Name:	R#:	1

MATH 2300 Spring 2017 Final Exam

You have 150 minutes to complete this exam. Unless your exam proctor gives you alternative instructions, please observe the following:

- For the multiple choice questions, select the <u>best answer</u> and <u>write it clearly</u> in the space preceding the question number. There is <u>only one</u> correct answer for each question. If your instructor requires the multiple choice answers on another answer sheet (e.g. a Scantron), please place your answers there.
- For the non-multiple choice questions, provide your answers in the space provided. Show your work as appropriate.
- All problems are worth 2 points except #49, which is worth 4 points.

Name:	R#:	2

MULTIPLE CHOICE (40 Questions)

1	In a poll of 50,000 randomly selected college students, 74% answered "yes" when asked "Do you have a
	television in your dorm room?" Identify the sample and population.

- A) Sample: the 50,000 selected college students; population: all college students
- B) Sample: the 50,000 selected college students; population: the 74% who answered "yes"
- C) Sample: the 74% who answered "yes"; population: all college students
- D) Sample: all college students; population: the 50,000 selected college students

2	True or false? In simple rando	om sampling, each possible sample is equally likely to be the one obtained?
	A) True	B) False

3	The following table shows the average weight of offensive linemen for each given football team. What kind
	of data is provided in the first column?

	Team	Average Weight (pounds)
	Gators	303.52
ſ	Lakers	326.78
	Rams	345.88
ĺ	Pioneers	321.96

A) Qualitative

B) Quantitative

A) Discrete

B) Continuous

A) Symmetric

B) Right Skewed

C) Left Skewed

Let
$$x_1 = 16$$
, $x_2 = 3$, $x_3 = 9$, $x_4 = 15$, and $x_5 = 8$. Determine \overline{x} .

A) 51

B) 12.8

C) 10.2

D) 5

76, 29, 222, 152, 284, 247, 244

A) 152 newspapers

B) 222 newspapers

C) 244 newspapers

D) 179 newspapers

A) 0.094 m

B) 0.116 m

C) 0.483 m

D) 0.534 m

Name:		R#:			3
9	For the following	g data set, find the sampl	e standard deviation. (F 2, 6, 15, 9, 11, 22, 1, 4, 8	·	8.70.)
	A) 7.1	В) 6.3	C) 6.8	D) 2.1	
10		en's monthly phone bill h on of \$10. Use the empi	- ,		
	A) 68%	B) 95%	C) 99.7%	D) 99.99%	
11	The weights (in	oounds) of 18 randomly s 19, 120, 127, 132, 143, 1 B) 174.5 lb	•	below. Find the third q	
12	The mean of a so A) 1.00	et of data is 0.93 and its s B) 1.21	tandard deviation is 3.5 C) 0.91	1. Find the z-score for a D) 0.82	value of 4.13.
13.	The following fro	equency distribution anal	yzes the scores on a ma	th test. Find the probab	ility that a score
	greater than 82		Number of students	·	·
		40-75 60-75 76-82 83-94 95-99	2 4 6 15 5		
	A) 0.188	B) 0.813	C) 0.375	D) 0.625	
14	HHHH, HHHT, HI Here, for examp and the fourth to A = event exacti	is tossed 4 times, 16 outon HTH, HHTT, HTHH, HTHT, ble, HTTH represents the coss is heads. The events y two heads are tossed and B mutually exclusive B) No	HTTH, HTTT, THHH, THH outcome that the first to A and B are defined as fo B = event all four	oss is heads, the next two	o tosses are tails,
15	_ The probability t	hat Luis will pass his stat	istics test is 0.44. Find t	he probability that he wi	II fail his statistics
	A) 0.79	B) 0.22	C) 2.27	D) 0.56	
16	variable X) varie	oaves of rye bread left or s from day to day. Past role. Find the probability to the prob	ecords show that the prothat there will be at leas	obability distribution of 2 three loaves left over a	X is as shown in
	A) 0.15	P(X=x) 0.20 B) 0.65	0.25 0.20 0.15 0. C) 0.20	10 0.08 0.02 D) 0.35	
17	Sue Anne owns	a medium-sized business oyees who call in sick on x (# sid employee	Use the probability dis a given day, to find the cck 0 1 2 s)	tribution below, where X	〈 describes the
	A) 2.00	B) 1.70	C) 1.60	D) 1.00	

Name:		R#:		4	
18			the number of trials and s. $n = 6$, $p = 1/4$, $P(X = 2)$	the success probability for Bernoulli = .	
	A) 0.063	B) 0.386	C) 0.445		
19	Which of the following population standard (ndardized value of x if μ	is the population mean and $\boldsymbol{\sigma}$ is the	
	Α) (x-σ)/μ	B) (x-μ)*σ	C) (x-σ)*μ	D) (x-μ)/σ	
20	Use a table of normal	areas to obtain the	shaded area under the s	tandard normal curve.	
	A) 0.9406	B) 0.1188	-1.56 1.56 C) 0.8812	z D) 0.0594	
21	Find the standard nor A) 0.3264	mal z-score z _{0.45} . B) -0.13	C) 0.6736	D) 0.13	
22				d with a mean of 32.3 oz and a standard la in a randomly selected bottle will be	
	A) 0.5987	B) 0.4013	C) 0.0987	D) 0.3821	
23	What generally happe A) It gets larger. C) It gets smaller.	B) It rema	error as the sample size i ins the same. less predictable.	s increased?	
24	The mean and the standard deviation of a sampled population are, respectively, 43.5 and 5.2. A random sample of n = 289 observations is taken. Find the mean and standard deviation (standard error) of the sampling distribution of \bar{x} . A) $\mu_{\bar{x}} = 43.5$, $\sigma_{\bar{x}} = 0.3$ B) $\mu_{\bar{x}} = 15.1$, $\sigma_{\bar{x}} = 2.0$				
	C) $\mu_{\bar{x}} = 0.3$, $\sigma_{\bar{x}} = 43$.				
25	_	pulation. True or fa	lse: The standard deviat	lean height for a sample of people picked sion of \overline{x} for samples of size 30 is smaller	
26	mean 3.5 and standar rolled n = 32 times. D A) Normal, mean = 3.	rd deviation 1.71. Le Determine the sampli 5, standard deviatior mal, mean = 3.5, stan	t \overline{x} denote the mean of \overline{x} . In a significant of \overline{x} . In a constant of \overline{x} of \overline	rolled. Then x is a random variable with the numbers obtained when the die is	

D) Normal, mean = 3.5, standard deviation = 0.3

Name:		. R#:		5		
27		entage of samples of size		an of 220 and a standard deviation of 24. n scores within 12 points of the		
	A) 13.36%	B) 38.30%	C) 93.32%	D) 86.64%		
28		m sample of 15 long-dista		ation of long-distance calls originating in nation call		
	Use the data to obta		8, 32, 21, 16, 15, 1, 19 e mean call duration	9, 12, 2, 37 for all long-distance calls originating in		
	A) 13.3 min	B) 13.9 min	C) 13.6 min	D) 13.1 min		
29	For a t-curve with d A) 2.878	f = 18, find the t-value hav B) 2.101	ving area 0.05 to its ri C) 1.740	ight. D) 1.734		
30	In 1990, the mean duration of long-distance telephone calls originating in one town was 7.2 minutes. A long-distance telephone company wants to perform a hypothesis test to determine whether the mean duration of long-distance calls has changed from the 1990 mean of 7.2 minutes. Determine the appropriate null and alternative hypotheses.					
		es vs. H_a : $\mu \le 7.2$ minutes es vs. H_a : $\mu \ne 7.2$ minutes		utes vs. H_a : μ > 7.2 minutes utes vs. H_a : μ = 7.2 minutes		
31	Determine the critic A) 2.05	cal value for a one-mean lo B) -2.05	eft-tailed z-test with (C) -1.75	α = 0.04. D) 1.75		
32	The significance level and p-value of a hypothesis test are α = 0.01 and p-value = 0.003. Decide whether the null hypothesis should be rejected.					
	A) Reject the null hy	•	B) Do not reject th	ne null hypothesis.		
33	· · · · · · · · · · · · · · · · · · ·	for a population mean is ce against the null hypoth B) False	· · · · · · · · · · · · · · · · · · ·	ue or false: The larger the p-value, the		
34	Use a table of t-valuand observed test s	•	e for the two-tailed t	-test of the population mean with n = 26		
	A) p-value > 0.1	B) p-value > 0.2	C) p-value < 0.2	D) 0.1 < p-value < 0.2		
35	230. Interpret the c A) We can be 98% c B) We can be 98% c C) We can be 98% c		omewhere between omewhere between oth lie somewhere be	-30 and 230. tween -30 and 230.		

Name:		R#:	 	6		
36	Assuming a normal population, use the paired t-interval procedure to obtain a 99% confidence interval for μ_1 - μ_2 with the following summary statistics: $n = 8$, $\overline{d} = 3.125$, $s_d = 2.911$.					
	A) 1.851 to 6.726	B) 0.215 to 6.035	C) -0.476 to 6.726	D) 1.851 to 4.399		
37	pooled t-interval pro	_	confidence interval for $\boldsymbol{\mu}$	s from two population. Use the non- μ_1 - μ_2 given the following summary		
	A) -4.03 to 11.43	B) -3.74 to 11.14		D) -2.72 to 10.12		
38			nmple size is n = 35. Deci	de whether using the one-proportion		
	z-test is appropriate A) Not appropriate	e. B) Appropria	ate			
39	current listeners. In	a random sample of n =	100 current listeners, 22	be preferred by only 15% of their 2% favored the new format. She f the test statistic $z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$.		
	A) 1.215	в) 6.076	C) 1.960	D) 2.587		
40	data to find the p-va	alue for the hypothesis to	est: x ₁ = 41, n ₁ = 100, x ₂ =			
	A) 0.4211	B) 0.0043	C) 0.0512	D) 0.0086		

SHORT ANSWER (9 Questions)

41. Scott Tarnowski owns a pet grooming shop. His prices for grooming dogs are based on the size of the dog. His records from last year are summarized below. Complete the relative frequency distribution

,				
Class	Frequency	Relative		
		Frequency		
Large	345	0.190		
Medium	830			
Small	645			

Show work:

42. The data below represent the results of a poll in which the following question was asked: "To what degree are you satisfied with your current health insurance?" Construct a well-labeled pie-chart.

Very 15% Somewhat 25% Not at all 35% No opinion 25%

43. A store manager counts the number of customers who purchase in his store each day. The data are as follows: 5, 6, 3, 9, 2, 5, 5, 6, 3, 2

Construct a well-labeled dotplot.

44. A quality control engineer monitors the number of rejected circuit boards during each day's production run. For the past year's data, she calculates the five number summary as:

Min = 1 $Q_1 = 3.2$

 $Q_2 = 5.7$

 $O_2 = 9.1$

Max = 17

Draw a well-labeled boxplot for this five-number summary.

45. A lottery game has balls numbered 1 through 19. What is the probability of selecting an even numbered ball <u>or</u> the number 4 ball?

Probability =

Show work:

46. At one college, GPAs are normally distributed with a mean of 2.9 and a standard deviation of 0.6. What percentage of students at the college have a GPA between 2.3 and 3.5?

Percent =

Show work:

Name:		R#:			8
47.	drill. The times (in minu	tes) were: 11.4, 6). Assuming th	12.8, 12.7, 10.7	ed how long each player took to po 7, 14.6, 14.1, 6.9, 12.6, 10.9, 13.5 normally distributed, find a 95% o	
48.	_	-freedom that is	s appropriate for	ndom samples from two normal pr the nonpooled t-test for H $_0$: μ_1 - $ $	•
49.	been 160 in the past. Tw produce a mean score of	venty-five job a f 183 with a star	pplicants are rar ndard deviation	programming ability and the mean ndomly selected from a large unive of 12. Use a 0.05 level of significa ty is greater than 160. (4 points)	ersity and they
	Test statistic:				
	P-value:				
	Show work:				