Mathematics 2450, Calculus 3 with applications

Fall 2015, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2015

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the **parametric** equations for the line passing through the point P = (1, 2, 3)and perpendicular to the plane 3x - 2y + 5z = 4.

a)
$$t\mathbf{i} + 2t\mathbf{j} + 3t\mathbf{k}$$

b) $\langle 3 + t, -2 + 2t, 5 + 3t \rangle$
c) $\frac{x-3}{1} = \frac{y+2}{2} = \frac{z-5}{3}$
d) $x + 2y + 3z = 14$
e) $\langle 1 + 3t, 2 - 2t, 3 + 5t \rangle$

2. Let the velocity vector be $\mathbf{v}(t) = t^2 \mathbf{i} + \cos t \mathbf{j} + e^{2t} \mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$.

a)
$$\left(\frac{t^3}{3} + c_1\right)\mathbf{i} + (\sin t + c_2)\mathbf{j} + (\frac{1}{2}e^{2t} + c_3)\mathbf{k}$$

b) $2t\mathbf{i} - \sin t\mathbf{j} + 2e^{2t}\mathbf{k}$
c) $\frac{t^3}{3}\mathbf{i} + \sin t\mathbf{j} + \frac{1}{2}e^{2t}\mathbf{k}$
d) $2t - \sin t + 2e^{2t}$
e) $(2t + c_1)\mathbf{i} + (-\sin t + c_2)\mathbf{j} + (2e^{2t} + c_3)\mathbf{k}$

3. Find the value of the following limit

$$A = \lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2},$$

if it exists.

a) The limit does not exist
b)
$$A = \frac{1}{2}$$

c) $A = +\infty$
d) $A = \frac{0}{0}$
e) $A = 0$

4. Given $F(x, y) = \cos(xy)$ where $x = u^2 + v^2$ and $y = u^2 - v^2$. Use the chain rule (do not substitute for x and y!) to find $\frac{\partial F}{\partial v}$. Express the result in terms of x, y, u, and v.

a)
$$\frac{\partial F}{\partial v} = -\sin(xy)(y-x)2v$$

b) $\frac{\partial F}{\partial v} = -\sin(xy)(y+x)2u$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v} = -\sin(xy)(2yu-2xv)$
e) $\frac{\partial F}{\partial v} = -\sin(xy)(2yv+2xu)$

- 5. Let $f(x,y) = \cos(x+3y)$, $P = \left(\frac{\pi}{2}, \frac{\pi}{3}\right)$ and $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v} .
 - a) 9 b) 0 c) $\frac{9}{5}$ d) $\frac{1}{5}\langle -3, 4 \rangle$ e) $\langle 1, 3 \rangle$
- 6. Evaluate the integral by reversing the order of integration.

$$I = \int_0^1 \int_y^1 e^{x^2} \, dx dy.$$

a)
$$I = 1$$

b) $I = e$
c) $I = (e - 1)$
d) $I = 0$
e) $I = \frac{1}{2}(e - 1)$

7. Find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ inside the cylinder $x^2 + y^2 = 4$.

a)
$$S = 4\sqrt{2}\pi$$

b) $S = 0$
c) $S = 4\pi$
d) $S = \frac{\pi}{6}(17^{3/2} - 1)$
f) $S = \pi$

8. Find $\operatorname{curl} \mathbf{F}$, where

$$\mathbf{F}(x, y, z) = (x^3 + 2x)\mathbf{i} + \cos(y)\mathbf{j} + e^{z^2}\mathbf{k}.$$

a) $\nabla \times \mathbf{F} = 3x^2 + 2 - \sin(y) + 2e^{z^2}$ b) $\nabla \times \mathbf{F} = \langle 3x^2 + 2, -\sin(y), 2e^{z^2} \rangle$
c) $\nabla \times \mathbf{F} = \langle 0, 0, 0 \rangle$ d) $\nabla \times \mathbf{F} = \sqrt{(3x^2 + 2)^2 + \sin^2(y) + (2e^{z^2})^2}$
e) $\nabla \times \mathbf{F} = 0$

9. Verify if the vector field $\mathbf{F} = \langle x \cos(2y), -x^2 \sin(2y) \rangle$ is conservative and evaluate the line integral

$$I = \int_C \mathbf{F} \cdot d\mathbf{R},$$

where C is the curve parametrized by $\mathbf{R}(t) = \langle t, \pi t^2 \rangle$, for $0 \leq t \leq 1$.

a)
$$I = \frac{1}{4}$$

b) $I = \frac{1}{2}$
c) $I = 0$
d) $I = 1$
e) $I = 2$

10. Use Green's theorem to evaluate

$$I = \oint_C \left(-y + y^2\right) dx + (x + 2xy) \, dy,$$

where C is the rectangle with vertices in (0,0), (2,0), (2,1) and (0,1), traversed counterclockwise.

a)
$$I = 4$$
b) $I = 0$ c) $I = 1$ d) $I = 2$ e) $I = 8$

11. Use the divergence theorem to evaluate

$$I = \iint_S \mathbf{F} \cdot \mathbf{N} \, dS,$$

where $\mathbf{F} = \langle xz, yx, zy \rangle$, and **N** is the unit outward normal to the surface S which encloses the box $0 \le x \le 1$, $0 \le y \le 1$ and $0 \le z \le 1$.

a)
$$I = 3$$

b) $I = 0$
c) $I = 1/2$
d) $I = 3/2$
e) $I = 1$

Essay questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Let the position vector be $\mathbf{R}(t) = 8t \mathbf{i} + 3\sin(2t)\mathbf{j} 3\cos(2t)\mathbf{k}$. Find the unit tangent vector $\mathbf{T}(t)$ and the principal unit normal vector $\mathbf{N}(t)$.
- 13. Find and classify all the critical points for the function

$$f(x,y) = 2x^3 + 3xy - 2y^3 + 7$$
.

14. Use either cylindrical or spherical coordinates to evaluate the triple integral

$$I = \iiint_{\mathbf{D}} z \, dV,$$

where **D** is the portion of the ball, $x^2 + y^2 + z^2 \le 4$, in the first octant, $x \ge 0$, $y \ge 0$ and $z \ge 0$.

15. Use Stokes' theorem to evaluate the line integral $\oint_C \mathbf{F} \cdot d\mathbf{R}$, where

$$\mathbf{F} = (e^{x^2} + 3y)\mathbf{i} + (\cos y + x)\mathbf{j} + z^2\mathbf{k}$$

and C is the closed curve given by the line segments connecting the points (1,0,0), (0,1,0), (0,0,1) traversed in the given order.