Managa.	1
Name:	1

MATH 2300 Spring 2015 Final Exam

You have 150 minutes to complete this exam. Unless your exam proctor gives you alternative instructions, please observe the following:

- For the multiple choice questions, select the <u>best answer</u> and <u>write it clearly</u> in the space preceding the question number. There is <u>only one</u> correct answer for each question. If your instructor requires the multiple choice answers on another answer sheet (e.g. a Scantron), please place your answers there.
- For the non-multiple choice questions, provide your answers in the space provided. Show your work as appropriate.

MULTIPLE CHOICE (40 Questions)

l	In a poll of 50,000 randomly selected college students, 74% answered "yes" when asked "Do you have a
	television in your dorm room?" Identify the sample and population.

- A) Sample: the 50,000 selected college students; population: the 74% who answered "yes".
- B) Sample: the 74% who answered "yes"; population: all college students
- C) Sample: the 50,000 selected college students; population: all college students
- D) Sample: all college students; population: the 50,000 sampled college students

2. _____ Given a group of students: Allen (A), Brenda (B), Chad (C), Dorothy (D), and Eric (E), list all of the possible samples (without replacement) of size four that can be obtained from the group.

- A) A,B,C,D A,B,C,E A,C,D,E A,D,E,B
- B) A,B,C,D
- C) A,B,C,D A,B,C,E A,C,D,E A,D,E,B B,C,D,E
- D) A,B,C,D A,B,C,E A,C,D,E A,D,E,B B,C,D,E B,C,E,A B,D,E,A C,A,B,D C,E,D,B D,A,C,E

3. _____ A large record company reported the following sales figures for various music media last year.

Media	Sales (\$ Millions)
Digital Download	1477.3
CD	256.7
Internet Streaming	137.5
Internet Video	532.0
Other (Vinyl, etc.)	92.1

What kind of data is provided by the information in the second column?

- A) Qualitative
- B) Quantitative

4. _____ The average speed of cars passing a busy intersection between 4:30 PM and 6:30 PM on a Friday is 32.3 mph. Classify the data as either discrete or continuous.

A) Discrete

B) Continuous

5. _____ Last year, nine employees of an electronics company retired. Their ages at retirement are listed below. Find the mean retirement age.

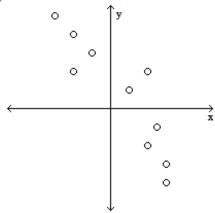
55, 64, 68, 56, 64, 58, 64, 57, 51

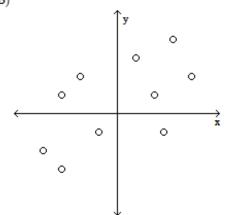
- A) 59 years
- B) 58 years
- C) 58.4 years
- D) 59.7 years

Name:				2
6		ed 200 times and a recorcy histogram below. Ide	-	bers obtained. The results are shown e of the distribution.
	0.20 - 0.15 - 0.10 - 0.05 - 0.00 - 1 2 3 Numb	4 5 6		
	A) Uniform	B) Left Skewed	C) Triangular	D) J-shaped
7	-	ing college economics. ng scores: 5, 20, 4, 14 B) 16		ves quizzes. On the past five quizzes, or the given data. D) 4
8	_	got the following scores	•	so often gives quizzes. On the past 42, 68. Find the sample standard D) 48
9		\$9. Use the empirical ru	- ,	stribution with a mean of \$57 and a centage of her phone bills that are
	A) 99.7%	B) 68%	C) 95%	D) 99.99%
10	•	dollars) of sixteen gove 7 545 579 609 632 66 B) \$761.50		ited below. Find the third quartile Q ₃ . 343 890 D) \$632
11	boys from Glencoe, 3 l	•	nd 6 girls from Glencoe	from Kenilworth, 10 girls Wilmette, 4 e. If the teacher calls upon a student tom Kenilworth? D) 0.216
12	Based on meteorologic	,	lity that it will snow in a	a certain town on January 1^{st} is 0.282.
13	When two 6-sided dice	e are rolled, there are 30	5 possible equally likely	outcomes. What is the probability

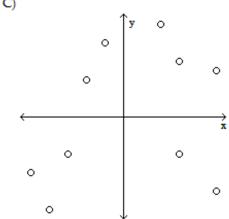
C) 1/4

D) 5/12

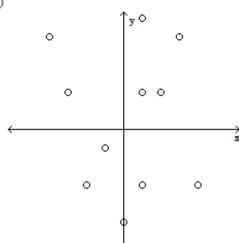

that the sum of the numbers on the dice is 6 or 9?


B) 1/54

A) 3/2


Determine which scatterplot shows a <u>negative</u> linear correlation.

A)



C)

D)

D) 0.20

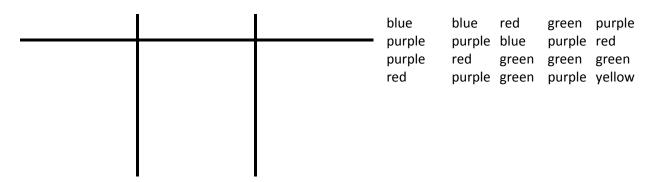
The table below shows the soft drink preference of people in three age groups.

	Cola	Root Beer	Lemon-Lime
under 21	40	25	20
between 21 and 40	35	20	30
over 40	20	30	35

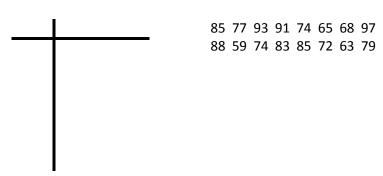
If one of the 255 subjects is randomly selected, find the probability that the person is over 40 years of age. A) 1/3 B) 2/5 C) 3/5D) 1/2

The number of loaves of rye bread left on the shelf of a local bakery at closing (denoted by the random variable X) varies from day to day. Past records show that the probability distribution of X is shown in the following table. Find the probability that there will be at least three loaves left over at the end of any given day.

X	0	1	2	3	4	5	6
P(X=x)	0.20	0.25	0.20	0.15	0.10	0.08	0.02
A) 0.15		В) 0.65		C	0.35		


ivaille		_		4	
17	a mean of 35 minu	tes and a standard devi	ation of 5 minutes. Th	ommute time is normally distribute percentage of time that his coreard normal curve that lies to the	nmute
	 A) right, 1.8	B) right, 1.1	C) left, -1.8	D) left, 1.8	
18	For the standard n A) 0.2776	ormal curve, find the ar B) 0.2190	ea that lies to the right C) 0.7224	of 0.59. D) 0.2224	
19	For the standard n A) 0.9299	ormal curve, find the ar B) 0.0487	rea that lies either to th C) 0.0701	ne left of 1.56 or to the right of 2. D) 0.9513	30.
20	Find the z-score ha A) -1.45	oving area 0.09 to its lef B) -1.34	t under the standard no C) -1.26	ormal curve. D) -1.39	
21	Find the z-score fo A) 1.45	r having area 0.09 to its B) 1.26	right under the standa C) 1.39	ard normal curve; that is, find $z_{0.0}$ D) 1.34	9.
22	from a population	of test scores for 5 stud of 73 74 75 76 77 78 79	ents.	nple mean for samples of size 2 or \bar{x}	drawn
		↑ μ			
	Find the probabilit mean.	y, expressed as a perce	nt, that the sample me	an will be within 1 point of the po	opulation
	A) 10%	B) 5%	C) 22%	D) 20%	
23	certain range, the a Suppose the snow mean and standard	annual snowfall has a m falls are sampled during deviation of $\overline{\mathbf{x}}$, the san	nean of 106 inches and grandomly picked year nple mean snowfall.	tain ranges. Records indicate the a standard deviation of 10 inches. For samples of size 25, determ $=2 \text{D) } \mu_{\bar{x}}=10; \ \sigma_{\bar{x}}=106$	S.
24	randomly from the	• •	lse, the standard devia	mean height for a sample of peotion of $\overline{\mathbf{x}}$ for sample of size 30 is s	
25	deviation of 22 lb. A) Approximately B) Exactly normal C) Exactly normal		g distribution of the m , standard deviation = : rd deviation = 15.56 lb rd deviation = 22 lb		a standard
26	In stating a confide width of the interv		of a population mean, t B) decreases	he level of confidence increases a	as the
	-				

Name:				5		
27	standard deviation of	f \$370. What is the premployees of the com	obability that the sa	e J-shaped with a mean of \$1000 Impling error made in estimating f a random sample of weekly sala	the mean	
	A) 0.4649 B) 0.0			determined because the distribut lation is not normal and n is sma		
28	545 dollars. A resear	cher wants to estimat	e the mean monthly	nally distributed with a standard or earnings of all business students argin of error of 128 dollars.		
	A) 61	B) 5	C) 70	D) 2		
29	For a t-curve with df= A) 2.120	=15, find t _{0.025} . B) 2.145	C) 1.960	D) 2.131		
30	\$1200. They suspect \$1200. The insurer w	A health insurer has determined that the "reasonable and customary" fee for a certain medical procedure is \$1200. They suspect that the average fee charged by one particular clinic for this procedure is higher than \$1200. The insurer wants to perform a hypothesis test to determine whether their suspicion is correct. Determine the appropriate null and alternative hypotheses.				
	A) H ₀ : μ > \$1200	B) H ₀ : μ = \$1200	C) H_0 : $\mu = 120	D) H ₀ : μ = \$1200		
	H_a : $\mu = 1200	H_a : $\mu > 1200	H_a : $\mu \ge 120	00 H _a : μ < \$1200		
31	decide whether the n	nean credit card debt	for household in the the state. Classify th	400. A hypothesis test is to be performerly affluent town of Rich-Performent hypothesis test appropriately. C) Right-Tailed		
32	advocacy group want than this. The hypotl H_0 : μ = 16.1 c where μ is the mean the sampling lead to	ts to perform a hypoth heses are: ounces versus F amount of juice in the	nesis test to determines: μ < 16.1 ounces manufacturer's 16 ypothesis. If, in fact	ounce bottles is 16.1 ounces. A cone whether the mean amount is ounce bottles. Suppose that the , the mean amount of juice, μ , is	actually less results of	
	A) Type I error	B) Correct	•	C) Type II error		
33	_ For a two-tailed one- A) ± 2.052	mean z-test with $α = 0$ B) ± 1.645	0.1, determine the c C) ±2.33	ritical value for the test. D) ±1.4805		
34	·		. Describe the strei	ngth of the evidence <u>against</u> the i	null	
	A) Weak of Hoffe	b) Strong	c) very strong	b) Woderate		
35	hypotheses, and α va value approach, whic A) Test statistic: t = 2 B) Test statistic: t = 2 C) Test statistic: t = 2	-	55 , $n=9$, H_0 : $\mu=2.8$ rectly outlines the a 2.33. Do not reject 2.281. Do not rejec 2.896. Do not rejec	H ₀ . t H ₀ .		


Name:			6
36	 who do not exercise regularly. She resting pulse rate of women who exof women who exercise less than 6 for the proposed hypothesis test. A) Let x̄₁ denote the mean resting denote the mean resting pulse in hypotheses are H₀: x̄₁ = x̄₂ and I B) Let μ₁ denote the mean resting denote the mean resting pulse in hypotheses are H₀: μ₁ = μ₂ and H C) Let μ₁ denote the mean resting denote the mean resting pulse in hypotheses are H₀: μ₁ < μ₂ and H D) Let μ₁ denote the mean resting 	wants to perform a hypothesis test ercise at least 6 hours per week is locally hours per week. Select the appropriate for women who exercise less that $\overline{x}_1 < \overline{x}_2$. The pulse rate for women who exercise less that $\overline{x}_1 < \overline{x}_2$ is $\overline{x}_1 < \overline{x}_2$. The pulse rate for women who exercise less that $\overline{x}_1 < \overline{x}_2$ is $\overline{x}_1 < \overline{x}_2$. The pulse rate for women who exercise less that $\overline{x}_1 < \overline{x}_2 < \overline{x}_3$ is $\overline{x}_1 < \overline{x}_2 < \overline{x}_3$ pulse rate for women who exercise less that $\overline{x}_1 < \overline{x}_1 > \overline{x}_2 < \overline{x}_3$ pulse rate for women who exercise less that $\overline{x}_1 < \overline{x}_2 < \overline{x}_3 < $	ess than the mean resting pulse rate riate null and alternative hypothesis at least 6 hours per week and let \bar{x}_2 han 6 hours per week. The at least 6 hours per week and let μ_2 han 6 hours per week. The at least 6 hours per week and let μ_2 han 6 hours per week. The at least 6 hours per week and let μ_2 han 6 hours per week. The
37	Summary statistics are given for ind test to perform a <u>right-tailed</u> hypoth $\overline{x}_1 = 73.7$, $s_1 = 10.9$, $n_1 = 16$, $\overline{x}_2 = 69$. A) Test statistic: $t = 2.635$. Critical B) Test statistic: $t = 1.053$. Critical C) Test statistic: $t = 2.635$. Critical D) Test statistic: $t = 1.053$. Critical	nesis test using significance level α = 9, s_2 = 8.2, n_2 = 12. value = 1.708. Reject H_0 . value = 1.706. Do not reject H_0 . value = 1.706. Reject H_0 .	o populations. Use the nonpooled t-= 0.05.
38	For the same summary statistics giv 95% confidence interval for μ_1 - μ_2 . A) -4.23 to 15.78 B) -1.97 to 9	(Hint: The degrees of freedom will	-
39	The number of successes in a sample Determine the sample proportion, \hat{p} A) \hat{p} = 0.096 B) \hat{p} = 0.045	ò.	spectively, as x = 17 and n = 200. D) \hat{p} = 0.076
40	The number of successes in a sample Decide whether using the one-propopulation proportion (p) is approp A) Not Appropriate	ortion z-interval procedure to calcu	•

SHORT ANSWER (10 Questions)

41. The preschool children at Elmwood Elementary School were asked to name their favorite color. The results are listed below. Construct a frequency distribution and a relative frequency distribution in the table provided.

42. The midterm test scores for the seventh-period typing class at a local high school are listed below. Construct a stem-and-leaf diagram for the scores. Be sure it is labeled appropriately.

43. The distances traveled (in miles) to 7 different swim meets for a family are given below.

20 25 40 41 63 73 88

Find the median: Show work:

44. For a person selected randomly from a certain population, events A and B are defined as follows:

A = event the person is male

B = event the person is a smoker

For this particular population, it is known that P(A) = 0.47, P(B) = 0.31, and P(A & B) = 0.12. Find P(A or B):

45. The volumes of soda in quart soda bottles are normally distributed with a mean of 32.3 oz and a standard deviation of 1.2 oz. What is the probability that the volume of soda in a randomly selected bottle will be less than 32 oz?

Show work:

Name:	
46.	A researcher wishes to estimate the mean resting heart rate for long-distance runners. A random sample of 12 long-distance runners yields the following heart rates, in beats per minute. 78 78 71 75 71 73 61 59 78 59 60 63 Use the data to obtain a point estimate of the mean resting heart rate for all long distance runners. Show work:
47.	Based on a sample of 36 randomly selected years, a 90% confidence interval for the mean annual precipitation in one city is from 46.8 inches to 49.2 inches. Find the margin of error. Show work:
48.	The principal of a high school asked six randomly selected students to take an aptitude test. Their scores were: 87.4 86.9 89.9 78.3 75.1 70.6 (\bar{x} = 81.367 and s = 7.803) Determine a 90% confidence interval for the mean score for all students in the high school assuming the population is normally distributed. Show work:
49.	DuraBurn claims that the mean lifetime of its SuperGlo light bulbs is 904 hours. A researcher wants to perform a hypothesis test to determine whether the mean lifetime is actually less than this. A random sample of 10 DuraBurn SuperGlo bulbs exhibited an average lifetime $\bar{x}=810$ hours with a standard deviation $s=158$ hours. Using the hypotheses H_0 : $\mu=904$ and H_a : $\mu<904$, give the value of the \underline{test} $\underline{statistic}$ and report the $\underline{P-value}$ for the test. (Preliminary data analyses indicate that the t-test is reasonable for this sample.)
50.	Use the paired t-interval procedure to determine a 90% confidence interval for μ_1 - μ_2 given the following summary statistics: \overline{d} = 3.125, s_d = 2.911, n = 8. Show work: