Exam

Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Each question is worth 2 points.

Identify the study as an observational study or a designed experiment.

- 400 patients suffering from chronic back pain were randomly assigned to one of two groups.
 Over a four-month period, the first group received acupuncture treatments and the second group received a placebo. Patients who received acupuncture treatments improved more than those who received the placebo.
 - A) Designed experiment B) Observational study

Answer the question.

- 2) 100,000 randomly selected adults were asked whether they drink at least 48 oz of water each day
 2) ________
 and only 45% said yes. Identify the sample and population.
 - A) Sample: the 100,000 selected adults; population: the 45% of adults who drink at least 48 oz of water
 - B) Sample: all adults ; population: the 100,000 selected adults
 - C) Sample: the 45% of adults who drink at least 48 oz of water; population: all adults
 - D) Sample: the 100,000 selected adults; population: all adults

Classify the data as either qualitative or quantitative.

3) The following table gives the top five movies at the box office this week.

Rank	Last week	Movie title	Studio	Box office sales (\$ millions)
1	N/A	Pirate Adventure	Movie Giant	35.2
2	2	Secret Agent Files	G.M.G.	19.5
3	1	Epic Super Hero Team	21st Century	14.3
4	5	Reptile Ride	Movie Giant	10.1
5	4	Must Love Cats	Dreamboat	9.9

What kind of data is provided by the information in the fourth column? A) Qualitative B) Quantitative

Classify the data as either discrete or continuous.

4) The temperature in Manhattan at 1 p.m. on New Year's Day was 34.1°F.A) DiscreteB) Continuous

4)

Construct a frequency distribution for the given qualitative data.

5) The blood types for 40 people who agreed to participate in a medical study were as follows.

Ο	А	А	0	0	AB	Ο	В	А	Ο
А	0	А	В	0	Ο	0	AB	А	А
А	В	0	А	А	Ο	0	В	0	0
Ο	А	Ο	Ο	А	В	Ο	Ο	А	AB

Construct a frequency distribution for the data.

A) Blood type	Frequency	B) Blood type	Frequency
0	18	0	20
А	14	А	13
В	5	В	4
AB	3	AB	3
C) Blood type	Frequency	D) Blood type	Frequency
0	19	0	19
А	11	А	13
В	5	В	5
AB	2	AB	3

A nurse measured the blood pressure of each person who visited her clinic. Following is a relative-frequency histogram for the systolic blood pressure readings for those people aged between 25 and 40. Use the histogram to answer the question. The blood pressure readings were given to the nearest whole number.

5)

D) 8

A graphical display of a data set is given. Identify the overall shape of the distribution as (roughly) bell-shaped, triangular, uniform, reverse J-shaped, J-shaped, right skewed, left skewed, bimodal, or multimodal.

7) The ages of a group of patients being treated at one hospital for osteoporosis are summarized in the frequency histogram below.

7)

Solve the problem.

8) Here are boxplots of the points scored during the first 10 games of the basketball season for both8) Caroline and Alexandra. Summarize the similarities and differences in their performance so far.

- A) The girls have a different average score per game. Caroline is much more consistent, because her IQR is about 4 points, while Alexandra's is over 15. In other words, Alexandra has more variation in her scores than does Caroline. The distribution of scores for Caroline is symmetric, while the distribution of scores for Alexandra is left-skewed.
- B) Both girls have a median score of about 18 points per game. Caroline is much more consistent, because her IQR is about 4 points, while Alexandra's is over 15. In other words, Alexandra has more variation in her scores than does Caroline. The distribution of scores for both women is symmetric.
- C) Both girls have a median score of about 18 points per game. Caroline is much more consistent, because her IQR is about 6 points, while Alexandra's is over 20. In other words, Alexandra has more variation in her scores than does Caroline. The distribution of scores for Caroline is right skewed, while the distribution of scores for Alexandra is bell-shaped.
- D) Both girls have a median score of about 18 points per game. Alexandra is much more consistent, because her IQR is about 15 points, while Caroline's is over 3. In other words, Alexandra has less variation in her scores than does Caroline. The distribution of scores for both women is symmetric.

Find the median fo	or the given sa	imple da	ita.				
9) 5, 8, 24, 2 A) 27	27, 31, 39	B)	22.5	C) 25.5		D) 24	9)
Find the mean for	the given sam	ple data	. Unless otherv	vise specified,	round your ans	swer to one more de	cimal place
10) 14 11 16	the observation	ons.					10)
A) 17	.3	B)	13.8	C) 13		D) 14	
Obtain the five-nu	mber summa	ry for the	e given data.				
11) 2, 4, 5, 7,	9, 12, 13, 15	5	0				11)
A) 2, C) 2,	4, 9, 12, 15 4, 8.5, 13, 15			B) 2, 5, D) 2, 4.	7, 12, 15 5, 8, 12.5, 15		
List the outcomes (12) Three bo	comprising th ard members t	e specifi for a non	ed event. profit organiza	tion will be sel	ected from a gr	oup of five people.	12)
The boar	d members wi	ill be sele	ected by drawir	ng names from	a hat. The name	es of the five	/
possible be repres	board member sented as follo	rs are All ws.	lison, Bob, Chai	rlie, Dave, and	Emily. The pos	sible outcomes can	
APC			ACE				
ADE I	BCD BCE	BDE	CDE				
Here, for on the bo	example, AB0 pard. The even	C represe t A is de	ents the outcom fined as follows	e that Allison, s.	Bob, and Charl	ie are selected to be	
A = even	t that Bob and	Dave ar	e both selected				
List the c	outcomes that	comprise	e the event (not	А).			
A) A(CE						
B) Al	BC, ABE, ACE	, ADE, B	CE, CDE				
D) Al	BD, BCD, BDE	, ACE, P	IDE, DCE, CDE				
Find the indicated 13) In one cir females.	probability b ty, 50.8 % of ad For an adult se	y using t lults are t elected a	the general add female, 9.1% of t random from	lition rule. adults are left- the city, let	-handed, and 5.	1% are left–handed	13)
F = event L = event	t the person is t the person is	female left-han	ded.				
Find P(F A) 0.4	or L). Round a 1 97	approxin B)	nations to three 0.599	e decimal places C) 0.54	s. 8	D) 0.690	

Find the indicated probability.

14) Sammy and Sally each carry a bag containing a banana, a chocolate bar, and a licorice stick. Simultaneously, they take out a single food item and consume it. The possible pairs of food items that Sally and Sammy consumed are as follows.

chocolate bar – chocolate bar licorice stick – chocolate bar banana – banana chocolate bar – licorice stick licorice stick – licorice stick chocolate bar – banana banana – licorice stick licorice stick – banana banana – chocolate bar

Find the probability that at least one chocolate bar was eaten.

A) $\frac{1}{3}$	B) $\frac{7}{9}$	C) $\frac{4}{5}$	D) $\frac{5}{9}$

Find the indicated probability by using the complementation rule.

15) Based on meteorological records, the probability that it will snow in a certain town on January					
1st is 0.371. Find the	probability that in a give	n year it will not snow on	January 1st in that town.		
A) 2.695	B) 0.590	C) 1.371	D) 0.629		

Determine the possible values of the random variable.

A) 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 30
B) 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36
C) 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36
D) (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

Find the specified probability.

17) Use the special addition rule and the following probability distribution to determine $P(6 < X \le 8)$. 17) ______

P(X = x)	0	.05	0.05	0.20	0.15	0.15	0.10	0.30
A) 0.4	.45				B) 0.35			C) 1

Find the mean of the random variable.

14) _____

Find the indicated probability. Round to four decimal	places.				
19) The participants in a television quiz show are picked from a large pool of applicants with					
approximately equal numbers of men and women. Among the last 10 participants there have					
been only 2 women. If participants are picked randomly, what is the probability of getting 2 or					
fewer women when 10 people are picked?	<i>J</i> , 1	, , , , , , , , , , , , , , , , , , , ,			
A) 0.0547 B) 0.0439	C) 0.0107	D) 0.0537			
	C) 0.0107	D) 0.0007			
Fill in the blanks by standardizing the normally distrib	hutad variabla				
20) David drives to work as the morning at shout th		to time a is a sum aller	2		
20) Dave drives to work each morning at about th			20)		
distributed with a mean of 46 minutes and a s	tandard deviation of 5 m	inutes. The percentage of			
time that his commute time exceeds 58 minute	es is equal to the area un	der the standard normal			
curve that lies to the of					
A) right, 2.4 B) right, 12	C) left, 1.2	D) left, 2.4			
Use a table of areas to find the specified area under the	standard normal curve.		01)		
21) The area that lies to the left of 1.13			21)		
A) 0.8708 B) 0.8485	C) 0.1292	D) 0.8907			
Find the indicated probability or percentage for the no	rmally distributed varia	able.			
22) A bank's loan officer rates applicants for credi	t. The ratings are normal	lly distributed with a	22)		
mean of 200 and a standard deviation of 50. If	an applicant is randoml	y selected, find the			
probability of a rating that is between 200 and	275.				
A) 0.9332 B) 0.4332	C) 0.5	D) 0.0668			
23) The lengths of human pregnancies are normal	ly distributed with a me	an of 268 days and a	23)		
standard deviation of 15 days. What is the pro	bability that a pregnanc	y lasts at least 300 days?			
A) 0.4834 B) 0.0179	C) 0.9834	D) 0.0166			
Find the specified percentile, quartile, or decile.					
24) The weights of certain machine components a	re normally distributed	with a mean of 8.57 g and	24)		
a standard deviation of 0.08 g. Find the 97th n	percentile.	8	/		
A) $8.79 \circ$ B) $8.61 \circ$	C) 8 72 g	D) 8 58 g			
	0, 0.72 8	2) 0.00 8			
Provide an appropriate response.					
25) What is the sampling distribution of a statistic	?		25)		
A) The distribution of all possible observat	tions of the statistic for s	amples of a given size	- /		
from a population	ions of the studiet of st	and the of a given bize			
B) The distribution of all possible sizes of	samples from a populati	on that can be used to			
make observations of the statistic	ampico nom a populati				
C) The distribution of observations of a va	riable in a sample for a c	riven value of the statistic			
D) The distribution of chearvations of the	statistic for all possible of	izes of samples from a			
b) The distribution of observations of the s	statistic for all possible si	izes of samples from a			
population					

Find the requested probability.

26) The test scores of 5 students are under consideration. The following is the dotplot for the sampling distribution of the sample mean for samples of size 2.

Find the probability, expressed as a percent, that the sample mean will be within 2 points of the population mean.

For samples of the specified size from the population described, find the mean and standard deviation of the sample mean \overline{x} .

For samples of size 64, find the mean and standard deviation of x.

A) $\mu_{x} = 16; \sigma_{x} = 94$	B) $\mu_{x} = 94; \sigma_{x} = 2$
C) $\mu_{x} = 94; \sigma_{x} = 16$	D) $\mu_{\overline{x}} = 2; \ \sigma_{\overline{x}} = 94$

Identify the distribution of the sample mean. In particular, state whether the distribution of \bar{x} is normal or approximately normal and give its mean and standard deviation.

28) The mean annual income for adult women in one city is \$28,520 and the standard deviation of the incomes is \$5100. The distribution of incomes is skewed to the right. Determine the

sampling distribution of the mean for samples of size 74.

- A) Approximately normal, mean = \$28,520, standard deviation = \$5100
- B) Normal, mean = \$28,520, standard deviation = \$69
- C) Approximately normal, mean = \$28,520, standard deviation = \$593
- D) Normal, mean = \$28,520, standard deviation = \$593

Solve the problem.

29) Based on a sample of size 49, a 95% confidence interval for the mean score of all students, μ, on 29) an aptitude test is from 59.3 to 66.7. Find the margin of error.

- A) 1.04
- B) 3.7
- C) There is not enough information to find the margin of error.
- D) 7.4

Find the necessary sample size.

- 30) The weekly earnings of students in one age group are normally distributed with a standard deviation of 75 dollars. A researcher wishes to estimate the mean weekly earnings of students in this age group. Find the sample size needed to assure with 95 percent confidence that the sample mean will not differ from the population mean by more than 3 dollars.
 - A) 12 B) 2401 C) 97 D) 33

26)

Find the confidence interval specifi	ied. Assume that the p	opulation is normally d	istributed.		
31) A sociologist develops a t	est to measure attitude	es about public transporta	ntion, and 27 randomly	31)	
selected subjects are given the test. Their mean score is 76.2 and their standard deviation is 21.4.					
Construct the 95% confide	ence interval for the m	ean score of all such subje	ects.		
A) 64.2 to 88.2	B) 74.6 to 77.8	C) 67.7 to 84.7	D) 69.2 to 83.2		
Find the confidence interval specifi	ied.				
32) A random sample of 88 li	ght bulbs had a mean	life of $x = 517$ hours. Assu	me that $\sigma = 39$ hours.	32)	
Construct a 90% confiden	ce interval for the mea	n life, μ, of all light bulbs	of this type.	·	
A) 510.1 to 523.9 hour	S	B) 507.3 to 526.7 he	ours		
C) 508.9 to 525.1 hour	S	D) 506.3 to 527.7 he	ours		
A hypothesis test is to be performe	d. Determine the null	l and alternative hypothe	eses.		
33) At one school, the average	e amount of time that	tenth-graders spend wate	ching television each	33)	
week is 21.6 hours. The p	rincipal introduces a c	ampaign to encourage the	e students to watch less		
television. One year later,	the principal wants to	perform a hypothesis tes	t to determine whether		
the average amount of tin	ne spent watching tele	vision per week has decre	eased.		
A) $H_0 : \mu = 21.6$ hour	S	B) $H_0 : \mu < 21.6 h$	ours		
H ⊂ : μ < 21.6 hour	s	H_{2} : $\mu > 21.6$ he	ours		
C) $H_0^a: \mu < 21.6$ hour	S	D) H_0^a : $\mu = 21.6 h$	ours		
$H_{a}^{\prime}: \mu = 21.6 \text{ hour}$	s	$H_{a}^{2}: \mu \le 21.6 hc$	ours		
The value obtained for the test stat	istic, z, in a one-mear	n z-test is given. Also gi	ven is whether the test	is two tailed,	
left tailed, or right tailed. Determin	ne the P-value.				
34) A left-tailed test:				34)	
z = -0.58					
A) 0.7190	B) 0.4380	C) 0.5620	D) 0.2810		
Classify the conclusion of the hype	othesis test as a Type l	error, a Type II error, or	a correct decision.		
35) A health insurer has deter	mined that the "reason	nable and customary" fee	for a certain medical	35)	
procedure is \$1200. They	suspect that the average	ge fee charged by one par	ticular clinic for this		
procedure is higher than s	\$1200. The insurer war	nts to perform a hypothes	is test to determine		
whether their suspicion is	correct. The hypothes	ses are:			
$H_0: \mu = 1200)				
$H_{2}^{\prime}:\mu > $ \$1200)				
d					

where μ is the mean amount charged by the clinic for this procedure. Suppose that the results of the sampling lead to rejection of the null hypothesis. Classify that conclusion as a Type I error, a Type II error, or a correct decision, if in fact the average fee charged by the clinic is \$1200.

A) Type II error B) Type I error C) Correct decision

A sample mean, sample standard deviation, and sample size are given. Use the one-mean t-test to perform the required hypothesis test about the mean, μ , of the population from which the sample was drawn. Use the critical-value approach.

- 36) $\overline{x} = 20.9$, s = 7, n = 11, $H_0 : \mu = 18.7$, $H_a : \mu \neq 18.7$, $\alpha = 0.05$
 - A) Test statistic: t = 1.04. Critical values: $t = \pm 2.201$. Do not reject H_0 . There is not sufficient evidence to conclude that the mean is different from 18.7.
 - B) Test statistic: t = 1.04. Critical values: $t = \pm 2.201$. Reject H₀. There is sufficient evidence to conclude that the mean is different from 18.7.
 - C) Test statistic: t = 1.04. Critical values: $t = \pm 2.228$. Do not reject H₀. There is not sufficient evidence to conclude that the mean is different from 18.7.
 - D) Test statistic: t = 1.04. Critical values: $t = \pm 1.96$. Reject H₀. There is sufficient evidence to conclude that the mean is different from 18.7.

Determine the null and alternative hypotheses for the proposed hypothesis test.

- - A) Let x_1 denote the mean credit card debt for credit card holders aged 18–35 and let x_2 denote the mean credit card debt for credit card holders over 35. The null and alternative hypotheses are $H_0: \overline{x_1} = \overline{x_2}$ and $H_a: \overline{x_1} > \overline{x_2}$.
 - B) Let μ_1 denote the mean credit card debt for credit card holders aged 18–35 and let μ_2

denote the mean credit card debt for credit card holders over 35. The null and alternative hypotheses are $H_0: \mu_1 > \mu_2$ and $H_a: \mu_1 < \mu_2$.

C) Let μ_1 denote the mean credit card debt for credit card holders aged 18–35 and let μ_2

denote the mean credit card debt for credit card holders over 35. The null and alternative hypotheses are $H_0: \mu_1 = \mu_2$ and $H_a: \mu_1 > \mu_2$.

D) Let μ_1 denote the mean credit card debt for credit card holders aged 18–35 and let μ_2

denote the mean credit card debt for credit card holders over 35. The null and alternative hypotheses are $H_0: \mu_1 = \mu_2$ and $H_a: \mu_1 < \mu_2$.

Summary statistics are given for independent simple random samples from two populations. Preliminary data analyses indicate that the variable under consideration is normally distributed on each population. Decide whether use of the pooled t-test and pooled t-interval procedure is reasonable. Explain your answer.

38)
$$x_1 = 566.9$$
, $s_1 = 51.2$, $n_1 = 37$, $x_2 = 480.2$, $s_2 = 53.5$, $n_2 = 42$

38)

- A) Reasonable; the sample standard deviations are close to being equal suggesting that the assumption of equal population standard deviations is reasonable. Also both sample sizes are large.
- B) Not reasonable; the sample means suggest that the two population means differ.
- C) Reasonable; the sample means are close to being equal suggesting that the assumption of equal population means is reasonable. Also both sample sizes are large.
- D) Not reasonable; the sample standard deviations suggest that the two population standard deviations differ.

36) _____

The number of successes and the sample size are given for a simple random sample from a population. Determine

the sample	e proportion, p.				
39) :	x = 33, n = 125				39)
	A) $p = 0.364$	B) $p = 0.284$	C) $p = 0.214$	D) $p = 0.264$	
Find the in	ndicated margin of er	ror.			
40) 1	In a survey of 6700 T.V	7. viewers, 3350 said they	watch network news pro	ograms. Find the margin	40)

SHORT ANSWER. Answer each question as best as you can. Work must be shown in order to receive full credit.

of error for the 99% confidence interval used to estimate the population proportion.

B) 0.0138

Find the sample standard deviation for the given data. Round your final answer to one more decimal place than that used for the observations.

41) Christine is currently taking college astronomy. The instructor often gives quizzes. On41) ______the past five quizzes, Christine got the following scores. (8 points)

C) 0.0120

D) 0.0158

48 42 21 20 55

A) 0.00900

Find the indicated probability or percentage for the sampling error.

42) The monthly spending on food by single adults in a city are normally distributed with a mean of \$410 and a standard deviation of \$70. What is the probability that the sampling error made in estimating the mean monthly spending of all single adults in that city by the mean of a random sample of 90 such adults will be at most \$10? **(8 points)**

42) _____

Obtain the probability distribution of the random variable.

- 43) When two balanced dice are rolled, 36 equally likely outcomes are possible as shown below.
 - (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Let X denote the smaller of the two numbers. If both dice come up the same number, then X equals that common value. Find the probability distribution of X. Leave your probabilities in fraction form. **(6 points)**

Apply the pooled t-interval procedure to obtain the required confidence interval. You may assume that the assumptions for using the procedure are satisfied.

44) A paint manufacturer wanted to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 9 cans of type B were selected and applied to similar surfaces. The drying times, in hours, were recorded. The summary statistics are as follows.

Type A	Туре В
$x_1 = 71.6$	$x_2 = 68.3$
$s_1 = 3.3$	$s_2 = 3.2$
$n_1 = 11$	n2 = 9

Determine a 99% confidence interval for the difference between the mean drying time of type A and the mean drying time of type B. **(8 points)**

Perform a one-sample z-test for a population mean using either the critical value approach or the P-value approach. Be sure to state the hypotheses and the significance level, to compute the value of the test statistic, how your reach your conclusions, and what your conclusion is in terms of the scenario described.

- 45) _____
- 45) In 2000, the average duration of long-distance telephone calls originating in one town was 9.4 minutes. A long-distance telephone company wants to perform a hypothesis test to determine whether the average duration of long-distance phone calls has changed from the 2000 mean of 9.4 minutes. They randomly sampled 50 calls originating in the town and found that the mean duration of these 50 calls was 8.6 minutes. Do the data provide sufficient evidence to conclude that the mean call duration, μ , has changed from the 2000 mean of 9.4 minutes? Perform the appropriate hypothesis test using a significance level of 1%. Assume that $\sigma = 4.8$ minutes. **(10 points)**