Mathematics 2450, Calculus 3 with applications

Spring 2018, version A

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equations of the plane passing through the point $P=(1,1,2)$ and perpendicular to the line $\langle-2+3 t, 1-t, 3+2 t\rangle$.
a) $\langle 1+3 t, 1-t, 2+2 t\rangle$
b) $x+y+2 z=5$
c) $-2 x+y+3 z=5$
d) $\frac{x-1}{3}=\frac{y-1}{-1}=\frac{z-2}{2}$
e) $3 x-y+2 z=6$
2. Find the following limit

$$
\lim _{t \rightarrow 0}\left(\ln (t+1) \mathbf{i}+\frac{2 t^{2}+t^{4}}{t^{2}+3 t^{3}} \mathbf{j}+\frac{\sin (t)}{t^{2}} \mathbf{k}\right)
$$

if it exists.
a) $\langle 1,2,1\rangle$
b) $\left\langle 0, \frac{0}{0}, \frac{0}{0}\right\rangle$
c) the limit does not exist
d) $\langle 1,+\infty, 1\rangle$
e) $\langle 0,2,1\rangle$
3. Find the arclength of the curve described by $\mathbf{R}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$ for $0 \leq t \leq \pi$.
a) $\frac{1}{5}$
b) 5π
c) $\frac{1}{5 \pi}$
d) $\langle-3 \sin t, 3 \cos t, 4\rangle$
e) $\frac{1}{5}\langle-3 \sin t, 3 \cos t, 4\rangle$
4. Given $F(x, y)=\ln (x y)$ where $x=e^{u v^{2}}$ and $y=u v$. Use the chain rule to find $\frac{\partial F}{\partial v}$, where it exists. Express your result in terms of u and v only.
a) $\frac{\partial F}{\partial v}=2 u v+\frac{1}{v}$
b) $\frac{\partial F}{\partial v}=\frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial v}=v^{2}+\frac{1}{u}$
e) $\frac{\partial F}{\partial v}=2 u v$
5. Let $f(x, y)=\cos (x+3 y), P=(\pi / 2, \pi / 3)$ and $\mathbf{v}=-3 \mathbf{i}+4 \mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v}.
a) 9
b) 0
c) $\frac{9}{5}$
d) $\frac{1}{5}\langle-3,4\rangle$
e) $\langle 1,3\rangle$
6. Reverse the order of integration for the following integral

$$
\int_{0}^{4} \int_{x}^{2 \sqrt{x}} f(x, y) d y d x
$$

a) $\int_{x}^{2 \sqrt{x}} \int_{0}^{4} f(x, y) d x d y$
b) $\int_{0}^{4} \int_{\frac{y^{2}}{4}}^{y} f(x, y) d x d y$
c) $\int_{0}^{4} \int_{y}^{\frac{y^{2}}{4}} f(x, y) d x d y$
d) $\int_{y}^{\frac{y^{2}}{4}} \int_{0}^{4} f(x, y) d x d y$
e) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{4 \cos (\theta)} f(r, \theta) r d r d \theta$
7. Find the surface area of the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ in between the planes $z=1$ and $z=2$.
a) $S=4 \pi$
b) $S=0$
c) $S=3 \sqrt{2} \pi$
d) $S=5 \sqrt{2} \pi$
f) $S=\pi$
8. Find the volume of the region enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=$ 4.
a) $I=1-\frac{\sqrt{2}}{2}$
b) $I=1$
c) $I=0$
d) $I=\frac{16 \pi}{3}$
e) $I=\left(1-\frac{\sqrt{2}}{2}\right) \frac{16 \pi}{3}$
9. Find the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{R}$, where

$$
\mathbf{F}=\left(y \cos (x y)+2 x \mathrm{e}^{x^{2}}\right) \mathbf{i}+\left(x \cos (x y)+3 y^{2}\right) \mathbf{j}
$$

and C is the curve parametrized by $\mathbf{R}(t)=\langle 2 \cos t, 3 \sin t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$.
a) the vector field is non conservative
b) $2-\mathrm{e}$
c) $\sin (x y)+\mathrm{e}^{x^{2}}+y^{3}$
d) 0
e) $28-e^{4}$
10. Evaluate

$$
I=\oint_{C} \mathbf{F} \cdot d \mathbf{R}
$$

where $\mathbf{F}=\left\langle-y^{3}, x^{3}\right\rangle$ and C is the curve parametrized by $\mathbf{R}=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$.
a) $I=\pi$
b) $I=2 \pi$
c) $I=\frac{5}{3} \pi$
d) $I=1$
e) $I=\frac{3}{2} \pi$
11. Use divergence theorem to evaluate the flux integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\left\langle x z^{2}, y x^{2}, z y^{2}\right\rangle$ and \mathbf{N} is the outward unit vector normal to the surface S defined by

$$
x^{2}+y^{2}+z^{2}=4 .
$$

a) $\frac{128}{5} \pi$
b) 0
c) 16π
d) π
e) $\frac{32}{3} \pi$

Essay questions.

Show all your work. A correct answer with no work counts as 0.
12. Let the velocity vector be $\mathbf{v}(t)=e^{3 t} \mathbf{i}-2 \sin 2 t \mathbf{j}+\sqrt{t} \mathbf{k}$, and the initial position vector be $\mathbf{r}(0)=\frac{1}{3} \mathbf{i}-\mathbf{j}+\mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.
13. Find the absolute extrema for the function $z=f(x, y)=x y$, in the closed disk $x^{2}+y^{2} \leq 1$.
14. Find the triple integral

$$
\iiint_{V} x d z d y d x
$$

where V is the tetrahedron bounded by the plane $x+y+z=1$ and by the coordinates planes $x=0, y=0$ and $z=0$.
15. Find the line integral

$$
\int_{C}(2 x-3 y) d s
$$

where C is the semicircle $y=\sqrt{4-x^{2}}$ traversed from $(2,0)$ to $(-2,0)$.

Mathematics 2450, Calculus 3 with applications

Spring 2018, version B

Copyright of the Department of Mathematics and Statistics, Texas Tech University, 2018
The use of calculator, formula sheet and/or any other electronic device is not allowed.

Multiple choice questions.

Follow the directions of the instructor.

1. Find the equations of the plane passing through the point $P=(2,1,1)$ and perpendicular to the line $\langle 3+2 t,-2+3 t, 1-t\rangle$.
a) $3 x-2 y+z=5$
b) $2 x+y+z=5$
c) $\langle 2+2 t, 1+3 t, 1-t\rangle$
d) $2 x+3 y-z=6$
e) $\frac{x-2}{2}=\frac{y-1}{3}=\frac{z-1}{-1}$
2. Find the following limit

$$
\lim _{t \rightarrow 0}\left(\ln (t+1) \mathbf{i}+\frac{\sin (t)}{t^{2}} \mathbf{j}+\frac{2 t^{2}+t^{4}}{t^{2}+3 t^{3}} \mathbf{k}\right)
$$

if it exists.
a) the limit does not exist
b) $\langle 1,1,2\rangle$
c) $\langle 0,1,2\rangle$
d) $\langle 1,1,+\infty$,
e) $\left\langle 0, \frac{0}{0}, \frac{0}{0}\right\rangle$
3. Find the arclength of the curve described by $\mathbf{R}(t)=\langle 4 \sin t, 4 \cos t, 3 t\rangle$ for $0 \leq t \leq \pi$.
a) $\frac{1}{5 \pi}$
b) $\frac{1}{5}\langle 4 \cos t,-4 \sin t, 3\rangle$
c) $\frac{1}{5}$
d) $\langle 4 \cos t,-4 \sin t, 3\rangle$
e) 5π
4. Given $F(x, y)=\ln (x y)$ where $x=e^{u v^{2}}$ and $y=u v$. Use chain rule to find $\frac{\partial F}{\partial u}$, where it exists. Express your result in terms of u and v only.
a) $\frac{\partial F}{\partial u}=2 u v+\frac{1}{v}$
b) $\frac{\partial F}{\partial u}=\frac{1}{u}$
c) The function is not differentiable
d) $\frac{\partial F}{\partial u}=v^{2}+\frac{1}{u}$
e) $\frac{\partial F}{\partial u}=2 u v$
5. Let $f(x, y)=\cos (3 x+y), P=(\pi / 3, \pi / 2)$ and $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$. Find the directional derivative of f at P in the direction of \mathbf{v}.
a) $\frac{9}{5}$
b) $\frac{1}{5}\langle-3,4\rangle$
c) $\langle 1,3\rangle$
d) 9
e) 0
6. Reverse the order of integration for the following integral

$$
\int_{0}^{4} \int_{y}^{2 \sqrt{y}} f(x, y) d x d y
$$

a) $\int_{y}^{2 \sqrt{y}} \int_{0}^{4} f(x, y) d y d x$
b) $\int_{0}^{4} \int_{x}^{\frac{x^{2}}{4}} f(x, y) d y d x$
c) $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{x} f(x, y) d y d x$
d) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{4 \sin (\theta)} f(r, \theta) r d r d \theta$
e) $\int_{x}^{\frac{x^{2}}{4}} \int_{0}^{4} f(x, y) d y d y$
7. Find the surface area of the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ in between the planes $z=2$ and $z=3$.
a) $S=4 \pi$
b) $S=0$
c) $S=3 \sqrt{2} \pi$
d) $S=5 \sqrt{2} \pi$
f) $S=\pi$
8. Find the volume of the region enclosed by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=$ 1.
a) $I=1$
b) $I=1-\frac{\sqrt{2}}{2}$
c) $I=\left(1-\frac{\sqrt{2}}{2}\right) \frac{2 \pi}{3}$
d) $I=\frac{2 \pi}{3}$
e) $I=0$
9. Find the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{R}$, where

$$
\mathbf{F}=\left(y \cos (x y)+2 x \mathrm{e}^{x^{2}}\right) \mathbf{i}+\left(x \cos (x y)+3 y^{2}\right) \mathbf{j}
$$

and C is the curve parametrized by $\mathbf{R}(t)=\langle 2 \cos t, 3 \sin t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$.
a) $28-e^{4}$
b) the vector field is non conservative
c) $2-\mathrm{e}$
d) $\sin (x y)+\mathrm{e}^{x^{2}}+y^{3}$
e) 0
10. Evaluate

$$
I=\oint_{C} \mathbf{F} \cdot d \mathbf{R}
$$

where $\mathbf{F}=\left\langle-3 y x^{2}, 3 x y^{2}\right\rangle$ and C is the curve parametrized by $\mathbf{R}=\langle\cos t, \sin t\rangle$ for $0 \leq t \leq 2 \pi$.
a) $I=\pi$
b) $I=2 \pi$
c) $I=\frac{3}{2} \pi$
d) $I=1$
e) $I=\frac{5}{3} \pi$
11. Use divergence theorem to evaluate the flux integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{N} d S
$$

where $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$ and \mathbf{N} is the outward unit vector normal to the surface S defined by

$$
x^{2}+y^{2}+z^{2}=1 .
$$

a) $\frac{1}{3} \pi$
b) $\frac{4}{5} \pi$
c) 0
d) $\frac{4}{3} \pi$
e) 2π

Essay questions.

Show all your work. A correct answer with no work counts as 0.
12. Let the velocity vector be $\mathbf{v}(t)=e^{3 t} \mathbf{i}-2 \sin 2 t \mathbf{j}+\sqrt{t} \mathbf{k}$, and the initial position vector be $\mathbf{r}(0)=\frac{1}{3} \mathbf{i}-\mathbf{j}+\mathbf{k}$. Compute the position vector $\mathbf{r}(t)$.
13. Find the absolute extrema for the function $z=f(x, y)=x y$, in the closed disk $x^{2}+y^{2} \leq 1$.
14. Find the triple integral

$$
\iiint_{V} x d z d y d x
$$

where V is the tetrahedron bounded by the plane $x+y+z=1$ and by the coordinates planes $x=0, y=0$ and $z=0$.
15. Find the line integral

$$
\int_{C}(2 x-3 y) d s
$$

where C is the semicircle $y=\sqrt{4-x^{2}}$ traversed from $(2,0)$ to $(-2,0)$.

