Mathematics 2450, Calculus 3 with applications

Fall 2018, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equation of the plane parallel to the intersecting lines $\langle 1,2+3 t,-3+4 t\rangle$ and $\langle 1+3 t, 2+3 t,-3+3 t\rangle$, and passing through the origin $O=(0,0,0)$.
a) $12 x-12 y-3 z=0$
b) $-3 x+12 y-9 z=0$
c) $9 y+12 z=0$
d) $3 x+3 y+3 z=0$
e) $z=0$
2. Let $\mathbf{F}(t)=\frac{\sin (5 t)}{\sin (4 t)} \boldsymbol{i}+\frac{\ln (\tan (4 t))}{\ln (\sin (5 t))} \boldsymbol{j}+(t-3) \cos (5 t) \boldsymbol{k}$. Find $\lim _{t \rightarrow 0} \mathbf{F}(t)$.
а) $\left\langle\frac{5}{4}, 1,-3\right\rangle$
b) $\left\langle\frac{0}{0}, \frac{-\infty}{-\infty},-3\right\rangle$
c) $1+\frac{4}{5}-3$
d) $\left\langle 1, \frac{4}{5},-3\right\rangle$
e) The limit does not exist
3. Let $f(x, y)=\frac{x-y}{3 x^{2}+x y-4 y^{2}}$. Find the limit $\lim _{(x, y) \rightarrow(2,2)} f(x, y)$.
a) $\frac{0}{0}$
b) $\frac{1}{2}$
c) $\frac{1}{28}$
d) $\frac{1}{14}$
e) The limit does not exist
4. Let $f(x, y)=\sin (3 x+6 y)$ and $P=\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$. Find the maximum rate of change of the function f at the point P.
a) $\langle-3,-6\rangle$
b) $\sqrt{45}\langle-1,-1\rangle$
c) $\sqrt{45}$
d) $-\sqrt{45}$
e) $\frac{1}{\sqrt{45}}\langle-3,-6\rangle$
5. For the function $f(x, y)=2 x^{2}+3 x y+2 y^{2}-7 x-7 y+3$, find and classify all critical points.
a) $(0,0)$, Saddle
b) $(1,1)$, Relative Minimum
c) $(1,1)$, Saddle
d) $(0,0)$, Relative Maximum
e) $\begin{cases}(1,1), & \text { Relative Minimum } \\ (0,0), & \text { Relative Maximum }\end{cases}$
6. Find the area inside the limacon $r=(8+4 \cos (\theta))$.
a) $\frac{72 \pi}{3}$
b) 144π
c) $\frac{80 \pi}{3}$
d) 80π
e) 72π
7. Evaluate the triple integral $I=\iiint_{D} y d V$ where D is the region in the first octant $(x \geq$ $0, y \geq 0, z \geq 0$), below the plane $z=3-y$ and with $x \leq 1$.
a) $I=0$
b) $I=9$
c) $I=3$
d) $I=27$
e) $I=\frac{9}{2}$
8. Evaluate the triple integral $I=\iiint_{D} 3\left(x^{2}+y^{2}\right) d V$ where D is the region inside the paraboloid $z=9-x^{2}-y^{2}$ and inside the first octant $x \geq 0, y \geq 0, z \geq 0$.
a) $I=\left(\frac{\pi}{4}\right) 3^{6}$
b) $I=\left(\frac{\pi}{8}\right) 3^{6}$
c) $I=0$
d) $I=(3 \pi) 3^{6}$
e) $I=\left(\frac{\pi}{2}\right) 3^{6}$
9. Find the curl \mathbf{F} where $\mathbf{F}=\left\langle\sin (x), y^{3}+\sin (4 y), \cos \left(5 z^{5}\right)\right\rangle$.
a) $\nabla \times \mathbf{F}=\left\langle\cos (x), 3 y^{2}+4 \cos (4 y),-25 z^{4} \sin \left(5 z^{5}\right)\right\rangle$
b) $\nabla \cdot \mathbf{F}=0$
c) $\nabla \times \mathbf{F}=0$
d) $\nabla \times \mathbf{F}=\langle 0,0,0\rangle$
e) $\nabla \cdot \mathbf{F}=\cos (x)+3 y^{2}+4 \cos (4 y)-25 z^{4} \sin \left(5 z^{5}\right)$
10. Let S be the part of the plane $z=4-x-y$ which lies in the first octant, oriented upward. Evaluate the flux integral

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

of the vector field $\mathbf{F}=\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ across the surface S (with \mathbf{N} being the unit upward vector normal to the plane).
a) $I=48$
b) $I=96$
c) $I=0$
d) $I=72$
e) $I=24$
11. Use the divergence theorem to evaluate

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$, and \mathbf{N} is the the unit outward normal to the surface S given by $x^{2}+y^{2}+z^{2}=25$.
a) $I=5^{5}\left(\frac{2}{5}\right) \pi$
b) $I=5^{5}\left(\frac{6}{5}\right) \pi$
c) $I=0$
d) $I=5^{5}\left(\frac{8}{5}\right) \pi$
e) $I=5^{5}\left(\frac{4}{5}\right) \pi$

Show work questions.

Show all your work. A correct answer with no work counts as 0.
12. Let the velocity vector be $\mathbf{v}(t)=t^{2} \mathbf{i}-\sin (2 t) \mathbf{j}+2 t \mathrm{e}^{t^{2}} \mathbf{k}$, and the initial position vector be $\mathbf{r}(0)=\mathbf{i}-\frac{1}{2} \mathbf{j}+2 \mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$, and the position vector $\mathbf{r}(t)$.
13. Find the coordinates of the point (x, y, z) on the plane $x+y+z=1$, which is closest to the origin.
14. Evaluate the integral

$$
I=\iint_{D} \frac{3}{4+y^{3}} d A
$$

where D is the region bounded by the curves $y=\sqrt{x}, x=0, y=1$.
15. Use Green's theorem to evaluate

$$
\oint_{C}\left(x^{2} \cos x-y^{3}\right) d x+\left(x^{3}+\mathrm{e}^{y} \sin y\right) d y
$$

where C is the positively oriented circle $x^{2}+y^{2}=1$.

Mathematics 2450, Calculus 3 with applications

Fall 2018, version B

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equation of the plane parallel to the intersecting lines $\langle 1,2-2 t,-3+3 t\rangle$ and $\langle 1-t, 2-t,-3+4 t\rangle$, and passing through the origin $O=(0,0,0)$.
a) $-x-y+4 z=0$
b) $2 y+12 z=0$
c) $-3 x+3 y-5 z=0$
d) $-5 x-3 y-2 z=0$
e) $z=0$
2. Let $\mathbf{F}(t)=\frac{\sin (5 t)}{\sin (8 t)} \boldsymbol{i}+\frac{\ln (\tan (8 t))}{\ln (\sin (5 t))} \boldsymbol{j}+(t+1) \cos (5 t) \boldsymbol{k}$. Find $\lim _{t \rightarrow 0} \mathbf{F}(t)$.
a) $\left\langle 1, \frac{8}{5}, 1\right\rangle$
b) $\left\langle\frac{0}{0}, \frac{-\infty}{-\infty}, 1\right\rangle$
c) $1+\frac{8}{5}+1$
d) $\left\langle\frac{5}{8}, 1,1\right\rangle$
e) The limit does not exist
3. Let $f(x, y)=\frac{x-y}{2 x^{2}+2 x y-4 y^{2}}$. Find the limit $\lim _{(x, y) \rightarrow(2,2)} f(x, y)$.
a) $\frac{1}{4}$
b) $\frac{1}{24}$
c) $\frac{1}{12}$
d) $\frac{0}{0}$
e) The limit does not exist
4. Let $f(x, y)=\sin (4 x+5 y)$ and $P=\left(\frac{\pi}{4}, \pi\right)$. Find the maximum rate of change of the fucntion f at the point P.
a) $-\sqrt{41}$
b) $\sqrt{41}$
c) $\langle 4,5\rangle$
d) $\sqrt{41}\langle 1,1\rangle$
e) $\frac{1}{\sqrt{41}}\langle 4,5\rangle$
5. For the function $f(x, y)=-2 x^{2}+3 x y-2 y^{2}+x+y+4$, find and classify all critical points.
a) $(0,0)$, Saddle
b) $\begin{cases}(1,1), & \text { Relative Maximum } \\ (0,0), & \text { Relative Minimum }\end{cases}$
c) $(1,1)$, Relative Maximum
d) $(1,1)$, Saddle
e) $(0,0)$, Relative Minimum
6. Find the area inside the limacon $r=(7+4 \cos (\theta))$.
a) 65π
b) $\frac{65 \pi}{3}$
c) 114π
d) $\frac{57 \pi}{3}$
e) 57π
7. Evaluate the triple integral $I=\iiint_{D} y d V$ where D is the region in the first octant $(x \geq$ $0, y \geq 0, z \geq 0)$, below the plane $z=2-y$ and with $x \leq 1$.
a) $I=0$
b) $I=8$
c) $I=\frac{8}{3}$
d) $I=\frac{4}{3}$
e) $I=\frac{8}{9}$
8. Evaluate the triple integral $I=\iiint_{D} 2\left(x^{2}+y^{2}\right) d V$ where D is the region inside the paraboloid $z=4-x^{2}-y^{2}$ and inside the first octant $x \geq 0, y \geq 0, z \geq 0$.
a) $I=\left(\frac{\pi}{3}\right) 2^{6}$
b) $I=\left(\frac{\pi}{12}\right) 2^{6}$
c) $I=0$
d) $I=(2 \pi) 2^{6}$
e) $I=\left(\frac{\pi}{6}\right) 2^{6}$
9. Find the curl \mathbf{F} where $\mathbf{F}=\left\langle 3 \sin (3 x), y^{5}+\sin (4 y), \cos (z)\right\rangle$.
a) $\nabla \times \mathbf{F}=\left\langle 9 \cos (3 x), 5 y^{4}+4 \cos (4 y),-(\sin (z))\right\rangle$
b) $\nabla \times \mathbf{F}=0$
c) $\nabla \cdot \mathbf{F}=9 \cos (3 x)+5 y^{4}+4 \cos (4 y)-\sin (z)$
d) $\nabla \cdot \mathbf{F}=0$
e) $\nabla \times \mathbf{F}=\langle 0,0,0\rangle$
10. Let S be the part of the plane $z=2-x-y$ which lies in the first octant, oriented upward. Evaluate the flux integral

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

of the vector field $\mathbf{F}=\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ across the surface S (with \mathbf{N} being the unit upward vector normal to the plane).
a) $I=12$
b) $I=24$
c) $I=6$
d) $I=0$
e) $I=18 \pi$
11. Use the divergence theorem to evaluate

$$
I=\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$, and \mathbf{N} is the the unit outward normal to the surface S given by $x^{2}+y^{2}+z^{2}=16$.
a) $I=0$
b) $I=4^{5}\left(\frac{6}{5}\right) \pi$
c) $I=4^{5}\left(\frac{2}{5}\right) \pi$
d) $I=4^{5}\left(\frac{8}{5}\right) \pi$
e) $I=4^{5}\left(\frac{4}{5}\right) \pi$

Show work questions.

Show all your work. A correct answer with no work counts as 0.
12. Let the velocity vector be $\mathbf{v}(t)=t^{2} \mathbf{i}-\sin (2 t) \mathbf{j}+2 t \mathrm{e}^{t^{2}} \mathbf{k}$, and the initial position vector be $\mathbf{r}(0)=\mathbf{i}-\frac{1}{2} \mathbf{j}+2 \mathbf{k}$. Compute the acceleration vector $\mathbf{a}(t)$, and the position vector $\mathbf{r}(t)$.
13. Find the coordinates of the point (x, y, z) on the plane $x+y+z=1$, which is closest to the origin.
14. Evaluate the integral

$$
I=\iint_{D} \frac{3}{4+y^{3}} d A
$$

where D is the region bounded by the curves $y=\sqrt{x}, x=0, y=1$.
15. Use Green's theorem to evaluate

$$
\oint_{C}\left(x^{2} \cos x-y^{3}\right) d x+\left(x^{3}+\mathrm{e}^{y} \sin y\right) d y
$$

where C is the positively oriented circle $x^{2}+y^{2}=1$.

