Mathematics 2450, Calculus 3 with applications

Fall 2015, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2015
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the parametric equations for the line passing through the point $P=(1,2,3)$ and perpendicular to the plane $3 x-2 y+5 z=4$.
a) $t \mathbf{i}+2 t \mathbf{j}+3 t \mathbf{k}$
b) $\langle 3+t,-2+2 t, 5+3 t\rangle$
c) $\frac{x-3}{1}=\frac{y+2}{2}=\frac{z-5}{3}$
d) $x+2 y+3 z=14$
e) $\langle 1+3 t, 2-2 t, 3+5 t\rangle$
2. Let the velocity vector be $\mathbf{v}(t)=t^{2} \mathbf{i}+\cos t \mathbf{j}+e^{2 t} \mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$.
a) $\left(\frac{t^{3}}{3}+c_{1}\right) \mathbf{i}+\left(\sin t+c_{2}\right) \mathbf{j}+\left(\frac{1}{2} e^{2 t}+c_{3}\right) \mathbf{k}$
b) $2 t \mathbf{i}-\sin t \mathbf{j}+2 e^{2 t} \mathbf{k}$
c) $\frac{t^{3}}{3} \mathbf{i}+\sin t \mathbf{j}+\frac{1}{2} e^{2 t} \mathbf{k}$
d) $2 t-\sin t+2 e^{2 t}$
e) $\left(2 t+c_{1}\right) \mathbf{i}+\left(-\sin t+c_{2}\right) \mathbf{j}+\left(2 e^{2 t}+c_{3}\right) \mathbf{k}$
3. Find the value of the following limit

$$
A=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

if it exists.
a) The limit does not exist
b) $A=\frac{1}{2}$
c) $A=+\infty$
d) $A=\frac{0}{0}$
e) $A=0$
4. Given $F(x, y)=\cos (x y)$ where $x=u^{2}+v^{2}$ and $y=u^{2}-v^{2}$. Use the chain rule (do not substitute for x and $y!)$ to find $\frac{\partial F}{\partial v}$. Express the result in terms of x, y, u, and v.
a) $\frac{\partial F}{\partial v}=-\sin (x y)(y-x) 2 v$
b) $\frac{\partial F}{\partial v}=-\sin (x y)(y+x) 2 u$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v}=-\sin (x y)(2 y u-2 x v)$
e) $\frac{\partial F}{\partial v}=-\sin (x y)(2 y v+2 x u)$
5. Let $f(x, y)=\cos (x+3 y), P=\left(\frac{\pi}{2}, \frac{\pi}{3}\right)$ and $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v}.
a) 9
b) 0
c) $\frac{9}{5}$
d) $\frac{1}{5}\langle-3,4\rangle$
e) $\langle 1,3\rangle$
6. Evaluate the integral by reversing the order of integration.

$$
I=\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y
$$

a) $I=1$
b) $I=e$
c) $I=(e-1)$
d) $I=0$
e) $I=\frac{1}{2}(e-1)$
7. Find the surface area of the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=4$.
a) $S=4 \sqrt{2} \pi$
b) $S=0$
c) $S=4 \pi$
d) $S=\frac{\pi}{6}\left(17^{3 / 2}-1\right)$
f) $S=\pi$
8. Find $\operatorname{curl} \mathbf{F}$, where

$$
\mathbf{F}(x, y, z)=\left(x^{3}+2 x\right) \mathbf{i}+\cos (y) \mathbf{j}+e^{z^{2}} \mathbf{k}
$$

a) $\nabla \times \mathbf{F}=3 x^{2}+2-\sin (y)+2 e^{z^{2}}$
b) $\nabla \times \mathbf{F}=\left\langle 3 x^{2}+2,-\sin (y), 2 e^{z^{2}}\right\rangle$
c) $\nabla \times \mathbf{F}=\langle 0,0,0\rangle$
d) $\nabla \times \mathbf{F}=\sqrt{\left(3 x^{2}+2\right)^{2}+\sin ^{2}(y)+\left(2 e^{z^{2}}\right)^{2}}$
e) $\nabla \times \mathbf{F}=0$
9. Verify if the vector field $\mathbf{F}=\left\langle x \cos (2 y),-x^{2} \sin (2 y)\right\rangle$ is conservative and evaluate the line integral

$$
I=\int_{C} \mathbf{F} \cdot d \mathbf{R}
$$

where C is the curve parametrized by $\mathbf{R}(t)=\left\langle t, \pi t^{2}\right\rangle$, for $0 \leq t \leq 1$.
a) $I=\frac{1}{4}$
b) $I=\frac{1}{2}$
c) $I=0$
d) $I=1$
e) $I=2$
10. Use Green's theorem to evaluate

$$
I=\oint_{C}\left(-y+y^{2}\right) d x+(x+2 x y) d y
$$

where C is the rectangle with vertices in $(0,0),(2,0),(2,1)$ and $(0,1)$, traversed counterclockwise.
a) $I=4$
b) $I=0$
c) $I=1$
d) $I=2$
e) $I=8$
11. Use the divergence theorem to evaluate

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\langle x z, y x, z y\rangle$, and \mathbf{N} is the unit outward normal to the surface S which encloses the box $0 \leq x \leq 1,0 \leq y \leq 1$ and $0 \leq z \leq 1$.
a) $I=3$
b) $I=0$
c) $I=1 / 2$
d) $I=3 / 2$
e) $I=1$

Essay questions.

Show all your work. A correct answer with no work counts as 0.
12. Let the position vector be $\mathbf{R}(t)=8 t \mathbf{i}+3 \sin (2 t) \mathbf{j}-3 \cos (2 t) \mathbf{k}$. Find the unit tangent vector $\mathbf{T}(t)$ and the principal unit normal vector $\mathbf{N}(t)$.
13. Find and classify all the critical points for the function

$$
f(x, y)=2 x^{3}+3 x y-2 y^{3}+7
$$

14. Use either cylindrical or spherical coordinates to evaluate the triple integral

$$
I=\iiint_{\mathbf{D}} z d V
$$

where \mathbf{D} is the portion of the ball, $x^{2}+y^{2}+z^{2} \leq 4$, in the first octant, $x \geq 0, y \geq 0$ and $z \geq 0$.
15. Use Stokes' theorem to evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{R}$, where

$$
\mathbf{F}=\left(\mathrm{e}^{x^{2}}+3 y\right) \mathbf{i}+(\cos y+x) \mathbf{j}+z^{2} \mathbf{k}
$$

and C is the closed curve given by the line segments connecting the points $(1,0,0)$, $(0,1,0),(0,0,1)$ traversed in the given order.

