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Discussion
•Overall, SBA (but not FBA) improves target identification

•But, individual differences among attention strategies

•Broadly, evidence accumulated based on “preferred” cue, 
while non-decision time impacted by “nonpreferred” cue  
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Introduction   

•Space-based attention (SBA) enhances information at 
relevant location(s)
•Feature-based attention (FBA) enhances relevant low-level 
feature representations
•Both selection mechanisms modulate similar sensory 
populations
•How their unique influences interact to facilitate behavior 
remains unclear
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•Drift Diffusion Model
• v: rate of evidence 

accumulation of a given 
response

• a: criterion leading to a 
conservative response

• T: portion of RT unrelated 
to evidence accumulation

Analysis
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on the real line; Ý � 0 and Ý � 0 lead to evidence accumu-
lation consistent with a “word” or a “nonword” response, 
respectively. The case of Ý � 0 corresponds to a process 
that, at each point in time, is equally likely to move upward 
as it is to move downward. Drift rate is assumed to vary over 
trials according to Ý ÂÅN(v, h). Because drift rate quantifies 
the deterministic component of the noisy information ac-
cumulation process, it can be interpreted as an index for the 
signal-to-noise ratio of the information processing system. 
Therefore, drift rate is an excellent candidate for a mea-
sure that combines respond speed and response accuracy to 
quantify subject ability or task difficulty.

The stochastic, nonsystematic component of the infor-
mation accumulation process on each trial is quantified 
by s. The factor s2 dt is the variance of the change in the 
accumulated information for a small time interval dt (Cox 
& Miller, 1970, p. 208). The s parameter is a scaling pa-
rameter, which means that if s doubles, other parameters 
in the model can be doubled to obtain exactly the same 
result. Thus, the choice of a specific value for s � 0 is 
arbitrary; in practice, s is usually set to 0.1, and we ad-
here to this convention throughout the article. Two further 
important parameters are the boundary separation a and 
the starting point z. The boundary separation parameter 
a is especially important here, because large values of a 
indicate the presence of a conservative response criterion: 
When a is large, the system requires more discriminative 
information before deciding on one or the other response 
alternative. A conservative response criterion results in 
long response times, but also in highly accurate perfor-
mance, since with large a it is unlikely that the incorrect 
boundary will be reached by chance fluctuations. There-
fore, in the diffusion model, one of the main mechanisms 
by which speed–accuracy trade-off phenomena arise is 
through changes in a.

The a priori bias against one or the other response alter-
native is given by z. As with drift rate, the exact location of 
z may fluctuate from trial to trial. This fluctuation is quanti-
fied by a uniform distribution with range sz. As shown later, 
in most applications z is estimated to be about equidistant 
from both response boundaries (i.e., z .�a/2). Finally, the 
diffusion model captures the nondecision component of 
RT by a parameter Ter that varies over trials according to a 
uniform distribution with range st. As is often assumed in 
RT modeling, the total RT is a sum of the nondecision and 
decision components of processing (Luce, 1986):

 RT � DT � Ter, (1)

where DT denotes decision time.
In sum, the Ratcliff diffusion model estimates the fol-

lowing seven parameters:1

1. Mean drift rate (v).
2. Across-trials variability in drift rate (h).
3. Boundary separation (a).
4. Mean starting point (z).
5. Across-trials range in starting point (sz).
6. Mean of the nondecision component of processing

(Ter).
7. Across-trials range in the nondecision component of 

  processing (st).

In theory, these seven parameters could be estimated sepa-
rately for each experimental condition. In practice, how-
ever, only parameters that are believed to be affected by 
the experimental manipulation are free to vary between 
conditions.

In order to provide some perspective regarding the 
ranges of parameter values that may be expected when 
fitting the Ratcliff diffusion model to data, Figure 2 pro-
vides a visual overview of the best-fitting parameter val-
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Figure 1. Diffusion model account of evidence accumulation in the lexical decision task 
(see Ratcliff et al., 2004).

“Left” boundary

“Right” boundary

     
     

     
     

     
     

N = 13

N = 10

N = 3

mailto:Guangsheng.liang@ttu.edu
mailto:saplab.ttu@gmail.com

