Genetic diversity and structure of a rare endemic cactus and assessment of its genetic relationship with a more common congener

Niraj Rayamajhi¹, Matthew Olson², and Jyotsna Sharma^{1*}

¹Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA, ²Department of Biology, Texas Tech University, Lubbock, TX 79409 USA; ^{*}jyotsna.Sharma@ttu.edu

Abstract

Endemic plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity especially if they are obligate outcrossing taxa. Simultaneously, delineating clear species boundaries is important in targeted conservation and management efforts. The federally endangered cactus, Sclerocactus brevihamatus subsp. tobuschii, has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus but genetic distance between the two taxa is unknown. We: 1) developed taxon-specific polymorphic microsatellites, 2) assessed genetic diversity within and among nine populations of Sclerocactus brevihamatus subsp. tobuschii (SBT) and within a single population of Sclerocactus brevihamatus subsp. brevihamatus (SBB), and 3) investigated the genetic relationship between the two subspecies. We obtained allelic data from 255 individuals across both taxa using seven self-developed microsatellites. Within-population genetic diversity of subsp. *tobuschii* was moderate to moderately high (mean $H_e = 0.59$; mean $H_o = 0.37$). Indirect estimate of inbreeding (F_{is}) ranged from 0.15 to 0.63 for subsp. tobuschii and was relatively high for subsp. brevihamatus (F_{is} = 0.47). Genetic differentiation among populations of subsp. tobuschii was low based on results from F_{st} (0.08) and AMOVA (Φ_{PT} = 0.07); however, D_{est} showed elevated genetic differentiation among those populations. A Mantel test and spatial autocorrelation analysis suggested no significant genetic and spatial correlation among nine populations or within each population of subsp. *tobuschii*. The Infinite Allele Model detected bottleneck (p < 0.01) in six populations of subsp. tobuschii while SMM and TPM did not. STRUCTURE analysis (K=3) and both rooted and unrooted NJ dendrograms suggested three distinct clusters across the ten populations of the two sub-taxa within Sclerocactus brevihamatus. Our results suggest that subsp. tobuschii is sufficiently differentiated from subsp. brevihamatus to retain its current taxonomic status.

Results

Table 1: Genetic diversity statistics for seven microsatellite loci used to obtain allelic data from 9 populations of *Sclerocactus brevihamatus* subsp. *tobuschii* including number of alleles (N_a), mean expected heterozygosity (H_e), and mean observed heterozygosity (H_o).

Locus	Allele size range (base pairs)	N _a	H _e	H _o	
NRJS5	347-399	9	0.66	0.07	
NRJS10	120-212	19	0.74	0.74	
NRJS11	152-168	5	0.47	0.26	
NRJS29	175-227	13	0.74	0.61	
NRJS32	146-166	5	0.60	0.41	
NRJS35	162-182	5	0.55	0.30	
NRJS39	179-191	4	0.34	0.20	

Table 2. Population codes and Microsatellite based genetic diversity estimates of ten

Figure 4. Bar plot from STRUCTURE analysis. Colors in the bar graph represent clustering of populations at K = 3, the optimal value of K. Populations CA, GP, HW, KC, KR, LC, SA, WS, and JN belong to *Sclerocactus brevihamatus* subsp. *tobuschii* whereas population TC belongs to *Sclerocactus brevihamatus*. Each thin line in the graph represents a single individual.

Figure 1. A plant of *Sclerocactus brevihamatus* subsp. *tobuschii* (SBT) in anthesis.

Figure 2. A plant of *Sclerocactus brevihamatus* subsp. *brevihamatus* (SBB) in anthesis.

Objectives

- 1. To develop novel and polymorphic nuclear microsatellite marker loci for Sclerocactus brevihamatus subsp. tobuschii.
- 2. To assess genetic diversity within and among nine populations of *Sclerocactus brevihamatus* subsp. *tobuschii* and within a single population of *Sclerocactus brevihamatus* subsp. *brevihamatus*.
- 3. To investigate genetic relationship between *Sclerocactus brevihamatus* subsp. *tobuschii* and *Sclerocactus brevihamatus* subsp. *brevihamatus*.

populations of *Sclerocactus brevihamatus* representing two subspecies from Texas. Populations representing SBT include CA, GP, HW, KC, KR, LC, SA, WS, JN, whereas TC represents SBB. N - number of individuals genotyped; A_r - rarefied allelic richness; A_n - mean number of alleles per locus; A_p - number of private alleles; A_e - effective number of alleles; H_e - expected heterozygosity; H_o - observed heterozygosity; F_{is} - inbreeding coefficient; *populations deviated (α = 0.05) from Hardy-Weinberg equilibrium, HWE

Population Code	N	A _r	A _n	A _p	A _e	H _e	H _o	F _{is}
СА	28	4.20	5.57	1	3.44	0.62	0.41	0.35*
GP	26	3.51	4.71	3	2.41	0.55	0.34	0.35*
HW	28	3.96	5.00	0	3.02	0.63	0.31	0.49*
KC	25	4.21	5.57	3	3.38	0.61	0.37	0.33*
KR	24	3.49	4.42	0	2.54	0.53	0.35	0.39*
LC	26	3.97	4.85	0	3.02	0.62	0.44	0.30*
SA	14	4.07	4.71	3	3.20	0.56	0.26	0.63*
WS	26	3.55	4.28	2	2.62	0.56	0.34	0.44*
JN	28	3.75	5.00	1	3.10	0.59	0.52	0.15*
Mean	25	3.85	4.90	1.44	2.97	0.59	0.37	0.38*
ТС	30	4.39	6.00	11	3.04	0.52	0.26	0.46*

Table 3: Pairwise D_{est} above diagonal and pairwise F_{st} below diagonal for 10 populations of *Sclerocactus brevihamatus* based on seven nuclear microsatellites. Populations CA, GP, HW, KC, KR, LC, SA, WS, and JN belong to SBT whereas population TC belong to SBB; *significant D_{est} values ($\alpha = 0.05$); *significant F_{st} values (adjusted $\alpha = 0.001$) obtained after Bonferroni correction.

Figure 5. An unrooted majority rule consensus neighbor joining dendrogram of ten *Sclerocactus brevihamatus* populations constructed using Nei's genetic distances (Nei 1972) estimated based on seven nuclear microsatellites. Values at the branches are the number of bootstraps support for the split of branches. Only the bootstrap values \geq 50 are shown.

Table 5. Summary of bottleneck test results in 10 *Sclerocactus brevihamatus* populations based on seven nuclear microsatellites using infinite allele model (IAM), two-phase mutation model (TPM), and stepwise mutation model (SMM). The p values were estimated based on 10,000 replications using Wilcoxon test and the values in bold red color are statistically significant ($\alpha = 0.05$).

Population	IAM	ТРМ	SMM
CA	0.019	0.53	0.59
GP	0.460	0.85	0.97
HW	0.007	0.28	0.53
KC	0.030	0.59	0.76
KR	0.054	0.53	0.81
LC	0.007	0.18	0.65
SA	0.054	0.59	0.85
WS	0.003	0.18	0.71
JN	0.039	0.46	0.59
TC (SBB)	0.590	0.46	0.59

Materials and Methods

Sample (spine) collection and DNA extraction (225 samples from 9 populations of SBT and 30 samples from 1 population of SBB)

Microsatellite, or nuclear Simple Sequence Repeat (nSSR) development (to identify species-specific nSSR motifs in the genome of SBT)

> Design and optimization of nSSR primers (to select polymorphic and reproducible nSSR loci)

Polymerase Chain Reaction (PCR) using selected primers (to amplify targeted nSSR regions in DNAs from both SBT and SBB)

Genotyping of each individual DNA at seven nSSR loci (to obtain allelic data for each locus based on fragment length)

Analysis of allelic data (population genetics parameters, fitness parameters, and genetic relations between the subspecies)

	СА	GP	нพ	КС	KR	LC	SA	ws	JN	тс
СА	-	0.11*	0.07*	0.06	0.20*	0.14*	0.20*	0.23*	0.04*	0.35*
GP	0.05	-	0.04	0.11*	0.10*	0.14*	0.20*	0.23*	0.11*	0.42*
HW	0.03	0.02	-	0.05	0.06*	0.09*	0.19*	0.20*	0.07*	0.39*
КС	0.03	0.06	0.02	-	0.13*	0.07*	0.24*	0.15*	0.07*	0.40*
KR	0.11	0.06	0.05	0.08	-	0.10*	0.18*	0.16*	0.18*	0.40*
LC	0.07	0.07	0.03	0.03	0.06	-	0.18*	0.16*	0.14*	0.34*
SA	0.10	0.12	0.09	0.12	0.11	0.09	-	0.19*	0.29*	0.06*
WS	0.12	0.14	0.11	0.09	0.10	0.09	0.11	-	0.15*	0.37*
JN	0.02	0.06	0.04	0.04	0.11 ^a	0.07	0.16 ^a	0.09 ^a	-	0.44*
ТС	0.19	0.24	0.20	0.22	0.24	0.18 ^a	0.05	0.22 ^a	0.24 ^a	-

Table 4. Results of AMOVA based on seven nuclear microsatellites across nine populations of SBT. df, degree of freedom; SS, sum of squares; MS, Mean sum of squares; E.Var., Estimated variation; %, variation percentage; $Phi_{PT}(\Phi_{PT})$, percentage of genetic difference among populations; and p, p-value. $Phi_{PT}(\Phi_{PT})$ does not consider genetic variation within populations.

Source of variation df SS MS E. var % Φ_{PT} p

Conclusions

We conclude that Sclerocactus brevihamatus subsp. tobuschii has moderate (mean H_o = 0.37) to moderately high (mean H_e = 0.59) microsatellite based within-population genetic diversity (Table 2). These values are also lower than the estimates in a threatened congener Sclerocactus glaucus (mean H_o = 0.47, H_e = 0.66).

 We infer that populations HW, SA, WS, and TC with an inbreeding coefficient (F_{is}) close to or higher than 0.50 (Table 2) are at a higher risk of deleterious effect of inbreeding than the other sampled populations (Table 2).

Population differentiation measures such as mean F_{st} (0.08, Table 3) and Φ_{PT} (0.07, Table 4) disagree with the mean D_{est} (0.18, Table 3). The difference between F_{st} and D_{est} could be due to high mutation rate of microsatellites or high within-population genetic diversity.

The Mantel correlation between unbiased pairwise Nei's genetic distances (r² = 0.054, p = 0.135) and Wright's Fst (r² = 0.073, p = 0.113) against pairwise geographic distances (ranging from 17 km to 145 km amongst the 9 sampled SBT populations) was not significant.

 Clustering analyses including STRUCTURE (Figure 5), rooted (data not shown) and unrooted neighbor joining dendrograms (Figure 6) consistently showed three genetically distinct groups.

Although bottleneck effect on CA, HW, KC, LC, WS, and JN under IAM model is evident (Table 5), the other models did not detect bottlenecks in any of the sampled populations.

Acknowledgments

Figure 3. A map showing the locations of nine sampled populations (CA, GP, HW, KC, KR, LC, SA, WS, and JN) of *Sclerocactus brevihamatus* subsp. *tobuschii* and one population (TC) of *Sclerocactus brevihamatus* subsp. *brevihamatus* across eight counties of Texas.