Mathematics 2450, Calculus 3 with applications

Spring 2018, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equations of the plane passing through the point P = (1, 1, 2) and perpendicular to the line $\langle -2 + 3t, 1 - t, 3 + 2t \rangle$.

a) $\langle 1 + 3t, 1 - t, 2 + 2t \rangle$	b) $x + y + 2z = 5$
c) $-2x + y + 3z = 5$	d) $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z-2}{2}$
e) $3x - y + 2z = 6$	

2. Find the following limit

$$\lim_{t \to 0} \left(\ln(t+1)\mathbf{i} + \frac{2t^2 + t^4}{t^2 + 3t^3}\mathbf{j} + \frac{\sin(t)}{t^2}\mathbf{k} \right),\,$$

if it exists.

a)
$$\langle 1, 2, 1 \rangle$$

b) $\langle 0, \frac{0}{0}, \frac{0}{0} \rangle$
c) the limit does not exist
e) $\langle 0, 2, 1 \rangle$
b) $\langle 1, +\infty, 1 \rangle$

3. Find the arclength of the curve described by $\mathbf{R}(t) = \langle 3\cos t, 3\sin t, 4t \rangle$ for $0 \le t \le \pi$.

a)
$$\frac{1}{5}$$

b) 5π
c) $\frac{1}{5\pi}$
d) $\langle -3\sin t, 3\cos t, 4 \rangle$
e) $\frac{1}{5} \langle -3\sin t, 3\cos t, 4 \rangle$

4. Given $F(x, y) = \ln(xy)$ where $x = e^{uv^2}$ and y = uv. Use the chain rule to find $\frac{\partial F}{\partial v}$, where it exists. Express your result in terms of u and v only.

a)
$$\frac{\partial F}{\partial v} = 2uv + \frac{1}{v}$$

b) $\frac{\partial F}{\partial v} = \frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v} = v^2 + \frac{1}{u}$
e) $\frac{\partial F}{\partial v} = 2uv$

5. Let $f(x, y) = \cos(x + 3y)$, $P = (\pi/2, \pi/3)$ and $\mathbf{v} = -3\mathbf{i} + 4\mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v} .

a) 9
b) 0
c)
$$\frac{9}{5}$$

d) $\frac{1}{5}\langle -3, 4 \rangle$
e) $\langle 1, 3 \rangle$

6. Reverse the order of integration for the following integral

$$\int_0^4 \int_x^{2\sqrt{x}} f(x,y) \, dy \, dx \; .$$

a)
$$\int_{x}^{2\sqrt{x}} \int_{0}^{4} f(x, y) \, dx \, dy$$

b) $\int_{0}^{4} \int_{\frac{y^{2}}{4}}^{y} f(x, y) \, dx \, dy$
c) $\int_{0}^{4} \int_{y}^{\frac{y^{2}}{4}} f(x, y) \, dx \, dy$
d) $\int_{y}^{\frac{y^{2}}{4}} \int_{0}^{4} f(x, y) \, dx \, dy$
e) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{4\cos(\theta)} f(r, \theta) \, r \, dr \, d\theta$

7. Find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ in between the planes z = 1 and z = 2.

a)
$$S = 4\pi$$

b) $S = 0$
c) $S = 3\sqrt{2}\pi$
f) $S = \pi$
b) $S = 0$
d) $S = 5\sqrt{2}\pi$

8. Find the volume of the region enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 4$.

a)
$$I = 1 - \frac{\sqrt{2}}{2}$$

b) $I = 1$
c) $I = 0$
d) $I = \frac{16\pi}{3}$
e) $I = \left(1 - \frac{\sqrt{2}}{2}\right) \frac{16\pi}{3}$

9. Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{R}$, where

$$\mathbf{F} = (y\cos(xy) + 2xe^{x^2})\mathbf{i} + (x\cos(xy) + 3y^2)\mathbf{j},$$

and C is the curve parametrized by $\mathbf{R}(t) = \langle 2\cos t, 3\sin t \rangle$ for $0 \le t \le \frac{\pi}{2}$.

a) the vector field is non conservative b) 2 - ec) $\sin(xy) + e^{x^2} + y^3$ d) 0e) $28 - e^4$

10. Evaluate

$$I = \oint_C \mathbf{F} \cdot d\mathbf{R},$$

where $\mathbf{F} = \langle -y^3, x^3 \rangle$ and C is the curve parametrized by $\mathbf{R} = \langle \cos t, \sin t \rangle$ for $0 \le t \le 2\pi$.

a)
$$I = \pi$$

b) $I = 2\pi$
c) $I = \frac{5}{3}\pi$
d) $I = 1$
e) $I = \frac{3}{2}\pi$

11. Use divergence theorem to evaluate the flux integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS,$$

where $\mathbf{F} = \langle xz^2, yx^2, zy^2 \rangle$ and **N** is the outward unit vector normal to the surface S defined by

$$x^2 + y^2 + z^2 = 4.$$

a)
$$\frac{128}{5}\pi$$
 b) 0

c)
$$16\pi$$
 d) π
e) $\frac{32}{3}\pi$

Essay questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Let the velocity vector be $\mathbf{v}(t) = e^{3t}\mathbf{i} 2\sin 2t\mathbf{j} + \sqrt{t}\mathbf{k}$, and the initial position vector be $\mathbf{r}(0) = \frac{1}{3}\mathbf{i} \mathbf{j} + \mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.
- 13. Find the absolute extrema for the function z = f(x, y) = x y, in the closed disk $x^2 + y^2 \le 1$.
- 14. Find the triple integral

$$\iiint_V x \, dz \, dy \, dx,$$

where V is the tetrahedron bounded by the plane x + y + z = 1 and by the coordinates planes x = 0, y = 0 and z = 0.

15. Find the line integral

$$\int_C (2x - 3y) \, ds \,,$$

where C is the semicircle $y = \sqrt{4 - x^2}$ traversed from (2,0) to (-2,0).

Mathematics 2450, Calculus 3 with applications

Spring 2018, version B

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018

The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equations of the plane passing through the point P = (2, 1, 1) and perpendicular to the line $\langle 3 + 2t, -2 + 3t, 1 - t \rangle$.

a)
$$3x - 2y + z = 5$$

b) $2x + y + z = 5$
c) $\langle 2 + 2t, 1 + 3t, 1 - t \rangle$
d) $2x + 3y - z = 6$
e) $\frac{x - 2}{2} = \frac{y - 1}{3} = \frac{z - 1}{-1}$

2. Find the following limit

$$\lim_{t \to 0} \left(\ln(t+1)\mathbf{i} + \frac{\sin(t)}{t^2}\mathbf{j} + \frac{2t^2 + t^4}{t^2 + 3t^3}\mathbf{k} \right),\,$$

if it exists.

a) the limit does not exist
b)
$$\langle 1, 1, 2 \rangle$$

c) $\langle 0, 1, 2 \rangle$
d) $\langle 1, 1, +\infty, \rangle$
e) $\langle 0, \frac{0}{0}, \frac{0}{0} \rangle$

3. Find the arclength of the curve described by $\mathbf{R}(t) = \langle 4\sin t, 4\cos t, 3t \rangle$ for $0 \le t \le \pi$.

a)
$$\frac{1}{5\pi}$$

b) $\frac{1}{5}\langle 4\cos t, -4\sin t, 3 \rangle$
c) $\frac{1}{5}$
d) $\langle 4\cos t, -4\sin t, 3 \rangle$
e) 5π

4. Given $F(x,y) = \ln(xy)$ where $x = e^{uv^2}$ and y = uv. Use chain rule to find $\frac{\partial F}{\partial u}$, where it exists. Express your result in terms of u and v only.

a)
$$\frac{\partial F}{\partial u} = 2uv + \frac{1}{v}$$

b) $\frac{\partial F}{\partial u} = \frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial u} = v^2 + \frac{1}{u}$
e) $\frac{\partial F}{\partial u} = 2uv$

5. Let $f(x, y) = \cos(3x + y)$, $P = (\pi/3, \pi/2)$ and $\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v} .

a)
$$\frac{9}{5}$$

c) $\langle 1, 3 \rangle$
e) 0

6. Reverse the order of integration for the following integral

$$\int_0^4 \int_y^{2\sqrt{y}} f(x,y) \, dx \, dy \; .$$

a)
$$\int_{y}^{2\sqrt{y}} \int_{0}^{4} f(x,y) \, dy \, dx$$

b) $\int_{0}^{4} \int_{x}^{\frac{x^{2}}{4}} f(x,y) \, dy \, dx$
c) $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{x} f(x,y) \, dy \, dx$
d) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{4\sin(\theta)} f(r,\theta) \, r \, dr \, d\theta$
e) $\int_{x}^{\frac{x^{2}}{4}} \int_{0}^{4} f(x,y) \, dy \, dy$

7. Find the surface area of the portion of the cone $z = \sqrt{x^2 + y^2}$ in between the planes z = 2 and z = 3.

a)
$$S = 4\pi$$

b) $S = 0$
c) $S = 3\sqrt{2}\pi$
f) $S = \pi$
b) $S = 0$
d) $S = 5\sqrt{2}\pi$

8. Find the volume of the region enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 1$.

a)
$$I = 1$$

b) $I = 1 - \frac{\sqrt{2}}{2}$
c) $I = \left(1 - \frac{\sqrt{2}}{2}\right) \frac{2\pi}{3}$
d) $I = \frac{2\pi}{3}$
e) $I = 0$

9. Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{R}$, where

$$\mathbf{F} = (y\cos(xy) + 2xe^{x^2})\mathbf{i} + (x\cos(xy) + 3y^2)\mathbf{j},$$

and C is the curve parametrized by $\mathbf{R}(t) = \langle 2\cos t, 3\sin t \rangle$ for $0 \le t \le \frac{\pi}{2}$.

a) $28 - e^4$	b) the vector field is non conservative
c) 2 – e	d) $\sin(xy) + e^{x^2} + y^3$
e) 0	

10. Evaluate

$$I = \oint_C \mathbf{F} \cdot d\mathbf{R},$$

where $\mathbf{F} = \langle -3yx^2, 3xy^2 \rangle$ and C is the curve parametrized by $\mathbf{R} = \langle \cos t, \sin t \rangle$ for $0 \le t \le 2\pi$.

a)
$$I = \pi$$

b) $I = 2\pi$
c) $I = \frac{3}{2}\pi$
d) $I = 1$
e) $I = \frac{5}{3}\pi$

11. Use divergence theorem to evaluate the flux integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} \, dS,$$

where $\mathbf{F} = \langle xy^2, yz^2, zx^2 \rangle$ and \mathbf{N} is the outward unit vector normal to the surface S defined by

$$x^2 + y^2 + z^2 = 1.$$

a) $\frac{1}{3}\pi$ b) $\frac{4}{5}\pi$ c) 0 d) $\frac{4}{3}\pi$ e) 2π

Essay questions.

Show all your work. A correct answer with no work counts as 0.

- 12. Let the velocity vector be $\mathbf{v}(t) = e^{3t}\mathbf{i} 2\sin 2t\mathbf{j} + \sqrt{t}\mathbf{k}$, and the initial position vector be $\mathbf{r}(0) = \frac{1}{3}\mathbf{i} \mathbf{j} + \mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.
- 13. Find the absolute extrema for the function z = f(x, y) = x y, in the closed disk $x^2 + y^2 \le 1$.
- 14. Find the triple integral

$$\iiint_V x \, dz \, dy \, dx,$$

where V is the tetrahedron bounded by the plane x + y + z = 1 and by the coordinates planes x = 0, y = 0 and z = 0.

15. Find the line integral

$$\int_C (2x - 3y) \, ds \,,$$

where C is the semicircle $y = \sqrt{4 - x^2}$ traversed from (2,0) to (-2,0).