Mathematics 2450, Calculus 3 with applications

Fall 2016, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2016

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the symmetric equations for the line passing through the point P = (3, -1, 2)and perpendicular to the plane -2x + y - 5z = 4.

a) $\langle -2 + 3t, 1 - t, -5 + 2t \rangle$	b) $\frac{x+2}{3} = 1 - y = \frac{z+5}{2}$
c) $z = 1$	d) $\frac{3-x}{2} = y+1 = \frac{2-z}{5}$
e) $-2x + y - 5z = 0$	

2. Find the limit, if it exists.

$$\mathbf{L} = \lim_{t \to 1} \left[\frac{(t^3 - 1)}{(t - 1)} \,\mathbf{i} + \frac{\tan(t - 1)}{(t - 1)} \,\mathbf{j} + (t^2 + 1)e^{t - 1} \,\mathbf{k} \right]$$

- a) DNE (Does Not Exist) b) $\langle 3, 1, 2 \rangle$ c) $\langle \frac{0}{0}, \frac{0}{0}, 2 \rangle$ d) $\langle 0, 0, 2 \rangle$ e) $\langle 1, 2, 3 \rangle$
- 3. Let the velocity vector be $\mathbf{v}(t) = e^t \mathbf{i} \sin(2t)\mathbf{j} + t^2 \mathbf{k}$, and the initial position vector be $\mathbf{r}(0) = 2\mathbf{i} + \mathbf{j} \mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.

a)
$$\langle e^t, -2\cos(2t), 2t \rangle$$

b) $\langle e^t + 1, \frac{1}{2}\cos(2t) + \frac{1}{2}, \frac{1}{3}t^3 - 1 \rangle$
c) $\langle e^t, \frac{1}{2}\cos(2t), \frac{1}{3}t^3 \rangle$
d) $\langle e^t + 1, -2\cos(2t) + 3, 2t - 1 \rangle$
e) $\langle 2, 1, -1 \rangle$

4. Let z = z(x, y) be a continuous function of x and y defined implicitly by the equation

$$\ln(x^2 + y^2 + xyz^2) = 5.$$

Find the partial derivative $\frac{\partial z}{\partial y}$, where it is defined.

a)
$$\frac{\partial z}{\partial y} = -\frac{2x + yz^2}{2xyz}$$

b) $\frac{\partial z}{\partial y} = \ln(2y + xz^2)$
c) $\frac{\partial z}{\partial y} = \frac{2y + xz^2}{x^2 + y^2 + xyz^2}$
d) $\frac{\partial z}{\partial y} = -\frac{2y + xz^2}{2xyz}$

- e) The function is not differentiable
- 5. Given $F(x,y) = \ln(xy)$ where $x = e^{uv^2}$ and y = uv. Use the chain rule to find $\frac{\partial F}{\partial v}$, where it exists. Express your result in terms of u and v only.

a)
$$\frac{\partial F}{\partial v} = 2uv + \frac{1}{v}$$

b) $\frac{\partial F}{\partial v} = \frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v} = v^2 + \frac{1}{u}$
e) $\frac{\partial F}{\partial v} = 2uv$

6. For the function

$$f(x,y) = e^{-2xy}$$

find and classify all the critical points.

c) $P_0(0,0)$ Relative Maximum

- a) $P_0(0,0)$ Saddle Point b) $P_0(1,1)$ Relative Minimum

 - d) $\begin{cases} P_0(0,0) \text{ Saddle Point and} \\ P_1(1,1) \text{ Relative Minimum} \end{cases}$
- e) $\begin{cases} P_0(1,1) \text{ Relative Maximum and} \\ P_1(0,0) \text{ Saddle Point} \end{cases}$
- 7. Find the area inside the cardioid $r = 1 + \cos \theta$.

a)
$$I = \frac{3}{2}\pi$$

b) $I = 1$
c) $I = 0$
d) $I = \pi$
e) $I = 2\pi$

8. Evaluate the triple integral

$$I = \iiint_{\mathbf{D}} y \, dV$$

where **D** is the region in the first octant $(x \ge 0, y \ge 0 \text{ and } z \ge 0)$, below the plane z = 1 - y and with $x \le 1$.

a)
$$I = 0$$

b) $I = 1$
c) $I = \frac{1}{3}$
d) $I = \frac{1}{6}$
e) $I = \frac{1}{9}$

9. Evaluate

$$I = \oint_C \mathbf{F} \cdot d\mathbf{R},$$

where $\mathbf{F} = \langle ye^{xy}, xe^{xy} \rangle$ and C is the curve parametrized by $\mathbf{R} = \langle \cos t, \sin t \rangle$ for $0 \le t \le 2\pi$.

a)
$$I = \pi$$

b) $I = 2\pi$
c) $I = 0$
d) $I = 1$
e) $I = \frac{1}{2}$

10. Use the divergence theorem to evaluate

$$I = \iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS,$$

where $\mathbf{F} = \langle z \sin(y), e^x + y, z + \cos(xy) \rangle$, and **N** is the unit outward normal to the surface S defined implicitly by

$$x^2 + y^2 + z^2 = 1.$$

a)
$$I = 0$$

b) $I = \pi$
c) $I = 1$
d) $I = \frac{8}{3}\pi$
e) $I = 4\pi$

Essay questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Find the curvature of the plane curve $y = -\cos(x) + e^{2x}$ at x = 0.
- 13. Suppose $f(x, y) = e^{2x+3y}$, P = (1, 0) and $\mathbf{v} = 3\mathbf{i} 4\mathbf{j}$.
 - a) Find the directional derivative of f at P in the direction of \mathbf{v} .
 - b) Find the maximum rate of change of f at P.
- 14. Evaluate the triple integral

$$I = \iiint_{\mathbf{D}} (3x^2 + 3y^2) \, dV,$$

where **D** is the region inside the cone $z = \sqrt{4x^2 + 4y^2}$, and below the plane z = 8.

15. Use Green's theorem to evaluate

$$\oint_C \left(x^2 \cos x - y^3\right) dx + \left(x^3 + e^y \sin y\right) dy,$$

where C is the positively oriented circle $x^2 + y^2 = 1$.