744 0.7794 0.7794 0.7744 0.7794 0.7823 0.8810 0.8830 0.8869 0.8869 0.8869 0.8823 0.8241 0.8829 0.8810 0.8830 0.8810 0.8830 0.8411 0.	0.3	0.6179		0.6255	0.6293		0.6368				
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7445 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7999 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8486 0.8486 0.8780 0.8729 0.8749 0.8577 0.8599 0.8621 1.1 0.8443 0.8665 0.8686 0.8709 0.8225 0.8740 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8886 0.8880 0.8907 0.9221 0.9225 0.8740 0.8940 0.9909 0.9115 0.9131 0.9122 0.9316 0.9522 0.9931 0.9461 <th>0.4</th> <th>0.6554</th> <th>0.6591</th> <th>0.6628</th> <th>0.6664</th> <th>0.6700</th> <th>0.6736</th> <th>0.6772</th> <th></th> <th></th> <th></th>	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772			
0.7 0.7580 0.7611 0.7642 0.7633 0.7704 0.7734 0.7764 0.7734 0.7823 0.7881 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8574 0.8770 0.8790 0.8810 0.8836 1.2 0.8449 0.8869 0.8888 0.8907 0.8925 0.8944 0.8862 0.8890 0.88810 0.8801 1.2 0.8484 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8990 0.9115 0.9131 0.9147 0.9162 0.9177 1.3 0.9032 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 <th></th> <th>0.6915</th> <th>0.6950</th> <th>0.6985</th> <th>0.7019</th> <th>0.7054</th> <th>0.7088</th> <th>0.7123</th> <th>0.7157</th> <th>0.7190</th> <th>0.7224</th>		0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8232 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8299 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9115 1.3 0.9032 0.9049 0.9066 0.9082 0.9999 0.9115 0.9131 0.9147 0.9162 0.9171 1.4 0.9192 0.9204 0.9257 0.9237 0.9251 0.9255 0.9535 0.9545 1.5 0.9332 0.9463 0.9474 0.9484		0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9040 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9311 1.5 0.9332 0.9357 0.9357 0.9382 0.9595 0.9515 0.9525 0.9535 0.9545 1.6 0.9452 0.9464 0.9484		0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8666 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9917 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9349 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9595 0.9515 0.9525 0.9525 0.9535 0.9542 1.7 0.9540		1	0.7910	0.7939		0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9595 0.9505 0.9515 0.9525 0.9525 0.9525 0.9525 0.9525 0.9525 0.9525 0.9525 0.9525 0.9525 0.9535 0.9633 1.8 0.9641 0.9646 0.9573 0.9582 0.9595 0.9568 0.9693 0.9693 1.9 0.9713 0.9718 0.9726 0.9732 0.9738 0.9744 <th>0.9</th> <th>0.8159</th> <th>0.8186</th> <th>0.8212</th> <th>0.8238</th> <th>0.8264</th> <th>0.8289</th> <th>0.8315</th> <th>0.8340</th> <th>0.8365</th> <th>0.8389</th>	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9565 0.9564 0.9571 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9565 0.9644 0.9671 0.9678 0.9686 0.9693 0.9691 0.9767 2.0 0.9772 0.9778		1			0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9171 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9509 0.9686 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9766 1.9 0.9771 0.9778 0.9783 0.9788 0.9794 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783		1			0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9803 0.9808 0.9812 0.9812 2.1 0.9861 0.9864 0.9868 0.9871		I		0.8888	0.8907	0.8925	0.8944		0.8980	0.8997	0.9015
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9599 0.9668 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9784 0.9750 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9788 0.9803 0.9803 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9884 0.9984 0.9881 0.9884 0.9887 0.9880 2.2 0.9861 0.9864 0.9888 0.9991		1			0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9544 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9887 2.3 0.9918 0.9920 0.9922	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9878 0.9881 0.9884 0.9887 0.9887 2.3 0.9893 0.9896 0.9982 0.9992 0.9927 0.9931 0.9932 0.9934 0.9931 0.9931 0.9931 0.99931 0.9993 0.9948 0.9949 <th>1.5</th> <th>0.9332</th> <th>0.9345</th> <th>0.9357</th> <th>0.9370</th> <th>0.9382</th> <th>0.9394</th> <th>0.9406</th> <th>0.9418</th> <th>0.9429</th> <th>0.9441</th>	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9878 0.9881 0.9884 0.9887 0.9880 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913 0.9924 0.9934 0.9932 0.9934 0.9933 0.	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9932 0.9934 0.9936 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9966 0.9967 0.9968 0.9969		0.9554		0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9975 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9913 0.9913 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9974 2.8 0.9944 0.9975 0.9977 0.9977 0.9978 0.9985 <th></th> <th></th> <th>0.9649</th> <th>0.9656</th> <th>0.9664</th> <th>0.9671</th> <th>0.9678</th> <th>0.9686</th> <th>0.9693</th> <th>0.9699</th> <th>0.9706</th>			0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9973 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9973 0.9974 2.8 0.9974 0.9975 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9999 0.9999 0.9999				0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989						0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9999 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9994 0.9994						0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9980 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994						0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9994 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 0.9993 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9994 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9999			0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.		0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999				0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999					0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
3.1 0.9990 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999		0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.3 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999 0.999	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.6 0.9998 0.9999	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.6 0.9998 0.9998 0.9999 0.999	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.7 0.9999	3.6	0.9998	0.9998	0.9999	0.9999	0.9999					
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999				
	3.8		0.9999	0.9999	0.9999	0.9999	0.9999	0.9999			
	3.9	1.0000									

^a For $z \ge 3.90$, the areas are 1.0000 to four decimal places.

TABLE IV		- 					
Values of t_{α}	df	t 0.10	t _{0.05}	t _{0.025}	t 0.01	t _{0.005}	df
	1	3.078		12.706	31.821	63.657	1
O)	2 3	1.886		4.303	6.965	9.925	2
, , , , , , , , , , , , , , , , , , ,	3 4	1.638 1.533	2.353 2.132	3.182 2.776	4.541	5.841 4.604	3
0 t _a	5				3.747		4
	6	1.476 1.440	2.015 1.943	2.571 2.447	3.365 3.143	4.032 3.707	5
	7	1.415	1.895	2.365	2.998	3.499	6 7
	8	1.397	1.860	2.306	2.896	3.355	8
	9	1.383	1.833	2.262	2.821	3.250	9
	10	1.372	1.812	2.228	2.764	3.169	10
	11	1.363	1.796	2.201	2.718	3.106	11
	12	1.356	1.782	2.179	2.681	3.055	12
	13	1.350	1.771	2.160	2.650	3.012	13
	14	1.345	1.761	2.145	2.624	2.977	14
	15	1.341	1.753	2.131	2.602	2.947	15
	16 17	1.337	1.746	2.120	2.583	2.921	16
	18	1.333 1.330	1.740 1.734	2.110	2.567	2.898	17
	19	1.328	1.734	2.101 2.093	2.552 2.539	2.878 2.861	18 19
	20	1.325	1.725	2.086			
	21	1.323	1.723	2.080	2.528 2.518	2.845 2.831	20
	22	1.321	1.717	2.074	2.508	2.819	22
	23	1.319	1.714	2.069	2.500	2.807	23
	24	1.318	1.711	2.064	2.492	2.797	24
	25	1.316	1.708	2.060	2.485	2.787	25
	26	1.315	1.706	2.056	2.479	2.779	26
	27	1.314	1.703	2.052	2.473	2.771	27
	28 29	1.313	1.701	2.048	2.467	2.763	28
		1.311	1.699	2.045	2.462	2.756	29
	30 31	1.310 1.309	1.697 1.696	2.042	2.457	2.750	30
	32	1.309	1.694	2.040 2.037	2.453 2.449	2.744 2.738	31
	33	1.308	1.692	2.037	2.445	2.733	32 33
	34	1.307	1.691	2.032	2.441	2.728	34
	35	1.306	1.690	2.030	2.438	2.724	35
	36	1.306	1.688	2.028	2.434	2.719	36
	37	1.305	1.687	2.026	2.431	2.715	37
	38	1.304	1.686	2.024	2.429	2.712	38
	39	1.304	1.685	2.023	2.426	2.708	39
	40	1.303	1.684	2.021	2.423	2.704	40
	41	1.303	1.683	2.020	2.421	2.701	41
	42 43	1.302 1.302	1.682 1.681	2.018	2.418	2.698	42
	44	1.302	1.680	2.017 2.015	2.416 2.414	2.695 2.692	43 44
	45	1.301	1.679	2.014	2.412	2.690	45
	46	1.300	1.679	2.013	2.410	2.687	46
	47	1.300	1.678	2.012	2.408	2.685	47
	48	1.299	1.677	2.011	2.407	2.682	48
<u>-</u>	49	1.299	1.677	2.010	2.405	2.680	49

TABLE IV (cont.) Values of t_{α}

						
df	t 0.10	t _{0.05}	t 0.025	t _{0.01}	t _{0.005}	df
50	1.299	1.676	2.009	2.403	2.678	50
51	1.298	1.675	2.008	2.402	2.676	51
52	1.298	1.675	2.007	2.400	2.674	52
53	1.298	1.674	2.006	2.399	2.672	53
54	1.297	1.674	2.005	2.397	2.670	54
55	1.297	1.673	2.004	2.396	2.668	55
56	1.297	1.673	2.003	2.395	2.667	56
57	1.297	1.672	2.002	2.394	2.665	57
58	1.296	1.672	2.002	2.392	2.663	58
59	1.296	1.671	2.001	2.391	2.662	59
60	1.296	1.671	2.000	2.390	2.660	60
61	1.296	1.670	2.000	2.389	2.659	61
62	1.295	1.670	1.999	2.388	2.657	62
63	1.295	1.669	1.998	2.387	2.656	63
64	1.295	1.669	1.998	2.386	2.655	64
65	1.295	1.669	1.997	2.385	2.654	65
66	1.295	1.668	1.997	2.384	2.652	66
67	1.294	1.668	1.996	2.383	2.651	67
68	1.294	1.668	1.995	2.382	2.650	68
69	1.294	1.667	1.995	2.382	2.649	69
70	1.294	1.667	1.994	2.381	2.648	70
71	1.294	1.667	1.994	2.380	2.647	71
72	1.293	1.666	1.993	2.379	2.646	72
73	1.293	1.666	1.993	2.379	2.645	73
74	1.293	1.666	1.993	2.378	2.644	74
75	1.293	1.665	1.992	2.377	2.643	75
80	1.292	1.664	1.990	2.374	2.639	80
85	1.292	1.663	1.988	2.371	2.635	85
90	1.291	1.662	1.987	2.368	2.632	90
95	1.291	1.661	1.985	2.366	2.629	95
100	1.290	1.660	1.984	2.364	2.626	100
200	1.286	1.653	1.972	2.345	2.601	200
300	1.284	1.650	1.968	2.339	2.592	300
400	1.284	1.649	1.966	2.336	2.588	400
500	1.283	1.648	1.965	2.334	2.586	500
600	1.283	1.647	1.964	2.333	2.584	600
700	1.283	1.647	1.963	2.332	2.583	700
800	1.283	1.647	1.963	2.331	2.582	800
900	1.282	1.647	1.963	2.330	2.581	900
1000	1.282	1.646	1.962	2.330	2.581	1000
2000	1.282	1.646	1.961	2.328	2.578	2000

1.282	1.645	1.960	2.326	2.576
Z 0.10	Z 0.05	Z 0.025	Z 0.01	