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ABSTRACT
Feedback control of electrostatic microelectromechanical

systems (MEMS) is significantly complicated by the presence of
parasitic surfaces. This note considers the stabilization of a one-
degree-of-freedom (1-DOF) piston actuator with capacitively-
coupled parasitics. Previous work by the authors has shown
how, in the absence of parasitics, any feasible equilibrium point
of this system may be made globally asymptotically stable us-
ing passivity-based control. However if parasitics are present
this nominal closed-loop system may be destabilized by capaci-
tive coupling, through a phenomenon called charge pull-in. This
note shows how the nominal controller formulation may be mod-
ified to eliminate multiple equilibria. If the movable electrode is
completely screened from the parasitic electrode by the control
electrode, the unique equilibrium is globally asymptotically sta-
ble. Otherwise, though the desired equilibrium is still unique, its
region of attraction may be finite and the equilibrium may lose
stability through a Hopf bifurcation.

∗To whom correspondence should be addressed.

INTRODUCTION

Electrostatic actuation of microelectromechanical systems
(MEMS) makes use of the attractive coulomb forces that de-
velop between capacitively-coupled conductors differing in volt-
age. Electrostatic actuation is nonlinear, making open-loop con-
trol over a large operating range difficult. Furthermore, the non-
linearity gives rise to a saddle-node bifurcation known asvolt-
age pull-inthat necessitates operational limitations. Eliminating
this effect would allow for enhanced functionality in a number of
applications by increasing the operational range of the movable
electrode, reducing the need for motion limiters and anti-stiction
measures, and preventing disturbances from causing the movable
electrode to depart from its stable operating region.

A number of controls approaches have been presented in the
literature to address pull-in. In the context of the current paper
the most relevant are those that—implicitly or explicitly—make
use of the substantial improvements in stability associated with
control of electrode charge versus control of electrode voltage.
Some notable examples include [10, 14, 16]. However, an addi-
tional challenge is to implement these controllers in the presence
of dynamics arising from resistive and capacitive coupling both
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between device components, and between these components and
the surroundings. These interactions are commonly referred to
as parasitics. It is known that the effects of parasitic capaci-
tance can cause loss of stability of charge-controlled electrostatic
MEMS through a saddle-node bifurcation known ascharge pull-
in [4,5,12,14]. Explicit compensation of parasitic effects is only
now beginning to attract attention from the controls community,
for example [17].

In [2, 7–9] we present a series of results on passivity-based
global and semi-global stabilization of electrostatically actuated
MEMS. The one-degree-of-freedom case is considered in [7].
The system input and output are the control voltage applied to
the fixed electrode and the charge on the movable electrode, re-
spectively. Two controllers are derived that eliminate the pull-in
bifurcation and stabilize any point in the capacitive gap. These
are the only points for which a feasible equilibrium exists. One
controller, based on the energy-shaping version of passivity [13],
results in a charge feedback controller. The other, based on
feedback passivation techniques [3], requires an additional ve-
locity feedback term. Unlike the energy-shaping controller, the
feedback-passivation controller may be used to inject damp-
ing into the mechanical subsystem, improving transient perfor-
mance. The generalized model and controller presented in [8]
extends the 1-DOF results to a broad class of electrostatically
forced mechanical systems, including a variety of interesting
MEMS devices. That extension requires measurement of the
voltage and charge associated with all electrodes, including par-
asitic surfaces. Typically this is not feasible. When these mea-
surements are not available the controllers of [7, 8] may fail to
stabilize equilibrium points low in the gap, with loss of stability
due to charge pull-in. The main object of the present note is to ex-
amine whether the global 1-DOF result of [7] may be recovered
in the presence of parasitics without requiring charge or volt-
age measurements on the parasitic electrodes. The analysis pre-
sented here considers only stabilization and not improved tran-
sient behavior. The energy-shaping controller and the feedback-
passivation controller are equivalent with respect to the location
and stability of closed-loop equilibrium points. However so far
only the behavior of the energy-shaping controller has been thor-
oughly studied. The feedback-passivation controller may pro-
vide a larger domain of attraction, and may influence the loss of
stability through dynamic mechanisms such as Hopf bifurcation.
This question is a topic of current research, and further discus-
sion is beyond the scope of the present note.

The model considered is the standard 1-DOF model used
in [7]—a grounded movable electrode suspended by a spring and
damper above a fixed control electrode—with an additional fixed
parasitic electrode added below the control electrode (see Fig. 1).
As in [1,7,8], the voltage across the movable and fixed electrode
is assumed to be measured, along with either the charge on the
fixed electrode or the mutual capacitance between the movable
and fixed electrodes. In the present note the parasitic electrode is

connected to ground through a resistor. Therefore both the para-
sitic voltage and the charge can vary dynamically. At equilibrium
however the parasitic voltage will be zero. This condition may
be relaxed by including a voltage source in series [2], but such an
extension is beyond the scope of the present note. Physically the
parasitic surface might represent the wafer substrate upon which
the MEMS device is fabricated.

It is shown that feedback control using thetotal chargeon
the movable and parasitic electrodes as system output can prevent
charge pull-in, and provide global asymptotic stability of the de-
sired equilibrium. If the control electrode is bigger than either
the movable electrode or the parasitic electrode then, neglecting
fringing, the parasitic electrode is completely screened from the
movable electrode. In this case the total charge feedback law can
be implemented using the specified measurements. Otherwise
the equilibrium is only locally asymptotically stable, and in fact
the equilibrium may itself lose stability through a Hopf bifur-
cation. Furthermore, the feedback law can not be implemented
using the specified measurements and will have to be approxi-
mated. This approximation does not affect the location of the
equilibrium, but it may further reduce the region of attraction.
These effects become more pronounced as the parasitic surface
becomes larger with respect to the control surface, or as the par-
asitic surface moves closer to the control surface.

This note is organized as follows: First we present a 1-DOF
model of an electrostatic MEMS with a parasitic capacitance.
We then revisit the nominal energy-shaping controller derived
in [7,8] and show how parasitics may cause charge pull-in, which
we interpret in terms of bifurcation of the system zero dynamics.
We next demonstrate the use of total charge feedback to elimi-
nates charge pull-in and recover global asymptotic stability, and
examines how measured quantities may be used to implement
this feedback. The controller is demonstrated using Matlab and
ANSYS simulations. Finally, we summarize the result and dis-
cuss possible extensions.

1-DOF MODEL WITH PARASITIC CAPACITANCE
We consider a MEMS device modeled by three parallel

plates. On top is the movable electrode, suspended by spring
and damping elements and constrained to translate in the verti-
cal direction, in the middle is a fixed plate that we refer to as
the drive or control electrode, and at bottom is a fixed parasitic
electrode. The plates have areaA0, Ac, andAp, respectively, and
are assumed to be centered on a common axis. The zero voltage
gap between the moving and drive electrode isd and the distance
between the parasitic and drive electrode isδ. Resistive cross-
coupling is neglected here, and the movable electrode is assumed
to be grounded, that is, connected to ground through a zero volt-
age bias, with negligible series resistance. Figure 1 shows a
schematic of the model. The configuration of the parasitic elec-
trode is motivated by MEMS designs in which a parallel-plate
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Figure 1. 1-DOF MODEL OF A ELECTROSTATIC MICROACTUATOR.

THE TOP PLATE OF THE MEMS IS FREE TO MOVE AND THE TWO

BOTTOM PLATES ARE HELD FIXED. THE MIDDLE PLATE IS THE

CONTROL ELECTRODE AND THE BOTTOM PLATE IS THE PARASITIC

ELECTRODE. THIS PARTICULAR CONFIGURATION IS AN EXAMPLE

OF CASE II. THE AREA OF THE BOTTOM PLATE MAY BE REDUCED

TO THAT OF THE TOP PLATE WITHOUT AFFECTING THE SIMPLE

CAPACITANCE MODELS USED FOR CONTROL DESIGN. THE PAR-

ASITIC BIAS VOLTAGE up IS ASSUMED TO BE ZERO IN THE CON-

TROLLER DESIGN AND ANALYSIS.

device is surface micromachined on an insulating silicon dioxide
or silicon nitride layer, which is in turn deposited on a (relatively
conductive) silicon wafer. In such cases large parasitic capaci-
tances may exist between the device and the underlying silicon,
especially if the insulating layer is thin. In what follows, the par-
asitic bias voltageup shown in Fig. 1 is assumed to be zero.

For the purpose of control design the capacitive coupling
and electrostatic forces are derived using a simple infinite parallel
plate model that neglects fringing. Thus the mutual capacitance
between any two surfaces will beCi j = εAi j /l i j , wherel i j is the
distance between the surfaces andAi j is the area of the overlap
between the surfaceswith no intervening conductor. If the par-
asitic effects are due to interactions with a conductive substrate,
this model allows us to consider only that portion of the substrate
directly beneath the device.ε is the permittivity of the material
in the gap between the plates, sometimes written as a dielectric
constant times the permittivity of free space. In what follows,ε
is simply a constant.

Even using the simplified 1-DOF model of Fig. 1 several
distinct electrode configurations are possible. The following ob-
servation facilitates the analysis: Under the simplified capaci-
tance calculation, the largest electrode area may, without loss
of generality, be reduced to that of the next largest, resulting in
three possible situations, in which either the parasitic electrode
is the smallest, the control electrode is the smallest, or the mov-

able electrode is the smallest. The first and third are qualitatively
very similar and the third may be easily treated by analogy to
the first. Therefore, to avoid unnecessarily complex notation, we
will consider only the first and second configurations, which we
subsequently refer to as Case I and Case II. We define the param-
eterρ = Ap/Ac. For Case I,ρ ≤ 1 and for Case IIρ ≥ 1. Note
that in Case I the movable electrode is completely screened from
the parasitic electrode by the control electrode. In Case II the
movable electrode is directly affected by the parasitics.

The configuration space of the movable electrode isG = R .
Let {e1} be a coordinate frame forR , with e1 fixed at the center
of mass of the moving electrode in zero voltage equilibrium and
pointing away from the fixed control electrode, and withx de-
noting the displacement of the movable electrode alonge1. Then
application of the modeling procedure presented in [2, 8], gives
the following equations of motion:

Q̇c=−
1

rcc
Vc +

1
rcc

uc, (1)

=− 1
rcc

Ccp(x)(αcc(x)Qc +Qp)+
1

rcc
uc, (2)

Q̇p=−
1

rpp
Ccp(x)(Qc +αpp(x)Qp) , (3)

ẋ=v, (4)

v̇=−2ζωv−ω2x− f e(x,Qc,Qp), (5)

where f e(x,Qc,Qp) is of the form

f e(x,Qc,Qp) =
1

2mεA0

(
f e
11(x)Q

2
c +2QcQp +Q2

p

)
,

Charge and voltage are related by

[
Vc

Vp

]
= Ccp

[
αcc 1
1 αpp

][
Qc

Qp

]
(6)

whereCcp(x) = (x+d)/εA0, and the voltageVc on the drive elec-
trode is assumed to be measured. The two electrode configura-
tion cases differ only inαcc, αpp, and f e

11. The situation is sum-
marized in Table 1.

VOLTAGE AND CHARGE PULL-IN
It is instructive to review the system without parasitics, and

recall how the choice of charge as the controlled output elimi-
nates the voltage pull-in bifurcation. In this case (3) is omitted,
theQp terms do not appear in (2), or (5), andαcc(x) = f11(x) = 1.
The simplified capacitance models imply that, without loss of
generality,Ac and A0 may be assumed equal to the smaller of
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Case I II

Smallest Area Ap Ac

Other Areas Ac = A0 Ap = A0

f11 1 1+ δ2(ρ−1)
(x+d+δ)2

αcc 1 1+ δ(ρ−1)
x+d+δ

αpp 1+ δ
ρ(x+d) 1+ δ

x+d

Table 1. EXPRESSIONS APPEARING IN (1)–(5) FOR THE TWO

ELECTRODE GEOMETRY CASES. ρ≡ Ap/Ac.

A) B)

Figure 2. BIFURCATION DIAGRAM FOR THE ZERO DYNAMICS OF A

1-DOF MEMS MODEL WITHOUT PARASITICS. SOLID LINES DENOTE

STABLE EQUILIBRIA, DASHED LINES DENOTE UNSTABLE EQUILIB-

RIA. A) VOLTAGE CONTROL. B) CHARGE CONTROL.

the two, here arbitrarily denotedAc. For the voltage control case
the output is chosen asy = Vc(x,Qc)−V̄c = (d+x)Qc/εA0−V̄c.
Thus, at equilibrium,y≡ 0 impliesQ̄c = εA0V̄c/(d+ x̄). The rel-
ative degree of the system is one, and the zero dynamics are the
dynamics of the mechanical subsystem. Any equilibrium of the
zero dynamics must satisfy ¯v = 0 and

−(x̄+d)2x̄ =
εA0V̄2

c

2mω2 ≡ γVc. (7)

Figure 2(a) plots the roots of 7 that fall in the physical region
−d≤ x̄≤ 0 versus a bifurcation parameter,γVc, which is simply
the value of the right-hand side of (7). A particular value ofγVc

corresponds to two, one, or no equilibrium points. When there
are two equilibria the one closer to the origin is stable, the other
is unstable, as shown in the figure. Voltage pull-in corresponds
to the saddle-node bifurcation that occurs at ¯x = −d/3, where
there is a single equilibrium in the feasible region. For charge
control the output is chosen asy≡Qc− Q̄c. The zero dynamics
are again the dynamics of the mechanical subsystem, now with

equilibria satisfying ¯v = 0 and

−x̄ =
Q̄2

c

2εA0mω2 ≡ γQc. (8)

Figure 2(b) plots the roots of (8) that fall within the feasible re-
gion versus the right-hand side,γQc. Now a particular value of
γQc corresponds either to a unique stable equilibrium point, or
to no equilibrium point. The voltage pull-in bifurcation is elim-
inated. This observation, as well as being implicitly exploited
in several previous studies such as [10,14], was the basis for the
1-DOF passivity controller in [7], and the motivation for the gen-
eral method presented in [8].

Case I II

Q̄p − Q̄cρ(x̄+d)
ρx̄+ρd+δ − Q̄c(x̄+d)

x̄+d+δ

f e(x̄,Q̄c,Q̄p)
δ2Q̄2

c
2mεA0(ρx̄+ρd+δ)2

ρδ2Q̄2
c

2mεA0(x̄+d+δ)2

Table 2. EQUILIBRIUM CONDITIONS WITH OUTPUT Qc.

With the parasitic surface included in the model, it can be
verified that for both Cases I and II voltage control gives zero
dynamics equilibrium conditions identical to (7). Therefore volt-
age pull-in bifurcation occurs as before. Charge control, how-
ever, is fundamentally altered by the presence of the parasitics.
The equation governing the equilibrium position of the electrode
becomes for Case I

−(x̄+d+
δ
ρ

)2x̄ =
δ2Q̄2

c

2εA0mω2ρ2 . (9)

Comparing (9) to (7) we see that there will be a saddle-node
bifurcation, referred to “charge pull-in.” It occurs at at ¯x =
(d/3) + (δ/3ρ) which is greater thand/3. If ρd

δ ≤ 1/2 then
charge pull-in does not occur in the physically feasible region.
For Case II the equilibrium equations are

−(x̄+d+δ)2x̄ =
ρδ2Q̄2

c

2εA0mω2 . (10)

Once again charge pull-in occurs, this time at a critical displace-
ment of(d/3)+(δ/3), again greater thand/3. Therefore, as was
first noted in [5], charge control confers a greater operating range
than voltage control, even in the presence of parasitics. However,
asδ becomes small orρ becomes large, any advantage becomes
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Figure 3. EQUILIBRIUM CURVES FOR THE ZERO DYNAMICS OF A

1-DOF MEMS MODEL UNDER CHARGE CONTROL WITH PARASITICS

AS PARAMETER ρd/δ VARIES.

vanishingly slight. Figure 3 shows this behavior graphically as
the parameterρd/δ varies.

From a passivity point of view, in the absence of para-
sitics the choice of charge as the output instead of voltage elimi-
nates voltage pull-in. However parasitics induce the related phe-
nomenon of charge pull-in. Then it is natural to ask whether
there is another system output, for which charge pull-in does not
occur. The next section demonstrates that there is.

PASSIVITY-BASED CONTROL WITH PARASITICS

Case I II

Q̄p −ρ(x̄+d)
δ Q̄e − x̄+d

δ Q̄e

f e(x̄,Q̄e,Q̄p)
Q̄2

e
2mεA0

ρQ̄2
e

2mεA0

x̄ − Q̄2
e

2mεA0ω2 − ρQ̄2
e

2mεA0ω2

Table 3. EQUILIBRIUM CONDITIONS WITH TOTAL CHARGE Qe AS

OUTPUT.

In the absence of parasitics,f e(x,Qc) in (5) is Q2
c/2mεA0.

With parasitics, for Case I,f e
11 = 1, and so f e(x,Qc,Qp) =

(Qc + Qp)2/2mεA0. This suggests that choosing as system out-
put thetotal charge Qe≡Qc+Qp will eliminate the charge pull-
in bifurcation. This result is immediate for Case I. For Case II,
the substitutionQc = Qe−Qp yields a less clear-cut expression:

f e(x,Qe,Qp) =
Q2

e

2mεA0
+

δ2(ρ−1)
(x+d+δ)2

(Qe−Qp)2

2mεA0
(11)

However solving forQ̄p in terms ofx̄ gives the same equilibrium
equation as for Case I. These results are summarized in Table
3. In both cases the system with total charge as output has rela-
tive degree one and a unique equilibrium point. The elimination
of charge pull-in suggests that any feasible equilibrium may be
made globally asymptotically stable, but, as will be seen, this is
not true. Three problems arise, all associated only with Case II.
The first is that the arguments for global stability of the equilib-
rium no longer hold, and in fact simulations show that the region
of attraction is finite. The second is that while the charge pull-in
saddle-node bifurcation has been eliminated, the unique equilib-
rium may lose stability via a Hopf bifurcation. The third is that
in this caseQe feedback is not implementable from the assumed
measurementsx, Vc, andQc. An approximation must be used,
which further reduces the region of attraction.

We transform the system (1)–(5) from(Qc,Qp,x,v) to
(Qe,Qp,x,v) coordinates, and proceed as in [7] by applying the
input-output linearizing control

uc=rcc

((
1

rcc
+

αpp(x)
rpp

)
Vc+

Ccp(x)(1−αcc(x)αpp(x))
rpp

Qc +ν
)

(12)

to obtain the following system:

Q̇e=ν, (13)

ẋ=v, (14)

v̇=−2ζωv−ω2x− f e(x,Qe,Qp), (15)

Q̇p=−
Ccp(x)

rpp
((αpp(x)−1)Qp +Qe) , (16)

where

f e(x,Qe,Qp) =
1

2mεA0

(
Q2

e +( f e
11(x)−1)(Qe−Qp)2)

A stabilizing energy-shaping controller may be designed for
Case I following [8],:

ν =−k
(
Qe− Q̄e

)
(17)

wherek > 0. The choice ofQe as output ensures a unique equi-
librium point for every−d≤ x̄≤ 0. For Case I (13)–(15) reduce
exactly to the equations without parasitics, withQe replacingQc.
Thus repeating the proof in [7] for this case shows that the con-
troller (17) globally asymptotically stabilizes any desired feasi-
ble equilibrium. Implementation requiresQe. For Case I we find
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from (6) the following expression forQe in terms ofVc andx:

Qe =
εAc

x+d
Vc. (18)

Therefore, assuming availability ofx, Vc, andQc, a static output
feedback controller may be implemented for Case I as

ν =−k

(
εAc

x+d
Vc− Q̄e

)
. (19)

Furthermore, as long as the various modeling assumptions are
valid, the performance of Case I will be identical to the nominal
case investigated in [7].

In Case II the expression forQe also contains a term involv-
ing the parasitic voltage:

Qe =
εAc

x+d
Vc +

εAc(ρ−1)
x+d+δ

Vp. (20)

Thus it is infeasible to implement theQe controller with available
measurements for Case II. We propose to neglect theVp term in
(20), and to approximateQe in Case II by (18), that is,Q̃e =
εAcVc/(x+d). So we obtain for Case II the same controller (19)
as for Case I. Due to the assumption of zero parasitic bias voltage
in the system model (1)–(5),̄Vp = 0. Therefore the use of (18) in
steady state gives the correct value ofQ̄e, even for Case II. Then
the results of Table 3 are still valid, and charge pull-in bifurcation
will not occur. Next we note that forρ close to unity theVp term
in (20) is small, and so it is reasonable to expect that in such
situations the unique equilibrium will be stable and the region of
attraction large.

In summary, we have shown in this section that the output
feedback controller (19) eliminates charge pull-in for both Case
I and Case II. For Case I we also have global asymptotic stability
of the resulting unique equilibrium point. For Case II we have no
stability guarantee, but forρ close to one we expect robust stabil-
ity. Recall that under the simplified capacitance models used, the
area of the parasitic surface can be taken in Case II to be equal to
the area of the movable electrode. Thereforeρ may be estimated
as the ratio of the area of the movable electrode to the area of
the drive electrode. In actual MEMS devices this is often close
to one, and rarely greater than ten. The following section uses
Matlab simulation to examine the stability of the equilibrium as
ρ increases.

SIMULATION RESULTS
This section presents three sets of simulation results focus-

ing on Case II. First we show the existence of a subcritical Hopf

Figure 4. COMPLEX CONJUGATE ROOTS CROSSES INTO THE

RIGHT HALF-PLANE, SIGNALING A HOPF BIFURCATION, AS x̄ IN-

CREASES FOR VARIOUS VALUES OF δ AND WITH ρ = 1.5

Figure 5. STABILITY BOUNDARIES IN THE NORMALIZED x̄-δ PA-

RAMETER SPACE FOR ρ = 1.1, 1.5, AND 5. THE DAMPING RATIO

IS SET TO ζ = 0.05. AS ρ INCREASES AND/OR δ DECREASES THE

BIFURCATION VALUE OF x̄ INCREASES, INDICATING LOSS OF STA-

BILITY OF EQUILIBRIUM POINTS HIGHER IN THE GAP.

bifurcation associated with the zero dynamics using total charge
feedback as output. These results useQe set exactly toQ̄e,
and therefore the bifurcation occurs even when the exact ex-
pression for total charge is used. Next we present Matlab sim-
ulations that validate the stabilizing properties of total charge
feedback control by showing successful stabilization of a case
for which charge pull-in makesQc control unstable. Finally we
show more detailed simulation results using the ANSYS finite-
element package, which show the effect of neglecting fringing in
the controller .

Figure 4 shows the locus of one of a conjugate pair of com-
plex roots of the linearized zero dynamics of (13)–(15) as ¯x varies
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for fixedρ and three different values ofδ. A pole crosses into the
right half-plane, signaling a Hopf bifurcation, for each value ofδ
considered. Figure 5 shows stable and unstable regions in theδ-x̄
parameter space for various values ofρ. It is important to know
whether the Hopf bifurcation is subcritical or supercritical. In the
former, an unstable limit cycle coexists around the stable equilib-
rium point, shrinking in amplitude as the bifurcation parameter
nears its critical value, and collapsing onto the equilibrium at
the bifurcation point. In the latter, a stable limit cycle coexists
around the unstable equilibrium, again shrinking in amplitude as
the bifurcation parameter nears its critical value, and collapsing
on it at the bifurcation point [18]. Poincare sections along the
x-axis were generated using Matlab simulation of trajectories in
the x-v phase space, withQe and Qp held at their equilibrium
values. Figure 6 shows the result for parameters corresponding
to Point 1 from Fig. 5. An unstable limit cycle can be clearly
seen. A similar numerical analysis at Point 2 is not shown, but
displays no sign of a limit cycle. Since an unstable limit cycle
coexists around the stable equilibrium point, we conclude that
the bifurcation is subcritical.

Figure 6. A POINCARE SECTION FOR POINT 1 FROM FIG. 5 SHOW-

ING AN UNSTABLE LIMIT CYCLE AROUND THE STABLE EQUILIB-

RIUM POINT. Qe and Qp ARE SET TO THEIR EQUILIBRIUM VALUES.

Figure 7 shows howQc control results in charge pull-in in
the presence of parasitics, whileQe control is stabilizing. Figure
8 shows the effect of neglecting fringing in the controller. The
simplified parallel plate capacitance models are used twice. First,
they are used to obtain thēQe that will give a desired position ¯x.
Next, they are implicit in the linearizing feedback (12). The fig-
ure applies the controller in an ANSYS simulation, in which the
electrode capacitances are computed using finite-element analy-
sis. This analysis incorporates fringing, which is neglected in the
parallel plate approach. The results show that an error of about
6% is associated with use of the approximate capacitance values

Figure 7. A COMPARISON OF Qc CONTROL AND Qe CONTROL FOR

A CASE II DEVICE WITH ρ = 1.25. THE Qc CONTROLLER EXHIBITS

CHARGE PULL-IN, WHILE THE Qe CONTROLLER IS STABILIZING.

in the linearizing feedback, while an error of about 4% is asso-
ciated with the imperfect calculation of̄Qe. Together these give
an error of over 10%. Remarkably this is the case even though
the approximate parallel plate capacitance values themselves are
very close to the computed ANSYS values, as seen in Fig. 9. We
conclude by noting that the more accurate finite-element values
could in principle be incorporated into the actual controller to
provide improved performance.

Figure 8. ANSYS SIMULATION USING PARALLEL PLATE AND COM-

PUTED CAPACITANCE MODELS.

CONCLUSION
This paper presents a 1-DOF model including a capacitively

coupled parasitic electrode, specialized from a general model-
ing and controls framework for electrostatically actuated MEMS.

7 Copyright c© 2007 by ASME



Figure 9. COMPARISON OF PARALLEL PLATE APPROXIMATIONS TO

ANSYS COMPUTED CAPACITANCE VALUES.

Previous work by the authors presented static and dynamic out-
put feedback controllers that, in the absence of parasitics, glob-
ally asymptotically stabilize any equilibrium electrode configu-
ration, thereby eliminating voltage pull-in and allowing the mov-
able electrode an extended travel range. These controllers were
based on the observation that the bifurcation that occurs in the
zero dynamics when drive electrode voltage is chosen as the sys-
tem output does not occur when drive electrode charge is chosen
instead. However a sufficiently large parasitic capacitance will
destroy this property, and a saddle-node bifurcation will again
occur. This phenomenon, known in the literature ascharge pull-
in, limits the operational range of travel of the movable elec-
trode, though less severely than voltage pull-in. For the 1-DOF
model considered, we show that the use oftotal chargeas the
system output eliminates the charge pull-in bifurcation. Two
qualitatively different electrode geometries must be considered.
In the first, we recover the global asymptotic stability result ob-
tained without parasitics. In the second, depending on the size
of the parasitic capacitance, the region of attraction of the unique
closed-loop equilibrium point is finite, and in fact it may lose
stability through a Hopf bifurcation. Furthermore, in the second
geometry it is not possible to implement total charge feedback
with feasible measurements. However an output feedback con-
troller neglecting the unmeasurable quantities still eliminates the
pull-in.
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