Mathematics 2450, Calculus 3 with applications

Fall 2016, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2016
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the symmetric equations for the line passing through the point $P=(3,-1,2)$ and perpendicular to the plane $-2 x+y-5 z=4$.
a) $\langle-2+3 t, 1-t,-5+2 t\rangle$
b) $\frac{x+2}{3}=1-y=\frac{z+5}{2}$
c) $z=1$
d) $\frac{3-x}{2}=y+1=\frac{2-z}{5}$
e) $-2 x+y-5 z=0$
2. Find the limit, if it exists.

$$
\mathbf{L}=\lim _{t \rightarrow 1}\left[\frac{\left(t^{3}-1\right)}{(t-1)} \mathbf{i}+\frac{\tan (t-1)}{(t-1)} \mathbf{j}+\left(t^{2}+1\right) e^{t-1} \mathbf{k}\right]
$$

a) DNE (Does Not Exist)
b) $\langle 3,1,2\rangle$
c) $\left\langle\frac{0}{0}, \frac{0}{0}, 2\right\rangle$
d) $\langle 0,0,2\rangle$
e) $\langle 1,2,3\rangle$
3. Let the velocity vector be $\mathbf{v}(t)=e^{t} \mathbf{i}-\sin (2 t) \mathbf{j}+t^{2} \mathbf{k}$, and the initial position vector be $\mathbf{r}(0)=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.
a) $\left\langle e^{t},-2 \cos (2 t), 2 t\right\rangle$
b) $\left\langle e^{t}+1, \frac{1}{2} \cos (2 t)+\frac{1}{2}, \frac{1}{3} t^{3}-1\right\rangle$
c) $\left\langle e^{t}, \frac{1}{2} \cos (2 t), \frac{1}{3} t^{3}\right\rangle$
d) $\left\langle e^{t}+1,-2 \cos (2 t)+3,2 t-1\right\rangle$
e) $\langle 2,1,-1\rangle$
4. Let $z=z(x, y)$ be a continuous function of x and y defined implicitly by the equation

$$
\ln \left(x^{2}+y^{2}+x y z^{2}\right)=5 .
$$

Find the partial derivative $\frac{\partial z}{\partial y}$, where it is defined.
a) $\frac{\partial z}{\partial y}=-\frac{2 x+y z^{2}}{2 x y z}$
b) $\frac{\partial z}{\partial y}=\ln \left(2 y+x z^{2}\right)$
c) $\frac{\partial z}{\partial y}=\frac{2 y+x z^{2}}{x^{2}+y^{2}+x y z^{2}}$
d) $\frac{\partial z}{\partial y}=-\frac{2 y+x z^{2}}{2 x y z}$
e) The function is not differentiable
5. Given $F(x, y)=\ln (x y)$ where $x=e^{u v^{2}}$ and $y=u v$. Use the chain rule to find $\frac{\partial F}{\partial v}$, where it exists. Express your result in terms of u and v only.
a) $\frac{\partial F}{\partial v}=2 u v+\frac{1}{v}$
b) $\frac{\partial F}{\partial v}=\frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v}=v^{2}+\frac{1}{u}$
e) $\frac{\partial F}{\partial v}=2 u v$
6. For the function

$$
f(x, y)=e^{-2 x y}
$$

find and classify all the critical points.
a) $P_{0}(0,0)$ Saddle Point
b) $\quad P_{0}(1,1)$ Relative Minimum
c) $P_{0}(0,0)$ Relative Maximum
d) $\left\{\begin{array}{l}P_{0}(0,0) \text { Saddle Point and } \\ P_{1}(1,1) \text { Relative Minimum }\end{array}\right.$
e) $\left\{\begin{array}{l}P_{0}(1,1) \text { Relative Maximum and } \\ P_{1}(0,0) \text { Saddle Point }\end{array}\right.$
7. Find the area inside the cardioid $r=1+\cos \theta$.
a) $I=\frac{3}{2} \pi$
b) $I=1$
c) $I=0$
d) $I=\pi$
e) $I=2 \pi$
8. Evaluate the triple integral

$$
I=\iiint_{\mathbf{D}} y d V
$$

where \mathbf{D} is the region in the first octant $(x \geq 0, y \geq 0$ and $z \geq 0)$, below the plane $z=1-y$ and with $x \leq 1$.
a) $I=0$
b) $I=1$
c) $I=\frac{1}{3}$
d) $I=\frac{1}{6}$
e) $I=\frac{1}{9}$
9. Evaluate

$$
I=\oint_{C} \mathbf{F} \cdot d \mathbf{R}
$$

where $\mathbf{F}=\left\langle y e^{x y}, x e^{x y}\right\rangle$ and C is the curve parametrized by $\mathbf{R}=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$.
a) $I=\pi$
b) $I=2 \pi$
c) $I=0$
d) $I=1$
e) $I=\frac{1}{2}$
10. Use the divergence theorem to evaluate

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\left\langle z \sin (y), e^{x}+y, z+\cos (x y)\right\rangle$, and \mathbf{N} is the unit outward normal to the surface S defined implicitly by

$$
x^{2}+y^{2}+z^{2}=1 .
$$

a) $I=0$
b) $I=\pi$
c) $I=1$
d) $I=\frac{8}{3} \pi$
e) $I=4 \pi$

Essay questions.

Show all your work. A correct answer with no work counts as 0.
12. Find the curvature of the plane curve $y=-\cos (x)+\mathrm{e}^{2 x}$ at $x=0$.
13. Suppose $f(x, y)=e^{2 x+3 y}, P=(1,0)$ and $\mathbf{v}=3 \mathbf{i}-4 \mathbf{j}$.
a) Find the directional derivative of f at P in the direction of \mathbf{v}.
b) Find the maximum rate of change of f at P.
14. Evaluate the triple integral

$$
I=\iiint_{\mathbf{D}}\left(3 x^{2}+3 y^{2}\right) d V
$$

where \mathbf{D} is the region inside the cone $z=\sqrt{4 x^{2}+4 y^{2}}$, and below the plane $z=8$.
15. Use Green's theorem to evaluate

$$
\oint_{C}\left(x^{2} \cos x-y^{3}\right) d x+\left(x^{3}+\mathrm{e}^{y} \sin y\right) d y
$$

where C is the positively oriented circle $x^{2}+y^{2}=1$.

