# Can Stroboscopic Training Improve Time-to-Collision Judgments of Approaching Objects? Adam M. Braly & Patricia R. DeLucia, Texas Tech University

# Introduction

- To move safely through the environment people must make effective judgments about potential collisions.
- Once a potential collision is detected, it is important to estimate the time remaining until the collision would occur, known as time-tocollision (TTC).
- Accurate TTC information is reliably indicated by tau, a property of the optic array, when certain assumptions are met. Tau is the inverse of an object's relative rate of optical expansion.
- However, less reliable heuristic information such as relative optical size and expansion rate, and image velocity, can influence TTC judgments even when tau is available (DeLucia, 2013).
- It is important to determine the conditions under which training can improve TTC judgments of approaching objects.

# Experiment

#### Purpose

- Prior studies have shown that training with stroboscopic (intermittent) viewing improved performance on visual tasks, such as motion coherence thresholds, and performance on coincident anticipation tasks (Appelbaum, Schroeder, Cain, & Mitroff, 2011; Smith & Mitroff, 2012).
- We examined whether training with stroboscopic viewing can improve time-to-collision (TTC) judgments, which have importance in real-world tasks such as driving.

#### Displays

- A computer-simulated textured object approached the observer directly and disappeared. The object's size was either small or large. The distance when the object disappeared was either near or far.
- The TTC of the object when it disappeared was 0.75 s, 1.5 s, or 3.0 s.

#### Procedure

- Participants (N = 60) pressed a button when they thought the object would hit them.
- TTC judgments were calculated as the time between the object's disappearance and the participant's response.
- All participants completed four sessions: pretest, training, immediate posttest, and ten-minute posttest.
- Training consisted of stroboscopic (intermittent) viewing with the use of PLATO Visual Occlusion Spectacles (Milgram, 1987).









Intervention

Stroboscopic vision of object

Continuous vision of object

Filler task (no object)

- Actual TTC).
- continuous vision or filler task groups.
- $3.47, p = .034, \eta_p^2 = .057.$

- However, training may improve TTC judgments of approaching objects when TTC is 3.0 s.
- These results have important implications for traffic safety and for driver training programs.
- Frontiers in Psychology, 2, 276.
- 456.
- 344.



|    | Training groups                                                |
|----|----------------------------------------------------------------|
| ct | The goggles strobed at a frequency of 4 Hz.                    |
| -  | The goggles remained open for the entire approach.             |
|    | The goggles remained open while completing a crossword puzzle. |
|    |                                                                |

### Results

• Constant error (CE) on each trial was calculated as (estimated TTC –

• The stroboscopic training group did not significantly differ from the

When TTC was 3.0 s, CE increased (performance degraded) across sessions for *small* objects (p < .001), but CE decreased (performance improved) across sessions for *large* objects (p < .001), F(2, 114) =

For small objects, performance was better when TTC was 3.0 s than 0.75 s or 1.5 s for the stroboscopic condition (p < .001) and the continuous condition (p < .001). This was not the case for the filler condition (p = .163), F(2,114) = 3.76, p = 0.007,  $\eta_p^2 = 0.117$ .

# Conclusions

Generally, accuracy of TTC estimates decreased across sessions.

Training programs designed to improve driver's abilities to judge longer TTCs may help to reduce accidents due to perceptual errors

## References

Appelbaum, L. G., Schroeder, J. E., Cain, M. S., & Mitroff, S. R. (2011). Improved visual cognition through stroboscopic training.

DeLucia, P. R. (2013). Effects of size on collision perception and implications for perceptual theory and transportation safety. *Current* Directions In Psychological Science, 22, 199-204.

Milgram, P. (1987). A spectacle-mounted liquid-crystal tachistoscope. Behaviour Research Methods, Instruments and Computers, 19, 449-

Smith, T. Q., & Mitroff, S. R. (2012). Stroboscopic training enhances anticipatory timing. International Journal of Exercise Science, 5,