Meat Preservation

Irradiation and Curing

Objectives

Examine methods for irradiation, curing and smoking meat products

• Examine the variety of meats made available through curing

Merchandising Strategies

- Today, most meat is sold in containers
- Refrigeration makes this possible
- Traditionally, Curing and sausages were required

Irradiation

- Types of irradiation:
 - Alpha (not used in food industry)
 - Beta
 - Gamma
 - Z-rays

Have you eaten irradiated foods?

Why Cure Meats?

• Preservation

- Traditional form of preservation
- Equatorial countries are still very good at cure processing

Variety

 Adds spices and flavors to the same old meat

Value Added

Packer/Retailer can charge more for low quality meats

What parts can be cured?

- Hams –
- Loins
- Bacon-
- Boston Butts
- Jowls
- Pork hocks

Where does Canadian bacon come from?

Which Species is Cured?

- Pork, Pork, Pork, Fish, Lamb.....Poultry
- What is the most common cured beef product?
 - Corned Beef
 - Corned is from the yellow corn kernel-size salt used as a preservative

Types of Cures

- Dry salt cure
 - Uses only salt
 - Used primarily in pork and beans
- Dry sugar cure
 - Salt and sugar applied in a dry rub
 - Traditional country cured ham
- Sweet pickle cure
 - Most common curing process
 - 90% water
 - Honey baked hams
- Cover pickle cure
 - Immerse in water, seldom used because of expense

Curing Ingredients

- Salt NaCl
 - Principal cure ingredient*
 - Only ingredient than can be used by itself
 - Adds flavor (major effect)
 - Enhances the transport of other cure ingredients
- How it works!
 - Pulls moisture from the microbes (osmosis)
 - Also pulls moisture from meat

Why salt concentrations are so high in hams and bacon

• Sugar

- Sucrose or dextrose
- Artificial sweeteners are not allowed
- Counteracts the taste of salt
- Has very little sweetening action
- Colors the product (brown sugar)
- Energy for bacteria in fermented products

Curing Ingredients

- Nitrates and Nitrites
 - Develop color
 - Prevent outgrowth of *C. botulinum*
 - Prevent warmed over flavor (microwave)
 - Help with flavor intensity
 - Retard rancidity
- Hams = Max of 200 ppm sodium nitrite
- Bacon = Max of 120 ppm sodium nitrite

Sodium Nitrite in Bacon

Curing Ingredients

Ascorbates

- Ascorbic acid, Sodium ascorbate, Sodium erythorbate
- Required for cure pickles (550 ppm)
- Catalyze conversion of nitrite to nitric oxide
- Inhibit nitrosamine formation
- Maintains color
- Can be sprayed on cut surface to reduce fading during display

Curing Ingredients

- Phosphates
 - Water retention
- Alkaline phosphate
 - Gives more stable color
 - Reduces oxidation
 - Protects against browning
- Increase water holding capacity***
- Necessary for added water product (think chicken)

- Phosphates cont.
- Can Use:
 - Sodium hexametaphosphate
 - Sodium pyrophosphate
 - Sodium triphosphate
- Can use up to 5% in pickle
 - Can have up to 0.5% in finished product
- Decreases purge during cooking
- More juicy and tender

- Cure Accelerators
 - Allow reactions in curing to proceed faster
- Glucono delta lactone
 - In hams and sausages
 - Produces a tangy flavor
 - Very common
 - Mostly sugar

- Sweeteners
 - Corn syrup and honey are very common
- Potassium Sorbate
 - Antimicrobial
- Smoke
 - Liquid or wood
- Water
 - Carries all other ingredients and adds juiciness

Cure timeline (Dry Cure)

CUMULATIVE DAY

KILL HOGS TODAY	0	
CUT CARCASSES & "RUB" HAMS	1	
"RUB" HAMS SECOND TIME	7	
CURE O 40 D (1 WEEK/IN. OF THICKNESS)	41	
EQUILIBRATE (LET OSMOSIS 'WORK")	61	
SMOKE AT NO MORE THAN 100°F	62	
AGE 42 DAYS (VARIES)	104	
SLICE, WRAP AND SHIP	105	
		41 🗰

Economics of the Dry Cure

- Why are country hams so expensive?
- 105 days to cure * 10,000/day = 1,050,000 hams in stock
- Storage facilities refrigeration during curing and air conditioning during aging
- Labor
- Almost all country cure business in southeastern U.S.

Cure Timeline (Sweet Pickle)

CUMULATIVE DAY

KILL HOGS TODAY	0
CUT CARCASSES, PUMP HAMS, AND	
OKE THEM	1
COOL TO 38°F	2
ICE, WRAP AND SHIP	3

How many hams would this packer have on hand if 10,000 hogs were killed/day?

Skinning of a Ham

- Why skin the ham
 - Allows cure to penetrate
 - Silverside shrinks distorting ham

Dry Cure Ham

• Why is he not required to wear gloves or hair net?

• Why is he salting the bone?

Dry Curing

Box Cured

Shelf Cured

Equilibration Period

- Requires 20 days of equilibration at 38°C
- Osmosis makes cure concentration more uniform
- Can make people sick if eaten to soon
 - Salt
 - Bad meat

Dry Cured Bacon in Aging Room

Shrinkage in Country Hams/Bacon

CUMULATIVE SHRINKAGE, %

CURING 2

SMOKING 8-9

1 MONTH OF AGING 15 - 18

6 MONTHS OF AGING 30±

Why do country cured products costs so much?

Reasons for Pickle Cure

- Cheaper, Cheaper, Cheaper
 - Less overhead cost
 - Water adds weight
 - Less overall shrinkage
- Juicier
- More tender
- Better flavor
- Most people don't like country cure
- 90% of all hams and bacon is produced this way

- Stitch Pump
 - Place in several places

- Artery Pump
 - Similar to stitch but use vein/artery to distribute the brine

• Multi-needle Injector

Ways to Pump Cure

- 1. Stitch Pump
- 2. Artery Pump
- 3. Multi-needle injector
- 4. Cover Pickle
- 5. Combination

Smoking

Smoking

Hardwoods should be used for smokers

Purpose of Smoking

- 1. Development of Aroma and Flavor
- 2. Preservation
- 3. Creation of new products (value adding)
- 4. Color development
- 5. Protection from oxidation
- 6. Formation of skins

Composition of Smoke

- Phenols
 - Aroma and Flavor, antioxidant
- Alcohols
 - Act as carrier of other components
- Organic acids
 - Skin formation, preservation
- Carbonyls
 - Color and Flavor
- Hydrocarbons
 - Undesirable, carcinogens
- Gases
 - CO2, CO, O2, N2, H2O etc.

Cooking with Gas

Types of Smoke

- Vaporous
 - Contains two phases
 - Particulate (90%)
 - Gaseous (10%)
 - Contains carcinogens and is slower but is cheap
- Liquid smoke
 - Low to no carcinogens
 - Shorter cook/run time
 - Lower pollution

Liquid Smoke Application

- 1. Dripping/Drenching
- 2. Direct Application
 - 3. Atomization

THE END

