Mathematics 2450, Calculus 3 with applications

Fall 2018, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equation of the plane parallel to the intersecting lines $\langle 1, 2 + 3t, -3 + 4t \rangle$ and $\langle 1 + 3t, 2 + 3t, -3 + 3t \rangle$, and passing through the origin O = (0, 0, 0).

a)
$$12x - 12y - 3z = 0$$

b) $-3x + 12y - 9z = 0$
c) $9y + 12z = 0$
d) $3x + 3y + 3z = 0$
e) $z = 0$

2. Let
$$\mathbf{F}(t) = \frac{\sin(5t)}{\sin(4t)}\mathbf{i} + \frac{\ln(\tan(4t))}{\ln(\sin(5t))}\mathbf{j} + (t-3)\cos(5t)\mathbf{k}$$
. Find $\lim_{t\to 0} \mathbf{F}(t)$.
a) $\left\langle \frac{5}{4}, 1, -3 \right\rangle$
b) $\left\langle \frac{0}{0}, \frac{-\infty}{-\infty}, -3 \right\rangle$
c) $1 + \frac{4}{5} - 3$
d) $\left\langle 1, \frac{4}{5}, -3 \right\rangle$

e) The limit does not exist

3. Let
$$f(x,y) = \frac{x-y}{3x^2 + xy - 4y^2}$$
. Find the limit $\lim_{(x,y)\to(2,2)} f(x,y)$.
a) $\frac{0}{0}$
b) $\frac{1}{2}$
c) $\frac{1}{28}$
d) $\frac{1}{14}$

e) The limit does not exist

4. Let $f(x, y) = \sin(3x + 6y)$ and $P = \left(\frac{\pi}{3}, \frac{\pi}{3}\right)$. Find the maximum rate of change of the function f at the point P.

a)
$$\langle -3, -6 \rangle$$

b) $\sqrt{45} \langle -1, -1 \rangle$
c) $\sqrt{45}$
d) $-\sqrt{45}$
e) $\frac{1}{\sqrt{45}} \langle -3, -6 \rangle$

5. For the function $f(x,y) = 2x^2 + 3xy + 2y^2 - 7x - 7y + 3$, find and classify all critical points.

a)
$$(0,0)$$
, Saddle b) $(1,1)$, Relative Minimum
c) $(1,1)$, Saddle d) $(0,0)$, Relative Maximum
e)
$$\begin{cases} (1,1), & \text{Relative Minimum} \\ (0,0), & \text{Relative Maximum} \end{cases}$$

6. Find the area inside the limacon $r = (8 + 4\cos(\theta))$.

a)
$$\frac{72\pi}{3}$$
 b) 144π
c) $\frac{80\pi}{3}$ d) 80π
e) 72π

- 7. Evaluate the triple integral $I = \iiint_D y \, dV$ where D is the region in the first octant $(x \ge 0, y \ge 0, z \ge 0)$, below the plane z = 3 y and with $x \le 1$.
 - a) I = 0b) I = 9c) I = 3d) I = 27e) $I = \frac{9}{2}$
- 8. Evaluate the triple integral $I = \iiint_D 3(x^2+y^2) \, dV$ where D is the region inside the paraboloid $z = 9 x^2 y^2$ and inside the first octant $x \ge 0, y \ge 0, z \ge 0$.

a)
$$I = \left(\frac{\pi}{4}\right) 3^6$$

b) $I = \left(\frac{\pi}{8}\right) 3^6$
c) $I = 0$
d) $I = (3\pi) 3^6$
e) $I = \left(\frac{\pi}{2}\right) 3^6$

- 9. Find the curl **F** where $\mathbf{F} = \langle \sin(x), y^3 + \sin(4y), \cos(5z^5) \rangle$.
 - a) $\nabla \times \mathbf{F} = \langle \cos(x), 3y^2 + 4\cos(4y), -25z^4\sin(5z^5) \rangle$ b) $\nabla \cdot \mathbf{F} = 0$ c) $\nabla \times \mathbf{F} = 0$ d) $\nabla \times \mathbf{F} = \langle 0, 0, 0 \rangle$ e) $\nabla \cdot \mathbf{F} = \cos(x) + 3y^2 + 4\cos(4y) - 25z^4\sin(5z^5)$

10. Let S be the part of the plane z = 4 - x - y which lies in the first octant, oriented upward. Evaluate the flux integral

$$I = \iint_S \mathbf{F} \cdot \mathbf{N} \, dS$$

of the vector field $\mathbf{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ across the surface S (with N being the unit upward vector normal to the plane).

a)
$$I = 48$$

b) $I = 96$
c) $I = 0$
e) $I = 24$
b) $I = 72$

11. Use the divergence theorem to evaluate

$$I = \iint_S \mathbf{F} \cdot \mathbf{N} \, dS$$

where $\mathbf{F} = \langle xy^2, yz^2, zx^2 \rangle$, and **N** is the unit outward normal to the surface S given by $x^2 + y^2 + z^2 = 25$.

a)
$$I = 5^5 \left(\frac{2}{5}\right) \pi$$

b) $I = 5^5 \left(\frac{6}{5}\right) \pi$
c) $I = 0$
d) $I = 5^5 \left(\frac{8}{5}\right) \pi$
e) $I = 5^5 \left(\frac{4}{5}\right) \pi$

Show work questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Let the velocity vector be $\mathbf{v}(t) = t^2 \mathbf{i} \sin(2t)\mathbf{j} + 2te^{t^2}\mathbf{k}$, and the initial position vector be $\mathbf{r}(0) = \mathbf{i} \frac{1}{2}\mathbf{j} + 2\mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$, and the position vector $\mathbf{r}(t)$.
- 13. Find the coordinates of the point (x, y, z) on the plane x + y + z = 1, which is closest to the origin.
- 14. Evaluate the integral

$$I = \iint_D \frac{3}{4+y^3} dA,$$

where D is the region bounded by the curves $y = \sqrt{x}$, x = 0, y = 1.

15. Use Green's theorem to evaluate

$$\oint_C \left(x^2 \cos x - y^3\right) dx + \left(x^3 + e^y \sin y\right) dy,$$

where C is the positively oriented circle $x^2 + y^2 = 1$.

Mathematics 2450, Calculus 3 with applications

Fall 2018, version B

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equation of the plane parallel to the intersecting lines $\langle 1, 2 - 2t, -3 + 3t \rangle$ and $\langle 1 - t, 2 - t, -3 + 4t \rangle$, and passing through the origin O = (0, 0, 0).

a)
$$-x - y + 4z = 0$$

b) $2y + 12z = 0$
c) $-3x + 3y - 5z = 0$
d) $-5x - 3y - 2z = 0$
e) $z = 0$

2. Let
$$\mathbf{F}(t) = \frac{\sin(5t)}{\sin(8t)} \mathbf{i} + \frac{\ln(\tan(8t))}{\ln(\sin(5t))} \mathbf{j} + (t+1)\cos(5t) \mathbf{k}$$
. Find $\lim_{t \to 0} \mathbf{F}(t)$.
a) $\left\langle 1, \frac{8}{5}, 1 \right\rangle$
b) $\left\langle \frac{0}{0}, \frac{-\infty}{-\infty}, 1 \right\rangle$
c) $1 + \frac{8}{5} + 1$
d) $\left\langle \frac{5}{8}, 1, 1 \right\rangle$

e) The limit does not exist

3. Let
$$f(x,y) = \frac{x-y}{2x^2+2xy-4y^2}$$
. Find the limit $\lim_{(x,y)\to(2,2)} f(x,y)$.
a) $\frac{1}{4}$
b) $\frac{1}{24}$
c) $\frac{1}{12}$
d) $\frac{0}{0}$

e) The limit does not exist

4. Let $f(x, y) = \sin(4x + 5y)$ and $P = \left(\frac{\pi}{4}, \pi\right)$. Find the maximum rate of change of the function f at the point P.

a)
$$-\sqrt{41}$$

b) $\sqrt{41}$
c) $\langle 4, 5 \rangle$
d) $\sqrt{41} \langle 1, 1 \rangle$
e) $\frac{1}{\sqrt{41}} \langle 4, 5 \rangle$

5. For the function $f(x,y) = -2x^2 + 3xy - 2y^2 + x + y + 4$, find and classify all critical points.

- a) (0,0), Saddle b) $\begin{cases} (1,1), & \text{Relative Maximum} \\ (0,0), & \text{Relative Minimum} \end{cases}$ c) $(1,1), & \text{Relative Maximum} \\ e) (0,0), & \text{Relative Minimum} \end{cases}$ b) $\begin{cases} (1,1), & \text{Relative Maximum} \\ (1,1), & \text{Saddle} \end{cases}$
- 6. Find the area inside the limacon $r = (7 + 4\cos(\theta))$.
 - a) 65π b) $\frac{65\pi}{3}$ c) 114π d) $\frac{57\pi}{3}$ e) 57π
- 7. Evaluate the triple integral $I = \iiint_D y \, dV$ where D is the region in the first octant $(x \ge 0, y \ge 0, z \ge 0)$, below the plane z = 2 y and with $x \le 1$.
 - a) I = 0b) I = 8c) $I = \frac{8}{3}$ d) $I = \frac{4}{3}$ e) $I = \frac{8}{9}$
- 8. Evaluate the triple integral $I = \iiint_D 2(x^2+y^2) \, dV$ where D is the region inside the paraboloid $z = 4 x^2 y^2$ and inside the first octant $x \ge 0, y \ge 0, z \ge 0$.

a)
$$I = \left(\frac{\pi}{3}\right) 2^6$$

b) $I = \left(\frac{\pi}{12}\right) 2^6$
c) $I = 0$
d) $I = (2\pi) 2^6$
e) $I = \left(\frac{\pi}{6}\right) 2^6$

9. Find the curl **F** where $\mathbf{F} = \langle 3\sin(3x), y^5 + \sin(4y), \cos(z) \rangle$.

a)
$$\nabla \times \mathbf{F} = \langle 9\cos(3x), 5y^4 + 4\cos(4y), -(\sin(z)) \rangle$$

b) $\nabla \times \mathbf{F} = 0$
c) $\nabla \cdot \mathbf{F} = 9\cos(3x) + 5y^4 + 4\cos(4y) - \sin(z)$
d) $\nabla \cdot \mathbf{F} = 0$
e) $\nabla \times \mathbf{F} = \langle 0, 0, 0 \rangle$

10. Let S be the part of the plane z = 2 - x - y which lies in the first octant, oriented upward. Evaluate the flux integral

$$I = \iint_S \mathbf{F} \cdot \mathbf{N} \, dS$$

of the vector field $\mathbf{F} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ across the surface S (with N being the unit upward vector normal to the plane).

a)
$$I = 12$$

b) $I = 24$
c) $I = 6$
e) $I = 18\pi$

11. Use the divergence theorem to evaluate

$$I = \iint_S \mathbf{F} \cdot \mathbf{N} \, dS$$

where $\mathbf{F} = \langle xy^2, yz^2, zx^2 \rangle$, and **N** is the unit outward normal to the surface S given by $x^2 + y^2 + z^2 = 16$.

a)
$$I = 0$$

b) $I = 4^5 \left(\frac{6}{5}\right) \pi$
c) $I = 4^5 \left(\frac{2}{5}\right) \pi$
d) $I = 4^5 \left(\frac{8}{5}\right) \pi$
e) $I = 4^5 \left(\frac{4}{5}\right) \pi$

Show work questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Let the velocity vector be $\mathbf{v}(t) = t^2 \mathbf{i} \sin(2t)\mathbf{j} + 2te^{t^2}\mathbf{k}$, and the initial position vector be $\mathbf{r}(0) = \mathbf{i} \frac{1}{2}\mathbf{j} + 2\mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$, and the position vector $\mathbf{r}(t)$.
- 13. Find the coordinates of the point (x, y, z) on the plane x + y + z = 1, which is closest to the origin.
- 14. Evaluate the integral

$$I = \iint_D \frac{3}{4+y^3} dA,$$

where D is the region bounded by the curves $y = \sqrt{x}$, x = 0, y = 1.

15. Use Green's theorem to evaluate

$$\oint_C \left(x^2 \cos x - y^3\right) dx + \left(x^3 + e^y \sin y\right) dy,$$

where C is the positively oriented circle $x^2 + y^2 = 1$.