
Lusi Lab Library

#Enter either into an R console to load the functions:

source("https://www.depts.ttu.edu/psy/lusi/files/lusi.txt")
source("http://tiny.cc/lusilab")

Functions:

Analysis

parapower: simple parametric power analysis and effect size related functions.

bspmed: permute or bootstrap simple mediations.

medfig: make simple mediation figures.

repcv: cross-validate linear regression models.

afa/afa.model: automatically extract factors from measure items.

Data

reddit: download comments from reddit.

alz.posts: download posts from alzconnected.org.

scripts: download movie scripts from imsdb.

subtitles: download subtitles from opensubtitles.

move_reviews: download reviews from rottentomatoes.

movie_ratings_links: download metadata from imdb and rottentomatoes.

Curios

fractal: generate fractal images.

montyhall: simulate the Monty Hall problem.

schelling: run versions of Schelling's segregation model.

https://www.depts.ttu.edu/psy/lusi/
https://www.depts.ttu.edu/psy/lusi/

parapower

Description

Parametric effect size related functions for tests along the lines of balanced ANOVAs (e.g., certain t-tests,
correlations, and regressions).

convert_effect takes an effect of a given type, and converts it to all other available types.

critical_effect takes a total sample size, and outputs effect sizes that would be significant at the given
alpha level.

parapower conducts different types of simple parametric power analyses. There are 4 main components,
and each can be estimated by entering all but the desired parameter:

• N: Before data are collected (a priori), usually you'd want a sample size necessary for a given effect
size, alpha, and power. For example, parapower(.25) will find the n required to see a Cohen's f of
.25, significant under an alpha (p-value) of .05, with a power of .8.

• effect: Maybe you have a maximum sample size, or one already collected, and you'd want to
know what effect size you would be able to detect with a given alpha and power (sometimes called
sensitivity analysis): parapower(N = 50).

• power: Maybe you'd want to know what power you'd have to detect a given effect size given a
sample size and alpha (sometime called post-hoc analysis): parapower(.25, N = 50).

• alpha: Finally, maybe you'd want an alpha representing a specified power for a given effect and
sample size (sometimes called criterion analysis): parapower(.25, N = 50, power = .8).

Calculating n may be useful for planning studies, though this will be similar to using rules-of-thumb unless
you have a good guess at an effect size. The other components may be requested for reporting (for
whatever reason), but note that they add no new information if an effect size and sample size have also
been reported.

Usage

convert_effect(effect, type = 'r', N = 3, k = 2, adjust_f = TRUE, display_f = FALSE,
print = TRUE)

critical_effect(N, k = 2, alpha = .05)

parapower(effect = NULL, type = 'f', N = NULL, k = 2, alpha = .05, power = .8, range)

Arguments

effect Effect size of the specified type.

type Type of effect entered. Available types are Pearson's r ('r'), Cohen's d ('d'), Area Under the
Curve (AUC; 'a'), Odds Ratio ('o'), η2 (eta-squared; R2; 'e'), or Cohen's f ('f').

N Total sample size.

k Number of groups or cells, with 2 being the default and most generally appropriate.

adjust_f Logical indicating whether the entered effect of type 'f' should be converted from F to
Cohen's f based on N and k: sqrt((k - 1) * F / (N - k)).

display_f Logical; if TRUE, calculates F and an associated p-value based on N and k.

print Logical; if FALSE, results are only invisibly returned.

alpha Alpha level (p-value; theoretical type I error / false positive).

power Power (1 – β; inverse theoretical type II error / false negative).

range Interval of the estimated component for the optimizer to try. Defaults to 2-10,000 for N, 0-
100 for effect, and 0-1 for power or alpha. If you get an error from uniroot (like "f() values
at end points not of opposite sign"), try increasing the range (e.g., smaller low end for large
effects, and larger high end for small effects).

Examples

a priori power analysis (looking for n given an effect size, alpha, and power)
with no arguments, this defaults to effect = c(.3, .5, .7), type = 'd'
parapower()

sensitivity analysis (looking for an effect size given n, alpha, and power)
parapower(N = 50)

post-hoc power analysis (looking for power given an effect size, n, and alpha)
since 'f' is the default type, this is power given Cohen's f = .3
parapower(.3, N = 50)

criterion analysis (looking for alpha given an effect size, n, and power)
parapower(.3, N = 50, power = .8)

This type of power analysis becomes increasingly difficult with more complex models.
In those cases, simulation is very handy (though more difficult to abstract in terms
of specification) –- if you can reasonably simulate the data you have in mind,
you can reasonably estimate power for any model.

Monte Carlo power analysis

simulate a simple effect: continuous normal x and related y
N = 20
x = rnorm(N)
y = x * .4 + rnorm(N)
summary(lm(y ~ x))

here, we can input the correlation to get other effect sizes
k defaults to 2, which is appropriate in this case
convert_effect(cor(x, y), N = N)

we want to know what N gives us .8 power to detect this effect at .05 alpha
we can set up a function to easily try different Ns
sim1 = function(N, beta = .4, batches = 100, alpha = .05, power = .8){

 # first, set up a vector of 0s, which we'll fill with results from each run
 op = numeric(batches)

 # now we repeat the simulation batches times
 # (with i tracking the index of op)
 for(i in seq_len(batches)){

 # reroll the simulated variables
 x = rnorm(N)
 y = x * beta + rnorm(N)

 # set the current op entry to the p-value of the test
 op[i] = summary(lm(y ~ x))$coef[2, 4]

 }

 # observed power is percent of p-values under alpha
 # output of the function is observed power - set power for optimization
 # (where the target is 0; closest observed to set power)
 mean(op < alpha) - power
}

uniroot will try different values of N (between 50 and 100 here),
and output the one that gets closest to the set power
uniroot(sim1, c(50, 100))$root

setting power to 0 will give the observed power
increase batches for more stable estimates
sim1(55, batches = 5000, power = 0)

compare with a binary x

sim1b = function(N, beta = .4, batches = 100, alpha = .05, power = .8){
 op = numeric(batches)
 for(i in seq_len(batches)){
 x = rep_len(c(0, 1), N)
 y = x * beta + rnorm(N)
 op[i] = summary(lm(y ~ x))$coef[2, 4]
 }
 mean(op < alpha) - power
}

uniroot(sim1b, c(100, 300))$root
sim1b(200, batches = 5000, power = 0)

this is what the most basic parametric power analysis is getting at
parapower(.4, 'd')

simulate a more complicated effect: two binary variables with an interaction effect
c1 = sample(c(0, 1), N, TRUE)
c2 = sample(c(0, 1), N, TRUE)
y = c2 * c1 * .8 + rnorm(N)
(m = summary(lm(y ~ c1 * c2)))

R-squared is eta^2, and k is 4 (2x2)
convert_effect(m$r.squared, 'eta^2', N, 4)

same kind of function as before, only difference is the simulated data and test
also have to recalculate the omnibus p-value since it's not returned
sim2 = function(N, beta = .8, batches = 100, alpha = .05, power = .8){
 op = numeric(batches)
 for(i in seq_len(batches)){
 c1 = sample(c(0, 1), N, TRUE)
 c2 = sample(c(0, 1), N, TRUE)
 y = c2 * c1 * beta + rnorm(N)
 f = summary(lm(y ~ c1 * c2))$fstatistic
 op[i] = pf(f[1], f[2], f[3], lower.tail = FALSE)
 }
 mean(op < alpha) - power
}

uniroot(sim2, c(50, 300))$root
sim2(100, batches = 5000, power = 0)

note here that we're looking at the omnibus test
if you're actually interested in, say, the interaction effect, that may affect power
sim2i = function(N, beta = .8, batches = 100, alpha = .05, power = .8){
 op = numeric(batches)
 for(i in seq_len(batches)){
 c1 = sample(c(0, 1), N, TRUE)
 c2 = sample(c(0, 1), N, TRUE)
 y = c2 * c1 * beta + rnorm(N)
 op[i] = summary(lm(y ~ c1 * c2))$coef[4, 4]
 }
 mean(op < alpha) - power
}

uniroot(sim2i, c(100, 300))$root
sim2i(200, batches = 5000, power = 0)

bspmed

Description

Displays the results of Sobel and permutation/bootstrapping tests for simple mediation.
Bootstrap confidence intervals indicate significance when they do not include zero (as they are confidence
intervals of the effect). Permutation confidence intervals indicate significance when they do not include the

indirect effect (as they are confidence intervals of the null effect).

Usage

bspmed(x, y, m, data=NULL, cov=NULL, random=NULL, su=NA, i=1000, method='perm',
alpha=.05)

Arguments

Examples

#This displays the mediation of weight on the relationship
#between displacement and miles per gallon.
bspmed(disp, mpg, wt, scale(mtcars))

x x variable: can be the name of a variable in the environment or data.

y y variable: can be the name of a variable in the environment or data.

m mediating variable: can be the name of a variable in the environment or data.

data data frame from which to pull variable, with the global environment as a fallback.

cov a character vector of covariates to include in each path. Only accepted if data is also
specified.

random variable to be included as a random intercept in an lme model:
lme(y ~ x + m, random=~1|random)

su subset applied across variables, e.g., su=x<2&m>0.

i the number of iterations to be processed for bootstrapping. Default is 1000.

method character specifying the test type. Anything starting with 'b' will perform bootstrapping,
otherwise will performs the non-iterative, permutation-of-residuals approach as described in
Taylor and MacKinnon (2012; Eqs. 9 and 10).

alpha the alpha level for the bootstrapping confidence interval. Default is .05 (i.e., 2.5% and
97.5%).

x

m

y
c (c')

https://link.springer.com/article/10.3758/s13428-011-0181-x

medfig

Description

Plot simple mediation figures, maybe displaying indirect effects and confidence intervals of some sort, and
potentially saving them.

Usage

medfig(mat, ci=NULL, ci.type=NULL, xlab='x variable', ylab='y variable', mlab='mediating
variable', title=FALSE, note=TRUE, box=TRUE, digits=3, note.sig=TRUE,
fin.length=.5, cords.box=list(), cords.arrow=list(), padding.box=.05,
padding.arrow=.02, padding.number=.02, padding.title=.1, padding.note=.1,
arrow.scale=.01, box.fill=NA, center.adj=.1,
color = c(line=NA, box=NA, label=NA, number=NA, title=NA, note=NA),
weight = c(line=NA, box=NA, label=NA, number=NA, title=2, note=.9),
save=FALSE, format=pdf, name='mediation', ...)

Arguments

mat Output from the bspmed function, or a matrix with two rows and 4-5 columns
(see example).

ci A vector of confidence intervals (one lower and one upper). If the entries are

named, these will be read as numbers and added together for the displayed
percent (see example).

ci.type Text to be displayed in the note (i.e., ci.type confidence intervals).

xlab, ylab, mlab Text to be displayed in each variable box.

title, note, box Logicals indicating whether to draw each element.

digits Number of digits to round to.

note.sig Logical indicating whether asterisks corresponding to p-values should be added to
numbers.

fin.length Length of the arrowhead fins, back from the line intersection (0 would be a flat

base, for a triangular arrowhead).

cords.box Center position of each box. Should be a list with at least one coordinate pair (a
vector with values for y and x position). If entries aren't named, these x, y, and m
are assigned as names; coordinates pairs can be entered positionally or named.
Default is list(x=c(.1,.1),m=c(.5,.9),y=c(.9,.1)).

cords.arrow Position of each arrow. This behaves in the same way as cords.box, but entries

are names a, b, and c, and each set of coordinates should be 4 values specifying
start and end positions. Any unspecifies coordinates are calculated based on box
positions.

padding.box,
padding.arrow,
padding.number,
padding.title,
padding.note

Specifies the padding around each of the elements; box adjust space around texts
in each box, arrow adjust distance from boxes, and number adjusts space
between numbers and lines.

arrow.scale Size of each arrowhead.

box.fill Color of the box backgrounds.

center.adj Amount to shift the center text downward (positive values making center text
closer to the bottom).

color A vector with named entries corresponding to any of the elements (line, box,
label, number, title, note). Box refers to the color of the line (whereas box.fill
specifies the background). Single unnamed values are applied to all elements.

Examples

#medfig without any arguments will display the example from the bspmed function:
medfig()

#you can also save the output from a bspmed call and plot a figure for it later;

#note that bspmed will show a figure by default.
med = bspmed(disp, mpg, wt, scale(mtcars), figure=FALSE)
medfig(med)

#Or you can enter a matrix, with confidence intervals in the second position,
#and what type they are in the third.
mat = matrix(
 c(.89, .0001, -.54, .001, -.85, .0001, -.36, .05, -.48, .001)
 , 2, dimnames=list(c('b', 'p'), c('a', 'b', 'c', "c'", 'i'))
)
medfig(mat, c('2.5'=-.38,'97.5'=.37), 'Permutation')

weight The weight of arrow lines or box outlines, or size of numbers or texts. Behaves the
same as color.

save, format, name Information used when saving the figure to a file; if any are specified, an image is
saved. Format refers to the graphics engine; default is pdf. Some elements may
not show up properly using other engines (such as cairo_pdf). Other engines are
included in the base grDevices package. Another option is emf from the devEMF
package (used to create the example image).

... Additional arguments passed to par (parameters of the plot frame).

disp mpg

wt

0.888*** 0.544**

0.848*** 0.364
†

0.483**, 95% CI [-1.156, -0.385]

 Permutation confidence intervals; p 0.1
†
, p 0.05*, p 0.01**, p 0.001***

repcv

Description

Repeated cross-validation of linear regression models.

In each repetition (reps), the model is refit within each fold (folds) of the dataset. Across folds, if

permute is TRUE, the smallest absolute estimate is checked against the average permuted estimate
(mean(null_b) > min(abs(b))). Otherwise, the average p-value is checked against alpha (mean(p) >
alpha). These are averaged across repetitions, resulting in something like a punished p-value (chance
that the effect was not significant across all folds).

Usage

repcv(model, reps = 1000, folds = 3, data, group = NULL, permute = TRUE, alpha = .05,
cores = parallel::detectCores() - 2, packages = NULL)

Arguments

Examples

example with simulated data
note that the ability to detect effects will
depend in part on the size of each fold (n / folds)
x = rnorm(100)
y = x * .5 + rnorm(100)
repcv(lm(y ~ x))

model an lm, lme, or lmer model object.

reps the number of times the process should be repeated

folds the number of random folds the data should be split into each repetition.

data the data to split and refit the model to. If missing, the data is extracted from the model
object.

group a single grouping variable to sample rather than single data rows when splitting the data. If
this is missing and the model is a mixed-effects model (fit with lme or lmer), it will be
extracted from the model (only the first if there is more than one).

permute if TRUE (default) the smallest absolute estimate between folds is compared to the average
permuted estimate in each repetition. Otherwise, the average p-value across folds is
compared to alpha in each repetition. The permutation method may be less conservative,
and takes more time to process.

alpha the value to check p against when permute is FALSE.

cores the number of cores to use in parallel. Uses foreach for parallel processing. Set to less than

2 to use base functions.

packages packages to load into each instance when multiple cores are being used. The nlme or lme4
packages are loaded automatically when model appears to be from one of them.

afa/afa.model

Description

The goal of these functions is to automatically identify reliable item and factor structures for one or more

measures.

afa is the main function which decides on items and factor structures through exploratory factor analyses

(EFA), then reports a confirmatory factor analysis (CFA).

afa.model is the part that performs the EFAs. For each iteration (iter), data is split into a number of folds

(depending on size if it is set, and/or the number of items), within each fold, the number of factors to use

is determined (by parallel analysis [default] or a CFI cutoff rule, depending on criteria), and EFAs are

run. Factors within the EFA are decided on by factor loadings (only items with a loading over cutoff are

retained, then each item's loading is used to decide its factor). Factors are compared between folds, and a

single factor is decided for each item based on where it most often lands. A count is then added for all of

the items in each factor. Once this is done for all iterations, the final factor structures are decided by

cutoff.percent; items appearing together more often than the cutoff are considered part of a final

factor.

Usage

afa(items, data, fitinds=c('srmr','rmsea','tli','cfi','chisq','df','pvalue'), ...)

afa.model(x, nfactors, samples, size, criteria='parallel', cfi.change=.01, cutoff=.35,

cutoff.percent, minvars=2, iter=100, rotation='promax', replace=TRUE,
complete=FALSE, print=TRUE)

Arguments

items A list with names as measure names, and vectors as items names.

data A data frame in which the items can be found

fitinds The results to be reported, potentially including any of 'srmr', 'rmsea', 'tli',
'cfi', 'chisq', 'df', and 'pvalue'.

... Passes additional arguments to afa.model

x A matrix-like object with items as columns

nfactors The maximum number of factors to consider; uses the number of items to decide if
missing.

samples The number of folds to use in each iteration. Decided by size if missing.

size The size of each fold. Decided by the number of rows in x if missing.

criteria How the number of factors is determined, matching either 'parallel' or 'cfi'.

cfi.change The CFI cutoff if criteria='cfi'.

cutoff The minimum factor loading size for items to be retained.

cutoff.percent The percent of iteration items must appear together to be considered a factor. Defaults
to something like chance, based on the number of factors (e.g., around .45 if there are
two factors).

Examples

#load some data
data = read.csv('https://osf.io/bq76u/?action=download')

#define items
measures = list(
 ESQ = c('EQpredict', 'EQawk', 'EQintuit', 'EQtune', 'EQmask',
 'SQmach', 'SQbuilding', 'SQtrain', 'SQroad', 'SQriver'),
 sexism = c('BSXrefined', 'BSXsupport', 'BSXcherish', 'HSXoffence',
 'HSXadvantage', 'HSXpower')
)

#process
res = afa(measures, data)

minvars The minimum number of items that for a factor to be returned. Default is 2. If you set it
to 1, single items appearing more often than the cutoff percent will be included in the
output.

iter The number of iterations. Defaults to 100. You may want to increase the number of
iterations if you see items move around between runs, but note that the number of
iterations is a fraction of the number of models being run (which is iter * folds * n
factors before cutoff)

rotation The rotation to use in the EFAs. See the factanal function for more.

replace Determines if observations (rows) are replaces when sampling folds. The default is
TRUE, which allows for more variation between resamples. Samples are always
independently drawn, so there's always a chance of repeated observations. As samples
become smaller (as determined by size), the potential effect of replacement is reduced.
If size is equals the number of rows in x, if replace = TRUE, folds become bootstrap
samples, and if replace = FALSE, folds become redundant.

complete Logical; if TRUE, EFAs are run with one through nfactors number of factors. Otherwise,
EFAs stop being run when the criteria is met.

print Logical; if FALSE, iteration counting is suppressed.

reddit

Description

Essentially a wrapper for the RedditExtractoR package; pulls comments from specified subreddits or
searches.

Usage

reddit(topics, search=NULL, sort='hot', filename='reddit.csv', write=TRUE, lim=100,
filter='\\[removed\\]', ...)

reddit.userdata(users, filename, subreddits, lim=100, type='comments')

reddit.karma(users)

reddit.lsm(data)

Arguments

topic A string or vector of strings corresponding to subreddit names (e.g., 'trees' referring to
reddit.com/r/trees/). Only the first value is used if search is specified.

search Passed to RedditExtractoR::reddit_urls as the search_terms argument. If this is specified,
if topic is specified, the first topic value will be added as the subreddit argument (which
will restrict search to that subreddit).

sort How to sort initial comments. Only applies if search is not specified. Default is 'hot', with
'new', 'rising', 'top', 'gilded', and 'ads', as options.

filename Name of the file to be saved in the current working directory. This will currently always be

a csv file.

write Logical: if FALSE, data will not be save to a file (they will just be stored as objects if
you've named your reddit call).

lim Numeric: sets the number of posts to pull per topic. The max is 100 if search is not
specified. If search is specified, lim will be used to set page_threshold (round(lim/25)).

filter Passed to grepl. A pattern used to filter posts by the content of their comments. default is
'\\[removed\\]' to filter out those comments that have been deleted.

... Passed additional arguments to RedditExtractoR::reddit_urls if search is specified.

users A vector of user names (as in reddit.com/user/username; such as those in the user
column from the reddit function). Information is never gathered twice for the same user;

reddit.usercomments simply removes duplicate user names (i.e., unique(users)),
whereas reddit.karma will return karma scores in the same order as the input, filling in
the same information for duplicate users.

subreddits A vector of subreddits to filter for; only comments within the specified subreddits are
returned. Should exactly match the subreddit_name_prefix field (e.g., 'r/Anxiety' for
https://www.reddit.com/r/Anxiety/), including 'r/' before each subreddit name, though
this will be added if missing.

type Type of user data to download; either 'comments' or 'submissions' (posts).

data The data frame returned from a reddit call (e.g., comments = reddit('trees');
reddit.lsm(comments))

Examples

#these will all save a file called 'reddit.csv' to the current working directory.
#pulls from a single, depression related subreddit:
reddit('depression')

#pull from a few subreddits, also saving the data as an object ('comments'):
topics = c('trees', 'Meditation')
comments = reddit(topics)

#pull comments from a search
reddit(search = 'politics')

#calculate language style matching between each comment and the comment it's replying to
#within the first thread of the trees subreddit
thread_lsm = reddit.lsm(comments[comments$title==comments$title[1],])

#download the 5 most recent comments from 10 users who commented in the trees subreddit
user_comments = reddit.usercomments(comments$user[1:5], lim=5)

alz.posts

Description

Scrapes forum posts from alzconnected.org.
Topics refers to original threads created by users within each forum, and posts refers to replies within
those threads.

Usage

alz.forums(source=c('discussion','archive'))

alz.topics(forums, topic_pages=1, sort=NULL, ...)

alz.posts(topics, su=replies!=0, post_pages=1, ..., verbose=TRUE)

Arguments

Examples

#If no arguments are included, the first page of replies for each topic in the first
#page of topics in each forum will be returned.
posts = alz.posts()

#Could include all posts from all topics, but this would take several hours:
posts = alz.posts(topic_pages=Inf, post_pages=Inf)

#The same thing can be done separately
forums = alz.forums()
topics = alz.topics(forums)
posts = alz.posts(topics)

#These can be subset; e.g., this would only read forums with over 1000 posts:
topics = alz.topics(forums[forums$topics > 1000,])

source Where to pull from; 'discussion', 'archive', or a vector with both.

forums The output from an alz.forums call, or a vector of either forum names (partially matched)
or IDs (those in the url for each forum).

topic_pages The number of pages of topics to read within each forum. Default is 1.

sort How topics should be sorted. Default is to sort by time (most recent first). 'time' or '-'
will sort by time in descending order (oldest topics first). Other options include 'title'
(alphabetically), 'starter' (original poster), and 'views' (most viewed first).

topics The output from an alz.topics call, or a vector of either forum names or IDs (passed to
alz.topics).

su A filter for topics, based on the alz.topics data frame. Default is to exclude posts with no
replies (replies!=0). Can filter based on any of the other alz.topics columns
(colnames(alz.topics())).

post_pages The number of pages of posts to read from each topic (in canonical order). Default is 1.

... Passes arguments between functions. alz.posts will call alz.topics if topics is not a

data.frame or is missing, which will call alz.forums. alz.topics arguments included in
alz.posts are only applied if topics is a vector or is missing.

verbose Logical; if FALSE, the thread count will no longer be displayed as they are being read.

https://www.alzconnected.org/

scripts

Description

Scrapes movie scripts from imsdb.com.

Usage

scripts(genre, range=NULL, namesOnly=FALSE, dir=NULL, redownload=FALSE, pdf.dpi=400)

Arguments

Examples

#this will save all of the scripts included in the genre "family"
#to a folder called "family scripts" in the current working directory.
scripts('family')

#this will return a vector of script names.
movieTitles = scripts('drama', namesOnly=TRUE)

#then save a specified set of those scripts
scripts(movieTitles[30:40])

genre A string: either the name of a script (as it appears in the url, e.g., '12-Monkeys' from
http://www.imsdb.com/scripts/12-Monkeys.html), a vector of such names, or the name of a
genre, at least partially matching one of the accepted genres: 'action', 'adventure',
'all', 'animation', 'comedy', 'crime', 'drama', 'family', 'fantasy', 'film-
noir', 'horror', 'musical', 'mystery', 'romance', 'sci-fi', 'short',
'thriller', 'war', or 'western'.

range The scripts you actually want to download, based on the genre's list (e.g., range=1:10 for
the first 10 scripts returned).

namesOnly Logical: if TRUE, returns the list of script names without downloading them.

dir Path to the folder in which to save downloaded scripts. By default, a folder in the current
working directory will be created for each genre (e.g., "drama scripts", or "listed scripts"
when names are entered instead of genres).

redownload Logical: if TRUE, previously downloaded scripts will be overwritten. Otherwise (by default),
scripts with associated files found in the output directory will be skipped.

pdf.dpi Resolution of the .png images saved by pdftools::pdf_convert, to be processed by
tesseract::ocr (which is only done when a plain text file is not found or is too short, and
pdftools::pdf_text fails or returns empty).

subtitles

Description

Downloads subtitle (.srt) files from opensubtitles.org based on IMDB ID or movie title.

Usage

subtitles(ids, zip = 'subtitles_zip', out = 'subtitles', names = ids, rate_limit = 1,
user_agent = 'TemporaryUserAgent', langid = 'eng', redownload = FALSE, unzip =
TRUE, rename = TRUE, cleanup = TRUE)

subtitles_clean(file, out = 'subtitles_clean', save = FALSE, overwrite = FALSE)

Arguments

Examples

creates a 'subtitles_zip' and 'subtitles' folder in your current working directory
subs = subtitles(c('north sea texas', 'one & two', 'the dirties'))

creates a 'subtitles_clean' folder containing the cleaned subtitle files
for(file in list.files('subtitles', full.names = TRUE))
 subtitles_clean(file, save = TRUE)

ids a vector of IMDB IDs (the number at the end of an IMDB URL, e.g.,
imdb.com/title/tt0105665), or movie titles to be searched for.

zip path to a folder in which to save the download zip files. If the folder does not exist, it will be
created.

out path to a folder in which to save the extracted .srt (or cleaned .txt) files. If the folder does

not exist, it will be created.

names a vector corresponding to the ids vector, used to name the zip and extracted .srt files. This
will default to the ids vector.

rate_limit average number of seconds to wait between requests. Opensubtitles' limit is 40 requests
every 10 seconds.

user_agent user agent string used to identify yourself to opensubtitles. These can be requested from
opensubtitles: trac.opensubtitles.org/projects/opensubtitles/wiki/DevReadFirst.

langid language code (ISO 939-2). Defaults to 'eng'.

redownload if TRUE, downloads and overwrite zip files it finds in the zip directory. By default, these will
be skipped.

unzip if FALSE, .srt files will not be extracted from the downloaded zip files.

rename if FALSE, the original names of the .srt files will be preserved. Otherwise, these are renamed
to the corresponding name entry.

cleanup if FALSE, downloaded zip files that could not be unzipped will be retained. Otherwise, these
will be removed.

file path to a .srt file.

save if TRUE, a new .txt files will be written. Otherwise, the cleaned text will just be invisibly
returned.

overwrite if TRUE, a .txt file it finds to already exist will be overwritten.

https://www.opensubtitles.org/
http://trac.opensubtitles.org/projects/opensubtitles/wiki/DevReadFirst
https://www.loc.gov/standards/iso639-2/php/code_list.php

movie_reviews

Description

Scrapes user reviews from rottentomatoes.com.

Usage

movie_reviews(titles, pages, write=TRUE, path=getwd(), filename)

Arguments

Examples

save reviews from up to 10 pages of reviews for two movies:
movie_reviews(c('syriana','marshall'),10)

titles A movie title, or vector of titles as they appear in the rottentomatoes url (e.g., 'marshal'
from 'https://www.rottentomatoes.com/m/marshall/')

pages The number of pages to pull from. There are up to 20 reviews per page.

write Logical: if FALSE, the reviews are not written to a file.

path Path to where the file should be saved. Default is the current working directory.

filename What the file should be called, excluding the extension, as it is always .csv.

movie_ratings_links

Description

Search for imdb and rottentomatoes links based on movie titles. Then retrieve ratings and metadata from
each site.

Usage

movie_ratings_links(titles, add = '', retry = TRUE, search_source =
'https://search.yahoo.com/search?q=')

rottentomatoes_meta(urls)

imdb_meta(urls)

Arguments

Examples

search for ratings links
sites = movie_ratings_links(c('north sea texas', 'one & two', 'the dirties'))

get metadata from imdb
imdb = imdb_meta(sites$links$imdb)

get metadata from rottentomatoes
rottentomatoes = rottentomatoes_meta(sites$links$rottentomatoes)

titles a character vector of movie titles.

add discriminating information to add to the query string, such as the year or director of

each title; a character or vector of characters the same length as titles.

retry logical; if FALSE, failed searches will not be retried.

search_source URL to use for the search; each entry in titles is appended to this, with consecutive
spaces, hyphens, and underscores replaced with '+', and '+movie+review' added. Yahoo
is default because their rate limit seems more generous, but you could use Google, for
example, with search_source = 'https://www.google.com/search?q='.

urls a list of URLs for the appropriate site. This could be from the output of

movie_ratings_links; see examples.

https://www.imdb.com/
https://www.rottentomatoes.com/

fractal

Description

Make fractal images, and optionally save them as animated gifs.

Usage

fractal(proc=z^2+c, e=25, size=min(dev.size(units='px')), rr=c(-1.8,0.6), ir=c(-1.2,1.2),
col=grey(0:255/270), save=FALSE, name='fractal', delay=30, full=FALSE, ...)

Arguments

proc The recursive process which evolves the complex. c is the initial complex, and z is the most
recent state of the complex. z^2+c is the default, which produces a Mandelbrot set.

e

Number of times the complex should be evolved. Also corresponds to the number of frames in
a gif, if a gif is saved. Default is 25.

size Size of the images in pixels. Should be a single value, which will be both the height and width
of the image. Takes the smallest dimension of the plot window by default.

rr Range of the real part of the complex: default is c(-1.8, .6).

ir Range of the imaginary part of the complex: default is c(-1.2, 1.2).

col Colors to use in the image. By default, uses a set of 256 shades of grey. Could also use

something like cm.colors(256) or rainbow(256) for colorful pictures.

save Logical: if TRUE, a gif will be saved in the current working directory.

name Name of the image file, if one is to be saved. 'fractal' by default. A '.gif' is always appended.

delay The amount of time each frame is displayed in a gif in hundredths of a second. default is 30.

full Logical: if TRUE, each evolution step is added to an array. If save is TRUE, or name or delay is
specified, this will be set to TRUE as it is necessary to create gifs. The total memory
requirement is a function of size and e; if full is FALSE, each evolution overwrites the last,
so size can be much larger, but if full is TRUE, size and e will limit one another, and you are
more likely to see memory allocation errors.

... Passes additional arguments to write.gif from the caTools package.

Examples

#standard Mandelbrot set
fractal()

#cosine of the tangent of z squared plus the sine of c squared,
#and slightly more evolved?
fractal(cos(tan(z^2) + sin(c^2)), e=30)

montyhall

Description

Simulation of the Monty Hall problem, with tweakable elements.

Usage

montyhall(doors=3, choice=sample(options,1), judge='random', nopen=1, iter=10000)

Arguments

Examples

#Standard example
montyhall()

#output:

#Doors: 3
#Doors opened: 1
#Initial Choice: random
#Judge: randomly chooses which available door to open
#Iterations: 10000
win %
#always stay 0.3341
#always switch 0.6659
#randomly choose after door is opened 0.4945
#choose the left-most available door 0.5077
#choose the right-most available door 0.4923

#setup with biased judge and consistent initial choices
montyhall(choice=2, judge='left')

#output:

#Doors: 3
#Doors opened: 1
#Initial Choice: 2
#Judge: has a bias toward the left-most available door
#Iterations: 10000
win %
#always stay 0.3347
#always switch 0.6653
#randomly choose after door is opened 0.5024
#choose the left-most available door 0.6546
#choose the right-most available door 0.3454

doors Number of doors to choose from. Default and minimum is 3.

choice Initial door you choose. Default is random.

judge How the judge chooses which door to open, excluding the door you chose, and the wining
door. Defaults to random. Can set the judge to be biased toward the left- or right-most
available doors (e.g., judge='left').

nopen Number of doors the judge opens. Default is 1. Maximum is doors-2.

iter Number of times to run the simulation. Default is 10000.

https://en.wikipedia.org/wiki/Monty_Hall_problem

schelling

Description

An implementation of Schelling's segregation model with adjustable parameters.

Usage

schelling(n = 138, dims = c(13, 16), probs = c(o = .5, '#' = .5), range = 1, ideals = .5,
tols = .1, dist = Inf, concern = 'own', ..., distweight = .1, idealtype =
'min', shuffle = TRUE, maxepochs = 99, moveto = 'nearest', record = FALSE, plot
= TRUE, mfrow = c(1, 2), colors = NULL, gif = FALSE, delay = 20, magnify = 60)

Arguments

n determines the number of filled cells. If less than 1, treated as a percent of total cells,
otherwise as a count.

dims a vector setting the number of rows and columns of the area.

probs sets the probability of each group being samples (the number of agents in each class). Can
range between 0 and 1. If all entries are named, these will be taken as the class values, and
as the template for ideals, tols, range, dist, distweight, and idealtype; any of
these can alternatively specify classes – the longest named vector is taken as the template,
with shorter vectors being recycled to match.

range sets the range each group considers their neighborhood; 1 means all surrounding cells.

ideals sets the ideal number of concern neighbors for each group. If less than 1, treated as a
percent of occupied cells within range, otherwise treated as a count.

tols when idealtype is 'specific', this sets how sensitive the agent will be – how off from their
ideal can they be without feeling the need to move.

dist sets how far each agent can move. Inf will allow agents to move anywhere in the space.

concern specifies which class each group is concerned with. 'own' sets concern to the group's name.

... passes additional arguments to plot if plot is TRUE. The only special argument is type, which

determines whether characters ('ch') or colors ('co') are plotted.

distweight sets how much each group considers distance when moving; 0 will allow agents to choose
the best option within their dist, otherwise farther cells are penalized.

idealtype determines how the set ideals are treated for each group. If 'min', agents will move if there
are fewer than their ideal number/percent of concern neighbors. If 'max', agents will move
if there are ideal or more concern neighbors (being uncomfortable with too many concern
neighbors). If 'specific', agents will move if the number or percent of concern neighbors
is more than tols different from their ideal.

shuffle logical; if FALSE, agents are checked and moved in a random order each epoch, otherwise
they are checked and moved from the top left corner, proceeding down each column.

maxepochs sets the maximum number of times all agents can be checked. Early stopping occurs if the

space is identical to its previous state (no agents were moved in the last epoch).

moveto sets the agent's moving strategy; either 'nearest' (default), which looks for the closes cell
that meets their requirements, or 'best', which looks for the best of all options within their
dist.

record logical; if TRUE, the space after each epoch is returned. Otherwise only the first and final
space is returned.

plot logical; if TRUE, the first and final state is plotted.

https://www.uzh.ch/cmsssl/suz/dam/jcr:00000000-68cb-72db-ffff-ffffff8071db/04.02_schelling_71.pdf

Examples

standard example
schelling()

3, uneven groups
schelling(probs = c('#' = .2, '^' = .6, '~' = .2))

everyone only cares about os
schelling(concern = 'o')

mfrow,
colors

arguments passed to par and plot.

gif, delay,
magnify

If any of these are specified, gif will be set to TRUE (a gif will be saved, assuming the
caTools package is installed). delay is the amount of time each frame is shown in
hundredths of a second. magnify enlarges the matrix (each cell is a pixel without
magnification, and is repeated magnify times).

	Functions:
	Analysis
	Data
	Curios

	parapower
	Description
	Usage
	Arguments
	Examples

	bspmed
	Description
	Usage
	Arguments
	Examples

	medfig
	Description
	Usage
	Arguments
	Examples

	repcv
	Description
	Usage
	Arguments
	Examples

	afa/afa.model
	Description
	Usage
	Arguments
	Examples

	reddit
	Description
	Usage
	Arguments
	Examples

	alz.posts
	Description
	Usage
	Arguments
	Examples

	scripts
	Description
	Usage
	Arguments
	Examples

	subtitles
	Description
	Usage
	Arguments
	Examples

	movie_reviews
	Description
	Usage
	Arguments
	Examples

	movie_ratings_links
	Description
	Usage
	Arguments
	Examples

	fractal
	Description
	Usage
	Arguments
	Examples

	montyhall
	Description
	Usage
	Arguments
	Examples

	schelling
	Description
	Usage
	Arguments
	Examples

