
  

SUPPORTING DATA CONSISTENCY IN CONCURRENT 
PROCESS EXECUTION WITH ASSURANCE POINTS 

AND INVARIANTS  
by 

Andrew Courter, B.S. 

A Thesis in 

COMPUTER SCIENCE 
 

Submitted to the Graduate Faculty 
of Texas Tech University in 

Partial Fulfillment of 
the Requirements for 

the Degree of 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

Committee Members: 

Dr. Susan Urban 

Dr. Michael Shin 

Dr. Susan Mengel 

 

December 2010 

 
 
 
 
 
 
 
 
 

 



  

 

 

 

 

 

 

 

 

 

 

 

Copyright 2010 Andrew Courter 



Texas Tech University, Andrew Courter, December 2010 

 i  

ACKNOWLEDGEMENTS 

I would like to thank my academic advisor, Dr. Susan Urban for her guidance 

and continued support throughout this research.  

I would also like to thank Le Gao for all of his support. Thanks also to my 

committee members, Dr. Michael Shin, and Dr. Susan Mengel, for taking the time to 

review my research.  Thanks also go to Mary Shuman from the University of North 

Carolina, Charolette and a participant in the Texas Tech NSF Research Experience for 

Undergraduates Site Program for her supporting work with implementation of the 

Invariant Evaluation Web Service. 

This work is dedicated to my parents and everyone who has encouraged me to 

excel. 

*This research has been supported by NSF Grant No. CCF-0820152. Any 

opinions, findings, and conclusions or recommendations expressed in this material are 

those of the author(s) and do not necessarily reflect the views of the National Science 

Foundation 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 ii  

Table of Contents 
ACKNOWLEDGEMENTS................................................................................................... I 
 
ABSTRACT.....................................................................................................................IV 
 
LIST OF FIGURES ........................................................................................................... V 
 
I. INTRODUCTION........................................................................................................... 1 
 
II. RELATED WORK....................................................................................................... 5 

2.1 Transactional Issues for Web Services ................................................................ 5 
2.2 Transactional Workflows..................................................................................... 6 
2.3 Promises ............................................................................................................... 8 
2.4 Reservation-Based Techniques .......................................................................... 10 
2.5 Transactional Attitudes ...................................................................................... 11 
2.6 Tentative Holding .............................................................................................. 12 
2.7 Monitoring Extensions to BPEL ........................................................................ 13 
2.8 Aspect-Oriented Workflows .............................................................................. 14 
2.9 Summary ............................................................................................................ 16 

 
III. BACKGROUND RESEARCH FOR THE USE OF INVARIANTS.................................... 18 

3.1 Delta-Enabled Grid Services.............................................................................. 18 
3.2 Service Composition and Recovery with Assurance Points .............................. 20 

 
IV. OVERVIEW OF THE INVARIANT MONITORING SYSTEM ....................................... 23 

4.1 The Invariant Monitoring System ...................................................................... 23 
4.2 Invariant Specification ....................................................................................... 25 
4.3 Hotel Room Monitoring Example...................................................................... 26 
4.4 Bank Loan Application Monitoring Example.................................................... 28 
4.5 Summary ............................................................................................................ 30 

 
V. A PROTOTYPE OF THE INVARIANT MONITORING SYSTEM ................................... 31 

5.1 Monitored Objects.............................................................................................. 31 
5.2 XML Representation of Invariants .................................................................... 33 
5.3 Registration of Invariants................................................................................... 37 
5.4 Invariant Evaluation Web Service ..................................................................... 38 
5.5 Extensions to DEGS........................................................................................... 40 
5.6 The Delta Analysis Process................................................................................ 40 

5.6.1 Invariant Storage Container ................................................................................... 41 
5.6.2 Overview of the Delta Process Filtering ................................................................. 45 
5.6.3 Delta Filtering Algorithms....................................................................................... 47 

 
VI. TESTING AND EVALUATION OF THE INVARIANT MONITORING SYSTEM............. 57 

6.1 Testing Environment Setup................................................................................ 57 



Texas Tech University, Andrew Courter, December 2010 

 iii  

6.2 Test Cases .......................................................................................................... 58 
6.3 Performance of Invariant Evaluation ................................................................. 58 

 
VII. SUMMARY AND FUTURE RESEARCH.................................................................... 62 
 
REFERENCES........................................................................................................... 64 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 iv  

ABSTRACT 

 This research has developed the concept of invariants for monitoring data in an 

environment that allows concurrent data accessibility with relaxed isolation. The 

invariant approach is an extension of the assurance point concept, where an assurance 

point is a logical and physical checkpoint that is used to store critical data values, to 

express a post-condition for completed service, and to express a pre-condition for the 

next service to execute. Invariants provide a stronger way of monitoring constraints 

and guaranteeing that a condition holds for a specific duration of execution as defined 

by starting and ending assurance points, using the change notification capabilities of 

Delta-Enabled Grid Services (DEGS). This thesis outlines the specification of 

invariants as well as the invariant monitoring system for activating invariants, 

evaluating and re-evaluating invariant conditions, and deactivating invariants. 

Algorithms are also presented for the delta analysis agent of the system, which is 

responsible for filtering data changes from DEGS against the monitored objects of the 

active invariants. The system is supported by an invariant evaluation web service that 

uses materialized views for more efficient re-evaluation of invariant conditions. This 

research includes a performance analysis of the invariant evaluation Web Service, 

illustrating the benefits of using materialized views. The strength of the invariant 

technique is that it provides a way to monitor data consistency in an environment 

where the coordinated locking of data items across multiple service executions is not 

possible, thus providing better support for reliability and maintenance of user-defined 

correctness conditions among concurrent processes. 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 v  

LIST OF FIGURES 

Figure 1. Delta-Enabled Grid Service (Blake, 2005)................................................... 20 

Figure 2. Basic Use of Assurance Points and Integration Rules 
(Shrestha, 2010) ................................................................................... 22 

Figure 3. Invariant Monitoring System........................................................................ 25 

Figure 4. Integration Rule Structure (Shrestha, 2010) ................................................. 26 

Figure 5. Structure of an Invariant ............................................................................... 26 

Figure 6. Hotel Room Monitoring ............................................................................... 28 

Figure 7. Loan Amount Monitoring............................................................................. 29 

Figure 8. XML Representation of Invariant Rules ...................................................... 34 

Figure 9. Process Metadata and Runtime Information ................................................ 36 

Figure 10. Invariant Table Relationship ...................................................................... 38 

Figure 11. Materialized View Example ....................................................................... 39 

Figure 12.  Evaluation Web Service Functionality ...................................................... 40 

Figure 13. New Delta Representation .......................................................................... 40 

Figure 14. Delta Analysis Agent Storage Structure ..................................................... 42 

Figure 15. UpdateMonitoring Algorithm..................................................................... 43 

Figure 16. RemoveMonitoring Algorithm ................................................................... 45 

Figure 17. Checking Insert or Delete Delta Algorithm................................................ 51 

Figure 18. Checking Update Delta Algorithm ............................................................. 55 

Figure 19. UpdateInvTupleCount Algorithm............................................................... 56 

Figure 20. Example Table Structure ............................................................................ 57 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 
 

 1   

CHAPTER I 

INTRODUCTION 

 Web Services and service-oriented computing have challenged the 

development of distributed applications over the Internet in the past several years. In 

service-oriented computing, business processes are composed by executing distributed 

Web Services (Martens, 2005), where services run collaboratively to achieve global 

goals. Although each Web Service itself is autonomous and self-contained, composing 

business processes and achieving a correct global solution is still a difficult and 

sometimes error-prone task, especially in the context of concurrently executing 

processes that access shared data. 

 In traditional distributed transaction systems, the two-phase commit (2PC) 

protocol (Elmasri & Navathe, 2010) has been used to support the ACID properties of 

atomicity, consistency, isolation, and durability. In service-oriented computing, 

however, it is generally not feasible to support ACID properties by coordinating the 

commit time of all services that are part of a global process because of the loosely-

coupled, autonomous, and heterogeneous nature of services.  Moreover, in traditional 

transaction processing, the concept of serializability is supported by using locking 

protocols (Elmasri & Navathe, 2010). In service-oriented computing, however, it is 

not practical to require constituent services to lock data for the entire duration of a 

global process. This is especially true for long-running processes, causing processes to 

execute using a relaxed form of isolation in between service executions. As a result, 

the correctness of a process might be affected by another concurrently running process 

if both processes are accessing shared data. Insuring the consistency of data in a 

service-oriented environment with relaxed isolation is a challenging task. 

 The solution to this problem is not simple and has been the focus of the 

Decentralized Data Dependency Analysis for Concurrent Process Execution (D3) 

Project.  The concept of Delta-Enabled Grid Services (DEGS) was developed for 

monitoring data changes made by a service and using this information about data 



Texas Tech University, Andrew Courter, December 2010 

 2  

changes to analyze data dependencies among concurrent processes (S. D. Urban, Xiao, 

Y., Blake, L., & Dietrich, S. W., 2009) (Blake, 2005).  Building upon this concept, a 

decentralized system to monitor these changes was made in (Liu, 2009).  However, 

these elements of the overall research focus on recovering processes instead of helping 

to detect failures inside the processes before they cause problems.   

 The research topic discussed in this thesis builds on the concepts defined in 

(Shrestha, 2010), where the concept of an assurance point (AP) is defined.  An AP is 

used to support greater flexibility in the recovery process and to also provide a way of 

specifying user-defined correctness conditions in the form of pre- and post-conditions. 

As defined in (Shrestha, 2010), an AP is a logical checkpoint created in between the 

service calls of a process, defining a named point that can be used to store critical data 

values, to express a post-condition for completed service, and to express a pre-

condition for the next service to execute. Rules can be used to define how to react to 

failed conditions, and recovery actions can refer to named assurance points for 

forward recovery actions. APs together with conditions and rules can improve 

constraint checking and recovery procedures in an environment where ACID 

properties cannot be guaranteed. In some applications, however, stronger condition 

checking techniques may be needed to ensure data consistency. 

 This thesis presents an investigation of an extension to APs known as 

Invariants. An invariant is a condition that must be true during process execution 

between two different APs. An invariant is designed for use in processes where 1) 

isolation of data changes in between service executions cannot be guaranteed (i.e., 

critical data items cannot be locked across multiple service executions), and 2) it is 

critical to monitor constraints for the data items that cannot be locked. The data 

monitoring functionality provided by the work with DEGS makes it possible to 

declare and monitor invariant conditions. 

 Whereas the work with APs defined in (Shrestha, 2010) allows data 

consistency conditions to be checked at specific points in the execution, invariants 

provide a stronger way of monitoring constraints and guaranteeing that a condition 



Texas Tech University, Andrew Courter, December 2010 

 3  

holds for a specific duration of execution without the use of locking. Using the 

invariant technique, a process declares an invariant condition when it reaches a 

specific AP in the process execution, also declaring an ending AP for monitoring of 

the invariant condition. When a concurrent process modifies a data item of interest in 

an invariant condition, the process that activated the invariant is notified by a 

monitoring system built on top of Delta-Enabled Grid Services. If the invariant 

condition is violated during the specified execution period, the process can invoke 

recovery procedures as defined in (Shrestha, 2010).  The strength of the invariant 

technique is that it provides a way to monitor data consistency in an environment 

where the coordinated locking of data items across multiple service executions is not 

possible, thus providing better support for reliability and maintenance of user-defined 

correctness conditions among concurrent processes.  

 To investigate the invariant concept, this research involved the design of an 

invariant monitoring system. The system includes an Invariant Agent and a Delta 

Analysis Agent.  The Invariant Agent begins the monitoring process by registering the 

invariant condition and is a key component in the re-evaluation of the condition.  The 

Delta Analysis Agent filters through delta notifications from the DEGS system and 

determines if and when an invariant condition must be re-evaluated. The work is 

supported by a Web Service for evaluating invariants. Since an invariant may need to 

be evaluated several times between Assurance Points, the Web Service was designed 

to make use of materialized views for more efficient re-evaluation of invariant 

conditions. This research includes a performance analysis of the invariant evaluation 

Web Service, illustrating the benefits of using materialized views. 

 In the remainder of this thesis, Chapter 2 covers related work on transactional 

issues for Web Services, and other related research using various methods to avoid 

strict data locking in distributed and concurrent environments.  Chapter 3 then presents 

background information about research on service composition and recovery with 

Assurance Points.  Chapter 4 introduces the Invariant Monitoring System and also 

presents motivational examples as well as the overall structure of the system.  Chapter 



Texas Tech University, Andrew Courter, December 2010 

 4  

5 elaborates on the functionality of the Invariant Monitoring System and describes a 

prototype of the system.  Chapter 6 presents an evaluation of the Invariant Evaluation 

Web Service, followed by a summary of the work and future research in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 5  

CHAPTER II 

RELATED WORK 

Traditional transactions use the properties of atomicity, consistency, isolation 

and durability (ACID), together with serializability to ensure data consistency among 

concurrent transactions.  ACID properties and serializabitilty, however, are often 

difficult to achieve in distributed processes found using service composition. This 

section outlines the challenges for using transactions in a service-oriented environment 

and provides an overview of solutions that address extended and relaxed transaction 

models for use with Web Services. 

2.1 Transactional Issues for Web Services 

Due to the nature of Web Services, traditional ACID properties are difficult to 

enforce.  These properties do not work well because Web Services are loosely-

coupled, meaning that they have few interdependencies.  Longer durations of 

transactions, complex interactions between multiple components, and multiple 

possibilities of failure are all usual actions of Web Services (Papazoglou, 2003). A 

single transaction manager can have difficulty coordinating transactions between 

multiple services because of different guidelines between separate businesses.  Finding 

where errors occur or where certain transactions fail can be challenging due to system 

complexity.   

In distributed transaction processing, two-phase commit is often used to 

support atomicity.  Two-phase commit is a type of atomic commitment protocol in 

which everything or nothing is committed (Elmasri & Navathe, 2010).  The two 

phases of the algorithm are the commit-request phase and the commit phase. In the 

commit-request phase, the coordinator process attempts to prepare all the transaction's 

participating processes (participants) to take the necessary steps for either committing 

or aborting the transaction.  Then in the commit phase, each participant votes to either 

commit or abort.  The coordinator decides whether to commit (only if all vote commit) 



Texas Tech University, Andrew Courter, December 2010 

 6  

or abort the transaction, and notifies the participants of the result. The participants then 

follow with the needed actions (commit or abort) with their transactional resources 

and their respective portions in the transaction's output.  Dealing with the atomicity 

requirement would require having all Web Services of a process either commit fully or 

not at all.  The autonomous nature of Web Services makes this difficult to achieve.  

Isolation is also difficult to achieve especially if data must be locked across several 

Web Service invocations.  As a result, concurrent processes cannot be completely 

isolated from each other, potentially causing problems with data consistency. Instead 

of conforming to these ACID properties, the research presented in this thesis focuses 

on extending the relaxation of ACID properties to create an optimistic execution 

environment. 

2.2 Transactional Workflows 

Past research with transactional workflows first investigated the need to relax 

ACID properties for long running workflow activities (Worah & Sheth, 1997).  The 

Saga transaction model was proposed as a base model for long-running activities and 

defines a chain of transactions as a unit of control (Garcia-Molina & Salem, 1987).  

The Saga model relaxes the requirement of the entire transaction as an atomic action 

by releasing a resource before it completes without sacrificing the consistency of the 

database.  Using Sagas, the long running transaction is divided into smaller 

subtransactions.  To accomplish this, every subtransaction requires a compensating 

transaction to provide a backward recovery process in case of failure.  However, the 

Saga model still had its limitations and other extended transaction models were later 

developed to overcome them by supporting more general and powerful sets of control 

flow descriptions and allowing those descriptions to grow and become more complex.   

Models similar to the Saga model are called Advanced Transaction Models 

(ATMs). These models provide functionality to relax ACID properties and have 

provided solutions to problems in correctness, consistency, and reliability in 

transaction processing and database management environments.  Transactional 

workflows are an extension to the Saga transaction model and were developed because 



Texas Tech University, Andrew Courter, December 2010 

 7  

extending ATMs to model workflow transactions was seen to be inefficient and 

exceed the ATMs capabilities.  Transactional workflows are activities that involve 

coordinated execution of multiple related tasks on distributed, heterogeneous, and 

autonomous information systems and support selective use of transaction properties at 

individual task and workflow levels (Worah & Sheth, 1997).  

A model that has been used to define and study transactional workflow is the 

ConTracts model (Reuter & Wächter, 1991).  In the ConTracts model, a ConTract 

contains a set of predefined actions called steps and a clearly specified execution plan 

called a script.  The steps can be sequential programs instead of just transactions and a 

ConTract must be forward-recoverable, meaning the state of the ConTract must be 

restored after a failure to allow execution to continue.  This fundamental functionality 

is the basis of recovery mechanisms and is an integral part of the Assurance Points 

discussed later. 

Transactional workflows try to provide a relaxed requirement of transactions 

so that they can be used in a loosely-coupled environment (Reichert & Dadam, 1998).  

One of the main components that transactional workflows provide is forward 

recovery, allowing execution to continue as was explained above in the ConTract 

model.  Other transactional workflow examples are the Transaction Specification and 

Management Environment (TSME) and the METEOR models.  The TSME model 

consists of constituent transactions corresponding to workflow tasks (Georgakopoulos, 

Hornick, Krychniak, & Manola, 1994).  Each workflow has an execution structure that 

is defined by an ATM which defines the correctness criteria for the workflow.  

Because TSME supports various ATMs it can cover a larger variety of workflow 

processes and support correctness and reliability in those processes.  The METEOR 

workflow model is a collection of many different workflow models (W. Jin, 

Rusinkiewicz, Ness, & Sheth, 1993).  There are many tasks in a METEOR workflow 

and each task can be heterogeneous.  The execution behaviors of tasks are defined 

using task structures and can be composed of multiple tasks.  This grouping of tasks 

helps to define the execution and define the workflow execution.   



Texas Tech University, Andrew Courter, December 2010 

 8  

These are just a few examples of the different approaches to achieving the goal 

of defining application specific and user-defined correctness, reliability and functional 

requirements within workflow executions.  However, transactional workflows do not 

support all ACID transactions and are more prone to problems when dealing with 

failures in multiple databases.  Therefore, other techniques must be considered to 

compose a more reliable system. 

2.3 Promises 

One of the recent research projects addressing a non-standard approach to 

transactional issues for Web Services is the Promises project (Greenfield, Fekete, 

Jang, & Kuo, 2003).  A goal of the Promises project is to make sure that certain values 

are not overwritten or changed by concurrently executing Web Services.  This can be 

realized by making promises to hold information instead of locking data and creating 

problems with long runtimes.  A promise is an agreement between a client application 

and a service or ‘promise maker’.  When a promise request is accepted by the 

‘promise maker’, the promise value guarantees that some set of conditions will be 

maintained over a set of resources for a specified period of time.  The approach 

discussed in (Greenfield, et al., 2003) defines the ‘promise maker’ to be a Promise 

Manager that records promises and the main functionality of the Promise Maker is to 

handle promise making, check on resource availability, and ensure that promises are 

not violated, instead of having services handle that information.  Client applications 

can send the promise manager what resources they need in order to complete 

successfully and express them as a set of predicates.  These predicates are simply 

Boolean expressions over the resources.  There are no limitations on the form of the 

predicates or on the way promise managers implement the predicates to guarantee that 

they remain true.  This allows the promise managers and resource managers more 

flexibility and the freedom to use the best isolation mechanism for that specific type of 

data.  The request for a promise will be examined by the promise manager and it will 

either grant or reject the request.  Once a promise request is granted, the client 



Texas Tech University, Andrew Courter, December 2010 

 9  

application is isolated from the effects of concurrent execution and can complete 

successfully.   

Although the client is granted a promise request, there is a period of time 

agreed upon for which a promise will be valid as part of the process and requests can 

expire.  If a promise request expires the promise manager will return a 

‘promiseexpired’ error to the client.  The main advantage to using promises is to allow 

applications to be “promised” resources and then continue processing without having 

to recheck that those resources are still available.  Traditional locking mechanisms are 

very strong and guarantee that no one will change or modify the data that is being 

locked.  However, this stops all other Web Services from accessing it and creates a 

wait.  Promises are a weaker form of locking but are more specific and allow other 

Web Services to access the data so that any wait is avoided.  The predicates that are 

contained within a promise specify the resources a client needs and allows other 

promises covering the same resources to be granted at the same time as long as they 

do not conflict with any already granted promises.  Promises are general requests for 

resources and must be general so that a single resource can be promised to the client 

application.   

One method that has been used to implement promises is the concept of ‘soft 

locks’.  This method uses a field in the database record to show whether an item has 

been allocated already for a client.  The record is not completely locked from other 

applications but instead applications read this field when looking for available 

resources and ignore any record that has been already allocated. Promises separate the 

isolation technique from the logic so that programmers do not have to be concerned 

about concurrent processing.  This approach provides flexibility and reliability for 

concurrent Web Service execution.  However, implementing this system would be 

difficult because of the centralized approach of the Promises Manager.  If every Web 

Service had to request all resources from the Promise Manager then there would be a 

large amount of waiting for clients.   



Texas Tech University, Andrew Courter, December 2010 

 10  

Promises are similar to the Invariant Monitoring System in that the ACID 

properties are relaxed to provide a more optimistic environment where hard locks are 

not used.  However, Promises still use ‘soft locks’ and so not all concurrent processes 

can see all the data at any certain time.  The Invariant Monitoring System never hides 

or locks information and allows any process to modify data.  Instead, the Invariant 

Monitoring System monitors data changes, re-evaluates constraint conditions affected 

by data changes, and invokes recovery actions if necessary. 

2.4 Reservation-Based Techniques 

In addition to promises, there is another similar method to temporarily lock 

data in a concurrent environment.  This is called the reservation-based approach.  This 

approach ‘reserves’ resources that meet the criteria of what the Web Service has 

requested.  The reservation-based approach has many advantages over two phase 

commit or the optimistic two phase commit protocols.  First, database records are 

locked, both physically and logically, only for the duration of local transactions.  

Second, only the required amount of a resource is reserved, rather than locking the 

database record or the entire resource for an extended period of time.  And third, the 

reservation-based protocol provides better response times for the clients and better 

throughput and completion times at the server (Zhao, Moser, & Melliar-Smith, 2009).   

The reservation-based protocol is implemented on both the client and server 

and each task is executed as two steps.  In the first step, the resource involved in the 

task is reserved in a single traditional transaction.  In the second step, the reservation is 

either confirmed or cancelled according to the business rules.  Each of these steps is 

executed as a separate traditional short-running transaction, as in the sagas strategy 

(Zhao, et al., 2009).  Because the resource that the application requests is reserved in 

the first step, the application has the choice and freedom of either continuing 

processing or backtracking to make sure everything is as expected.  When other 

applications ask the server for resources they only see the resources that have not 

already been reserved by other applications.  However, the application that makes the 

reservation is not allowed to actually use the reserved resource until it has changed the 



Texas Tech University, Andrew Courter, December 2010 

 11  

status of the resource to “committed”.  In traditional locking any of the participants 

can decide to abort and rollback the entire transaction, but in the reservation-based 

protocol only the coordinator can decide this.  One of the main advantages of using the 

reservation protocol over using traditional locks is that if a resource is reserved and 

another transaction wants to access it, the transaction can acquire a lock on the 

resource and the requesting application can immediately be informed of the state of 

the resource instead of having to wait.  To restrict the reservation time, “fees” can be 

charged by the resource provider to deter applications from making reservations for 

extended periods of time.  Using reservations is another way to avoid locking 

resources from other applications and is a viable alternative to the traditional locking 

while still maintaining the ACID properties.   

The reservation-based technique provides a way to avoid hard locks on shared 

data and provides a notification to waiting service calls but still locks data for a period 

of time.  As previously discussed, the Invariant Monitoring System provides an 

optimistic execution environment by avoiding global locks and allowing all processes 

to modify data at any time. 

2.5 Transactional Attitudes 

Transactional Attitudes are used as a framework to handle the transactional 

reliability issue in Web Services.  Transactional Attitudes establish a separation of 

transactional properties from other aspects of a service description.  In (Mikalsen, Tai, 

& Rouvellou, 2002), the WSTx framework uses transactional attitudes which makes 

Web Service providers declare their individual transactional capabilities and 

semantics, and Web Service clients declare their transactional requirements.  Using 

Provider Transactional Attitudes (PTAs) and Client Transactional Attitudes (CTAs), 

transactional attitudes can be defined so that Web Services can remain autonomous 

without having to worry about reliability.  PTAs are a mechanism for Web Service 

providers to explicitly describe their specific transactional behavior.  PTAs use WSDL 

extension elements to annotate Web Service provider interfaces for web transactions, 

according to well defined transactional patterns.  The PTA also includes the name of 



Texas Tech University, Andrew Courter, December 2010 

 12  

an abstract transactional pattern with any port-specific information needed to make the 

pattern concrete.   

There are three types of PTAs that are defined by the WSTx framework to 

handle different Web Service behavior’s pending-commit, group pending-commit, and 

commit-compensate.  The pending-commit is described as a transactional port of a 

single Web Service where a single forward operation invocation can be held in a 

pending state.  The Web Service waits until another event occurs and then either 

accepts or rejects the effect of the operation.  For the group-pending-commit a single 

Web Service waits for the effects of a group of forward operation invocations.  Just 

like the pending-commit, the group-pending-commit either accepts or rejects the 

effects of the operations at the end.  The commit-compensate is when a Web Service 

accepts the effect of a single forward operation invocation but can reverse the 

operation later using an associated compensation operation.  CTAs are described in 

terms of well-defined WSDL port types and outcome acceptance criteria (Mikalsen, 

Tai, & Rouvellou, March 2002).  A client’s transactional attitude is established by its 

use of a particular WSDL port type to manage.  The client executes one or more 

named actions within the scope of a web transaction, where each action represents a 

provider transaction that executes within the context of the larger web transaction.  

The WSTx framework uses both PTAs and CTAs to define attitudes for Web Services 

transaction compositions and provide reliability during execution.   

PTAs and CTAs could be combined with the Invariant Monitoring System to 

define their transactional behavior and provide greater reliability.  Combining the two 

would also allow Web Services to stay autonomous and not have to worry about 

locking data in a concurrent environment. 

2.6 Tentative Holding 

Tentative holding is allowing a tentative, non-blocking hold or reservation to 

be requested in data by a business resource (Limthanmaphon & Zhang, 2004).  When 

the owners of the resource receive these requests they grant non-blocking reservations 

on their services, preserving control of their resources while allowing many potential 



Texas Tech University, Andrew Courter, December 2010 

 13  

clients to place their requests.  Placing these holds instead of locking the resources 

minimizes the need for clients to cancel transactions.  To accomplish this, there are 

several states that are used to determine the progress of a hold.  These states include 

responding to an initial Request, In Process to show that the request has been received 

and is being processed, Active to show a hold is active, and Inactive to show that a 

hold is no longer valid.  The initial requests are sent to the client coordinator, who 

checks the status of any previously granted holds and provides the client the ability to 

ask about other queries, cancel an existing hold, query logged holds, and modify an 

existing hold.  The resource coordinator is responsible for verifying the expiration 

times of holds and grants holds to requesting client coordinators.  Additionally, the 

resource coordinator notifies the client coordinator if a resource becomes unavailable.  

This technique is similar to the Promises and Reservation-Based techniques because 

resources are held temporarily in a non-blocking mechanism.  The client coordinator 

and resource coordinator act similarly to the Promise Manager that was previously 

described but use states to coordinate the holding or releasing of records and are 

separate instead of one entity.  This technique would be difficult to implement and 

would also have similar difficulties when trying to implement this in a large scale 

system. 

This technique is similar to Promises and Reservation-Based techniques, 

except that tentative holding uses more states to coordinate the state of the locked data.  

In contrast, the Invariant Monitoring System monitors data changes and re-evaluates 

user-defined constraints as needed. 

2.7 Monitoring Extensions to BPEL 

Due to the many inadequacies of BPEL, several research projects have 

incorporated monitoring techniques inside the BPEL processes to make sure 

everything runs smoothly.  The work in (Baresi, Ghezzi, & Guinea, 2004; Baresi & 

Guinea, 2005) uses monitoring rules woven inside the WS-BPEL process to 

dynamically control the execution during runtime.  The monitoring rules are annotated 

in the source code using assertion languages, such as Anna (Annotated Ada) 



Texas Tech University, Andrew Courter, December 2010 

 14  

(Luckham, 1990) and JML (Java Modeling Language)(Baker, Leavens, & Ruby, 

2005).  User-defined constraints are blended with the WS-BPEL process at 

deployment time and are defined externally to allow separation of the different 

functionalities.  The constraints are defined using WS-CoL (Web Service Constraint 

Language), a special purpose language that borrows its roots from JML but has 

additional constructs to gather data from external sources.  Because the WS-BPEL and 

the monitoring rules are separately defined, the BPEL preprocessor combines the two 

together.  Pre and post conditions are added between service invocations so that 

constraints can be checked and a BPEL exception is made if one is violated.  External 

Web Service invocations are routed to the Monitoring Manager which makes the 

invocation and then relays back to the WS-BPEL process if the invocation was 

successful or not.  Invariants between Web Services can also be monitored and are 

handled similarly by making a call to the Monitoring Manager.  The Monitoring 

Manager is the key component of this work and instead of calling a Web Service the 

information is passed to the Monitoring Manager.  Upon receiving this information the 

Monitoring Manager checks the pre-conditions if there are any, then invokes the Web 

Service if there is no violation in the pre-conditions.  After invoking the Web Service 

the Monitoring Manager then checks any post-conditions and if there is no violation, 

returns the information from the Web Service back to the WS-BPEL process.  

 This monitoring extension is similar to the Assurance Point in that pre and post 

conditions are checked at specific points in a business process.  However, recovery 

techniques are not incorporated into the monitoring extension and additional checks 

are not present in case other conditions must be met.  Additionally, the Invariant 

Monitoring System described in this thesis monitors data conditions over a certain 

period of time to provide a more reliable and optimistic environment. 

2.8 Aspect-Oriented Workflows 

Current workflow languages do not allow techniques to properly modularize 

concerns that cut across process boundaries such as security and data validation.  

Therefore, the process code is spread across several workflow process specifications 



Texas Tech University, Andrew Courter, December 2010 

 15  

and mixed in with the process code addressing other concerns.  This makes 

understanding and having to change process specifications difficult.  Aspect-oriented 

process logic software development has been investigated to address these modularity 

problems by introducing new programmatic constructs.  The work presented in (Charfi 

& Mezini, 2006), proposes using aspect-oriented concepts to address the modularity 

issues in workflow languages.  A prototype extension to BPEL using aspect-oriented 

workflow concepts (AO4BPEL) (Charfi & Mezini, 2007) was developed to validate 

their work.   

Aspect-oriented programming (AOP) (Irwin et al., 1997) introduces a new 

concept of modularizing several different concerns called an aspect.  A well known 

aspect-oriented programming language AspectJ (Kiczales et al., 2001), uses three key 

concepts: join points, pointcuts, and advice, to support the aspect portion of the aspect-

oriented workflows and AO4BPEL described in (Charfi & Mezini, 2006).  Join points 

are points in the execution of a program similar to check points where method calls, 

constructor calls, and other functions can be used to check conditions.  A pointcut is a 

way to identify whether join points are related to each other.  Advice is the code 

executed when a join point in the set identified by a pointcut is reached.  This code 

may be executed before, after, or instead of the join point.  An aspect contains several 

pointcut and advice declarations and is a module that encapsulates a non-functional 

crosscutting concern.  Using the aspect, the workflow can separate the workflow logic 

and the non-functional concerns into the process module and aspect modules, 

respectively.  This methodology helps to separate the different elements in a process 

workflow and make it easier to modify and reuse the same workflow.  However, 

modularizing a workflow is time-consuming and requires many tools for integrating 

the aspects with the workflow processes (weaving).   

Join points are similar to the assurance points used in this thesis, where 

assurance points focus on constraint checking to support dynamic recovery techniques.  

The Invariant Monitoring System, however, has the capability to monitor data 

conditions in between the occurrence of Assurance Points.   



Texas Tech University, Andrew Courter, December 2010 

 16  

 An extension to Aspect Oriented Programming to enable monitoring of shared 

data between composite Web Services is proposed in (Wu, Wei, Ye, Zhong, & Huang, 

2010).  This research extends the original design by adding monitoring parameters, 

local variable declaration, Historycut to specify the desired behavior property, a list of 

symbol pointcuts, and advice to be executed when there is a constraint violation.  The 

Historycut and Advice properties are explained in more detail in (Wu, Wei, & Huang, 

2008) and are built upon in the research extension.  The list of symbol pointcuts 

“defines the lexeme of the declared behavior constraints, capturing individual events 

in an execution trace” (Wu, et al., 2010).   

 Using these extra features in the Aspect Oriented Programming, a monitoring 

instance is created for each set of parameters that need to be monitored.  Because 

thousands of monitoring instances could possibly be required to monitor parameters of 

each process instance, the goal is to make the monitoring instance as efficient as 

possible.  To handle the creation of monitoring instances, a Monitor Manager is used 

to save the start events of each deployed aspect. When receiving a trace monitor 

creation request from the aspect manager, the monitor manager will check whether the 

event is a start event. If so, it will create a new trace monitor and return to the aspect 

manager. Otherwise, it will discard this request. 

 After creating a trace monitor to monitor a set of parameter bindings, there 

needs to be a way to find the trace monitor again.  (Wu, et al., 2010) proposes using an 

inverted list structure based on the work in (Moffat & Zobel, 2006), which has widely 

been used in the area of large scale search and information retrieval for its impressive 

scalability properties.  The inverted list is shown to perform with little overhead in the 

prototype implementation.  However, it is difficult to understand how to set up this 

system and not clear if it is feasible for several thousand or even hundreds of 

thousands of process instances.   

2.9 Summary 

 This related work section has described several past and ongoing research 

projects that support non-blocking techniques, relaxing the ACID properties to provide 



Texas Tech University, Andrew Courter, December 2010 

 17  

an optimistic approach to data consistency.  However, using these approaches, specific 

conditions cannot be monitored during a specific execution period in the process.  The 

focus of the research presented in this thesis is to present a system to extend the 

Assurance Point architecture to allow monitoring of critical data conditions at specific 

execution periods in a process.  Any violation of this condition will invoke 

corresponding actions.  Providing this capability will allow data inconsistencies to be 

more quickly recognized and allow a more dynamic approach to process recovery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 18  

CHAPTER III 

BACKGROUND RESEARCH FOR THE USE OF INVARIANTS 

The research presented in this thesis is part of the ongoing Decentralized Data 

Dependency (D3) Analysis Project at Texas Tech University which addresses issues 

with data dependency analysis and failure recovery in a service-oriented environment 

using a decentralized (Liu, 2009) and rule-based approach. To present research with 

the Invariant Monitoring System, it is first necessary to provide background on Delta-

Enabled Grid Services, or DEGS, and Assurance Points, which are used to realize the 

functionality of the Invariant Monitoring System. DEGS support the ability to invoke 

constraint checking actions autonomously after a change in the source database.  

Assurance Points provide the framework inside of the business process to activate 

invariant conditions and to define the time frame for condition monitoring.   

3.1 Delta-Enabled Grid Services 

 The Delta-Enabled Grid Service is a Grid Service that has been enhanced with 

an interface that stores the incremental data changes, or deltas, that are associated with 

service execution in the context of globally executing processes. The DEGS uses the 

OGSA-DAI Grid Data Service for database interaction. The database captures deltas 

using capabilities provided by most commercial database systems.  The DEGS 

functionality was first used to determine what processes were dependant on each other 

based on delta values.  As described in (S. D. Urban, Xiao, Y., Blake, L., & Dietrich, 

S. W., 2009), each execution site would send all deltas related to the source database 

to a central Delta Repository.  If a process failure occurred, then the Delta Repository 

would be used to determine what processes changed the data and notify them to 

recover to allow the preservation of consistent data between multiple sites (S. D. 

Urban, Xiao, Y., Blake, L., & Dietrich, S. W., 2009).   

 The DEGS functionality is demonstrated in Figure 1. A DEGS uses Oracle 

Streams and triggers inside of a source database to allow automatic notification of new 



Texas Tech University, Andrew Courter, December 2010 

 19  

deltas in the delta repository.  Oracle Streams is an Oracle tool that can be used to 

forward information from the database log file to a separate database or table.  

Triggers are database rules that can be used to monitor and react to data changes.  

When a change to the source database is made by a Grid service, then the delta is 

automatically created by Oracle Streams or triggers and inserted into the delta 

repository.  A Grid service was used to modify the source database so that information 

from the external process can be related to the data changed in the source database.  

The Delta Repository contains the name of each table in the source database and has a 

separate table for inserts, deletes, and updates to that source database table.  This 

allows inserts, deletes, and updates to be easily recognized and information about each 

type of change to be kept separate.  Additionally, a table mapping each delta to 

information about the Grid service that made the change is kept. 

After creating the delta, a Java Stored Procedure deployed in the source 

database is automatically called to notify a listening Grid service that there are new 

deltas in the table that was just modified.  The listening Grid service then looks for 

new deltas in the forwarded table name, looking in each of the insert, delete and 

update delta repository tables.  These deltas are then compiled into an XML format 

and relayed to any other systems that use the delta for recovery or dependency 

determination.  The overall functionality of DEGS is modeled in Figure 1 where the 

XML format of the deltas is forwarded to the DeltaGrid.   

To make use of the DEGS capabilities in the Invariant Monitoring System, 

changes had to be made.  In particular, to monitor user-defined data constraints, all 

columns or attributes of a table would need to be returned in a delta instead of just one 

or a few.  Additionally, the DEGS forwarded all received deltas to delta event process 

to handle other process recovery actions. Since the Invariant Monitoring System only 

needs deltas related to the invariants that are currently being monitored, the DEGS 

was modified to forward deltas to extract the deltas for condition constraint checking. 



Texas Tech University, Andrew Courter, December 2010 

 20  

 
Figure 1. Delta-Enabled Grid Service (Blake, 2005) 

3.2 Service Composition and Recovery with Assurance Points 

The work in (S. D. Urban, Xiao, Y., Blake, L., & Dietrich, S. W., 2009) 

presents service composition models that provide the foundation for the D3 project on 

which this thesis is based.  The service composition model did not originally provide a 

way to handle constraints and respond to exceptions that might arise during the normal 

execution of a process (Shrestha, 2010). Assurance Points (APs) with different types 

of rules provide a more complete notion of user-defined correctness in the context of 

exception handling.  An AP is a logical and physical checkpoint for storing data and 

using rules to check pre and post conditions at critical points in the execution of a 

process.  During normal execution, APs invoke integration rules that check pre-

conditions, post-conditions, and other application conditions. The action of an 

integration rule is used to invoke recovery procedures or to initiate alternative 

execution paths.  An AP is used in forward execution for validation of critical 

correctness conditions, where post-conditions are used to validate completed services 

and pre-conditions are used to validate necessary conditions prior to the next service 



Texas Tech University, Andrew Courter, December 2010 

 21  

execution. Post-conditions and pre-conditions are expressed in the AP model 

extensions as integration rules (IR) based on work with using rules to interconnect 

software components as originally defined (S. D. Urban et al., 2001). When a specific 

AP is reached during execution, the condition of the IR is checked.  The action of the 

AP is then based on the evaluation of the IRs inside the AP.  An AP can also be used 

for backward recovery.  

Three different forms of backward recovery are introduced in (Shrestha, 2010), 

with the different forms supporting either full backward recovery or a combination of 

backward and forward recovery.  APRetry is used when the running process needs to 

be backward recovered to a previously-executed AP. After backward recovery through 

the use of compensation to a specified AP, the pre-condition defined in the AP is 

rechecked.  By default, the first AP reached during backward recovery will be the 

target AP, but a specific AP can be specified.  APRollback is used when the overall 

process has some severe errors and must be recovered back to the beginning of the 

process. APCascadedContingency is a hierarchical backward recovery that continues 

to compensate backwards, checking each AP that is encountered for a possible 

contingent procedure that can be used to correct an execution error.  

Given that concurrent processes do not execute as traditional transactions in 

service-oriented environments, inserting APs at critical points in a process is important 

for checking consistency constraints and potentially reducing the risk of failure or 

inconsistent data. The most basic use of an AP together with integration rules is shown 

in Figure 2. Figure 2 shows a process with three composite groups and an AP between 

each composite group. The shaded box on the right shows the functionality of an AP 

using AP2 as an example. The post-condition integration rule, the pre-condition 

integration rule, and any conditional rules are checked sequentially when AP2 is 

reached. If the pre-condition (pre-IR), or the post-condition (post-IR), is violated then 

one of the Recovery Actions is invoked. However, if both the pre and post conditions 

are not violated then the AP will use the condition-IR and invoke the Conditional 

Operation.   



Texas Tech University, Andrew Courter, December 2010 

 22  

 
Figure 2. Basic Use of Assurance Points and Integration Rules (Shrestha, 2010) 

 The Invariant Monitoring System extends the functionality of Assurance 

Points by adding an additional inv rule.  This new rule allows the definition of an 

invariant that can be monitored over several APs.  IRs for pre and post conditions can 

check conditions at certain points in the business process but cannot make sure that a 

condition holds for a specified period of time.  The Invariant Monitoring System 

provides the capability to monitor conditions between APs and provide a more secure 

execution environment without having to lock data from other processes using the new 

rule and other functionality. 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 23  

CHAPTER IV 

OVERVIEW OF THE INVARIANT MONITORING SYSTEM  

The research described in this thesis is an extension of the Assurance Point 

concept described in (Shrestha, 2010).  This chapter begins in Section 4.1, with an 

overview of the functionality and design of the Invariant Monitoring System. Section 

4.2 then discusses the format used to define rules inside of the APs.  Next, Section 4.3 

gives the new rule structure for extending the AP. Two examples are presented in 

Sections 4.4 and 4.5 to show how the Invariant Monitoring System can be used and 

how to define the rules for invariants.  Lastly, Section 4.6 gives a summary of the 

chapter. 

4.1 The Invariant Monitoring System 

 Building on top of the research described in (Shrestha, 2010), the Invariant 

Monitoring System allows process designers to define a constraint over specific data 

items as well as the time period to monitor this condition.  These conditions are 

defined similarly to the ECA rule structure that is used to define integration rules.  

Inside each AP, one or many Invariants can be defined to allow for constraint 

monitoring.   

Figure 3 presents the basic use of the Invariant Monitoring System. As an 

example, assume the condition to be monitored is Tuple1.A + Tuple2.B > 10 by 

Process 1 where the initial values for Tuple1.A and Tuple2.B are shown in the delta 

repository of Figure 3. Attribute A from Tuple 1 of Table 1 is 10 and attribute B from 

Tuple 2 from Table 1 is 12, so the condition is initially satisfied.  The numbers in the 

figure indicate the execution sequence, where Ti through Tn are timestamps for 

operations in Process 1 and Process 2. At timestamp Ti, the Invariant is activated, 

meaning the starting AP has been reached and so the Invariant condition, Monitored 

Objects, and activation state have been sent to the Invariant Agent in step 1. After 

receiving this information, the Invariant Agent checks the Invariant condition and if 



Texas Tech University, Andrew Courter, December 2010 

 24  

there are no violations, stores the Invariant and Monitored Objects into a local 

database. It is assumed that an outside Web Service is called when checking and 

rechecking the Invariant condition.   

After activating and registering the invariant condition, step 2 shows the 

Monitored Objects being passed from the Invariant Agent, to the Delta Analysis (DA) 

Agent so that the DA Agent knows what to look for in the delta objects.  The DA 

Agent receives the new Monitored Objects and stores them in a container to look 

through upon receiving a new delta notification from the Delta Repository.  At Tj, the 

Tuple1.A is changed to 5 by Process 2 in step 3, where the change is captured and 

propagated to the delta repository in DEGS (Steps 4-6). This propagation is done 

automatically using Oracle Streams as was described earlier in this thesis.  Next, the 

DA Agent is notified that Tuple1.A is changed and as a result, the DA Agent 

recognizes that deltas related to a Monitored Object have been found and so the 

Monitored Objects are forwarded to the Invariant Agent, which acquires the related 

Invariant condition and then rechecks the Invariant condition (Steps 7-8). In this 

check, Tuple1.A is 5 and Tuple2.B is 12, so there is no violation because their sum is 

greater than 10.  Later, Tuple2.B is changed at Tk, the DA Agent again forwards the 

related Monitored Objects to the Invariant Agent and the Invariant condition is 

rechecked again (Steps 9-14), but this time the condition is violated because Tuple1.A 

is 5 and Tuple2.B is 2, which is less than 10. Step 15 indicates that notification will be 

sent to Process 1 to indicate violation of the Invariant condition, where Process 1 can 

then invoke recovery procedures. 



Texas Tech University, Andrew Courter, December 2010 

 25  

 
Figure 3. Invariant Monitoring System 

4.2 Invariant Specification 

The previous work on Assurance Points uses Integration rules in the Event-

Condition-Action (ECA) specification to define the different types of Integration rules.  

These ECA rules are based on previous work with using integration rules to 

interconnect software components (Y. Jin, 2004; S. D. Urban, et al., 2001).  Figure 4 

gives an example from the original Integration Rule Structure of APs.  The CREATE 

RULE defines the rule name and what type of rule is being defined.  The EVENT clause 

expresses what Assurance Point this rule is related to and what parameters, if any, are 

required for the Assurance Point.  Next, the CONDITION specifies the condition to 

check to determine whether the rule is violated or not.  If a rule is violated then the 

ACTION is used to specify what is to be done.  If an error occurs a second time, the on 

RETRY action is executed. 



Texas Tech University, Andrew Courter, December 2010 

 26  

CREATE RULE       ruleName::{pre | post | cond} 

EVENT                     apId(apParameters) 

CONDITION            rule condition specification 

ACTION                   action 1 

[ON RETRY             action 2] 

Figure 4. Integration Rule Structure (Shrestha, 2010) 

Figure 5 shows the revised rule structure to accommodate the expression of 

invariants.  The CREATE RULE statement contains the Invariant_identifier and the inv 

invariant rule tag.  The Invariant_identifier is used to differentiate between invariants.  

The EVENT statement contains the startAP as well as the endAP and any parameters 

needed for the rule condition specification.  The startAP and endAP are used to activate 

and deactivate the invariants during execution in the AP environment.  In the 

CONDITION section of the ECA structure the rule condition specification is expressed 

as NOT EXISTS(select * from …), where the select statement returns the tuples that 

satisfy the invariant condition.  If the select statement returns tuples then NOT 

EXISTS evaluates to false and no recovery actions are triggered.  However, if the SQL 

condition returns no tuples, then the NOT EXISTS will return true, indicating that the 

invariant condition is not satisfied.  In this case, the process is notified and the 

recovery procedure in the ACTION is invoked. 

                                       CREATE RULE:    Invariant_identifier::inv 

           EVENT:                startAP ( endAP, Parameter1, Parameter2….) 

           CONDITION:        rule condition specification 

           ACTION:               recovery procedures 

           [ON RETRY]:        additional/alternative recovery procedures  

Figure 5. Structure of an Invariant 

4.3 Hotel Room Monitoring Example 

An example, a subprocess is modeled in Figure 6, where the 

HotelRoomMonitoring invariant is defined between AP1 and AP2.  The process 

represents a travel planning process, where the process is scoping out available hotel 



Texas Tech University, Andrew Courter, December 2010 

 27  

and airline options before finalizing the plans. Figure 6 shows an invariant that checks 

a specific hotel for the availability of a seaside room that is less that a specified price, 

where the hotel and price are passed as parameters from the BeginTravelPlanning AP. 

Expression of the AP allows the process to continue checking the availability of other 

travel options, such as airline reservations, but to be notified if the room availability 

changes. The condition is expressed as an SQL query, preceded with the not exists 

clause. Therefore, according to the SQL condition defined, if there is not a room that 

meets the criteria, then the select condition will return no tuples, making the not exists 

clause true, which triggers recovery action 1.  If the query returns tuples that satisfy 

the SQL condition, then the process continues and the status of the SQL query is 

monitored using the DEGS capability and the invariant monitoring system. If the 

process reaches the ReadyToBook AP and the desired room type and price are still 

available, then the process continues past the ReadyToBook AP, making the appropriate 

reservations after deactivating the HotelRoomMonitoring invariant. If at anytime between 

the BeginTravelPlanning AP and the ReadyToBook AP the room is no longer available, 

the invariant monitoring system will notify the process, which will execute one of the 

recovery actions.  



Texas Tech University, Andrew Courter, December 2010 

 28  

  

Figure 6. Hotel Room Monitoring 

 

4.4 Bank Loan Application Monitoring Example 

As another example consider the subprocess in Figure 7, where the 

LoanAmountMonitoring invariant is defined between AP1 and AP2.  The process 

represents a loan approval process, where the process is creating a loan application for 

a customer at a bank that already has an account at that bank. Figure 7 shows an 

invariant that checks to make sure the loan applicant has a tenth of the requested loan 

amount in their account, where the amount and customerid are passed as parameters 

from the LoanAppCreation AP. The condition is expressed as an SQL query, preceded 

with the not exists clause. Therefore, according to the SQL condition defined, if there is 

not an account balance that meets the criteria, then the select condition will return no 



Texas Tech University, Andrew Courter, December 2010 

 29  

tuples, making the not exists clause true, which triggers recovery action 1.  If the query 

returns tuples that satisfy the SQL condition, then the process continues and the status 

of the SQL query is monitored using the DEGS capability and the invariant 

monitoring system. If the process reaches the LoanCompletion AP and the applicant’s 

account balance still meets the necessary criteria, then the process continues past the 

LoanCompletion AP, completing the loan application after deactivating the 

LoanAmountMonitoring invariant. If at anytime between the LoanAppCreation AP and the 

LoanCompletion AP, the applicant’s account balance falls below the necessary criteria, 

the invariant monitoring system will notify the process, which will execute one of the 

recovery actions.  

 
Figure 7. Loan Amount Monitoring  



Texas Tech University, Andrew Courter, December 2010 

 30  

4.5 Summary 

These examples illustrate the basic functionality of invariants and how they 

can be used with assurance points to monitor critical data.  In the next chapter, a 

prototype of the Invariant Monitoring System is presented.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Texas Tech University, Andrew Courter, December 2010 

 31  

CHAPTER V 

A PROTOTYPE OF THE INVARIANT MONITORING SYSTEM 

This research has prototyped an execution environment to model the capability 

of monitoring critical data conditions between Assurance Points. 

In this chapter, Section 5.1 provides a more detailed description of monitored 

objects.  Section 5.2 then describes the representation of invariants.  Section 5.3 

describes the process of invariant registration, while Section 5.4 describes the 

invariant evaluation Web Service.  Section 5.5 presents relevant extensions to Delta-

Enabled Grid Services.  The filtering process of the Delta Analysis Agent is then 

outlined in Section 5.6.  

5.1 Monitored Objects 

As previously shown in Figure 5, the structure of an Invariant rule is defined in 

the ECA rule format similarly to the other rule types.  This rule can be parsed and 

processed to extract the SQL condition and the Monitored Objects from the Invariant 

rule definition.  The Monitored Objects identify the attributes of interest in the deltas 

from the DEGS System.  For example, if the loan processing example is monitoring 

data changes from a customer with “customerid = 456” then the monitoring process 

would ignore a withdrawal or deposit made by a customer with “customerid = 654”.   

Monitored Objects are acquired from the SQL condition by extracting the table 

names together with the attributes and relevant conditions.  Changes to these extracted 

Monitored Objects can affect the result of the query.  The Invariant Monitoring 

System may need to re-evaluate the SQL condition when it detects a change in the 

Monitored Objects. 

As an example, consider the SQL query from Figure 6.  The table in this query 

is the Rooms table. The monitored objects are built from the table name, attribute 

name, relation, and set value of the conditions in the query.  There are three conditions 

in the where clause of the SQL query and so there are three monitored objects.  The 



Texas Tech University, Andrew Courter, December 2010 

 32  

conditions to store as monitored objects include “roomPrice < price”, “roomType = 

‘seaview’”, and “hid = hotelID”.  For the first condition, the table name is Rooms, the 

attribute is roomPrice, the relation is “<”, and the set value is price.  For the second 

condition, the table name is Rooms, the attribute is roomType, the relation is “=”, and 

the set value is ‘seaview’.  And for the last condition, the table name is Rooms, the 

attribute is hid, the relation is “=”, and the set value is hotelID. 

As another example, consider the SQL query from Figure 7.  The two tables in 

this query are the Loan table and the Account table.  There are three conditions in the 

where clause of the base SQL query and so there are three monitored objects from this 

table.  The conditions to store as monitored objects include “applicantId = customerId”, 

“status = ‘pre-qualified’”, and “amount < (select …)”.  To simplify the extra select query, 

“amount < (select …)” is converted into “amount < calc” since multiple tables cannot be 

analyzed during the delta filtering.  Therefore, the calc value is used to signify that this 

is a calculated value and must be re-evaluated.  So for the first condition, the table 

name is Loan, the attribute is applicantId, the relation is “=”, and the set value is 

customerId.  Note that customerId is a parameterized value that is inserted by the 

parameters of the AP.  For the second condition, the table name is Loan, the attribute is 

status, the relation is “=”, and the set value is ‘pre-qualified’.  And for the last condition, 

the table name is Loan, the attribute is amount, the relation is “<”, and the set value is 

calc.   

The second table, Account, has one condition in the where clause, “customerId = 

customerId”.  The table name of this monitored object is Account, the attribute is 

customerId, the relation is “=”, and the set value is customerId, which will be 

instantiated with a parameterized value. This query also illustrates a relevant 

monitored object in the select clause.  The last monitored object is on the balance of the 

Account table.  Balance is set as a calculated value because if this attribute changes then 

it will change the result of the select and could violate the invariant condition.  So for 

this invariant there are a total of five monitored objects over two separate tables. 



Texas Tech University, Andrew Courter, December 2010 

 33  

To acquire the monitored objects, the select queries used for the invariant 

conditions must be analyzed to extract attributes and the conditions on those attributes, 

as well as any calculated values.  This process allows the Invariant Monitoring System 

to compare information in the monitored objects to incoming delta notifications. 

5.2 XML Representation of Invariants 

Figure 8 shows an example rule structure that is defined in the XML file with 

all of the AP rules.  It is assumed that the XML structure is generated as a result of 

parsing the ECA rule form.  The XML structure starts with the inputs tag which 

includes the invariantName, startAP and endAP.  These variables are used to keep track 

of the invariant and to make sure that the invariant is placed in the correct AP so that 

monitoring can be activated or deactivated accordingly.  In this prototype only one 

invariant is allowed per AP, therefore, only one set of inputs can be used per invariant 

definition.   

The next section includes any parameters that are defined in the process that are 

used in the SQL condition (SQLVariable) or in any of the monitoredObjects.  Multiple 

parameters can be expressed so that those values can be extracted from the process and 

used for monitoring the correct SQL condition during runtime.  Only the name is 

needed to specify a parameter and this name should match the variable name specified 

in the process.   

Next, the invariant is specified first with the name of the condition and the 

information needed to invoke the Invariant Agent.  The Invariant Agent will be called 

to register the invariant rule.  Additionally, the monitoredObjects are defined so that the 

Invariant Agent can store this information and also relay it to the Delta Analysis Agent 

for delta monitoring.  Multiple monitoredObjects can be related to one Invariant 

condition and each table within a monitoredObject can have multiple attributes.  Each 

attribute has an attributeName, setValue and the relation between the attributeName and 

the setValue.  Lastly, up to two recovery actions can be defined so that if there is a 

violation or a reoccurring violation, it can be handled by the process appropriately.  



Texas Tech University, Andrew Courter, December 2010 

 34  

This definition identifies the details of the activation and deactivation of monitored 

objects. 

 
Figure 8. XML Representation of Invariant Rules 

 Figure 9 presents a more conceptual view of the information being captured by 

Invariant rules in the context of a process and its Assurance Points.  The top portion of 

Figure 9 shows the metadata associated with a process.  The lower portion shows the 

runtime information.     

 The metadata of the Invariant Monitoring System consists of the Invariant, 

InvariantParameters, InvariantCondition, Table, and Attribute classes.  Each Invariant has a 

startap and an endap, and 0…* InvariantParameters. InvariantParameters are used to 

include information in the invariant that is present at runtime.  The two APs that are 



Texas Tech University, Andrew Courter, December 2010 

 35  

related to the Invariant determine when the invariant is activated and deactivated.  

Each Invariant can have only one InvariantCondition because an invariant can only 

monitor one SQL condition at a time.  The InvariantCondition is broken down into 

monitored objects which have 0…* tables and each Table can have 0…* Attributes. 

 The runtime information of the Invariant Monitoring System includes the 

Invariant, InvariantParameters, and InvariantCondition classes.  Each Invariant has a 

invariantName, startap and an endap, and 0…* InvariantParameters. InvariantParameters 

are related to a single Invariant and contain the paramName and the invarId of the 

Invariant it is related to.  Each Invariant can have only one InvariantCondition because an 

invariant can only monitor one SQL condition at a time.  The InvariantCondition 

contains the invariantId, SQLCondition, MObjList, tupleCount, numViolations, and 

singleTable.  The invariantId is the Invariant that the InvariantCondition is related to.  The 

SQLCondition is the SQL query that the Invariant forwards to the evaluation Web 

Service to query the source database.  Next is the MObjList which contains a list of all 

monitored objects that are related to this Invariant.  Each monitored object contains the 

table name, attribute name, relation, and set value.  The tupleCount and numViolations 

are used to keep track of the number of tuples returned from the last SQL evaluation 

and how many potential violations have occurred since the last evaluation.  The 

singleTable attribute is used store whether the Invariant is monitoring one or multiple 

tables.  Use of these values in the monitored process will be explained in the following 

sections that describe the filtering algorithms. 



Texas Tech University, Andrew Courter, December 2010 

 36  

 
Figure 9. Process Metadata and Runtime Information 

 



Texas Tech University, Andrew Courter, December 2010 

 37  

5.3 Registration of Invariants  

Within the AP structure, an invariant object is used to forward the invariant 

information to the Invariant agent, where the invariant will be registered.  The 

invariant object contains the SQL condition, the list of monitored objects, the siteID, 

and the current recovery action.  The siteID is the machine id combined with the 

process id on that machine and is forwarded to the Invariant agent from the executing 

process.  The Invariant agent receives the invariant object and begins by checking the 

SQL condition using an SQL evaluation Web Service (Shuman, 2010).  The location 

of this Web Service is received by the Invariant Agent from the XML rule structure 

and stored in the Invariants table.  If the SQL condition is satisfied then the SQL 

condition and current recovery action are inserted into the Invariants table along with 

the siteID if the invariant is not already in the database.  A procedure is used in the 

database so that a new invariant id is created when a new invariant is inserted.  If the 

invariant is already in the database then the recovery action is updated.  Next, the 

monitored objects are inserted into the MonitoredObject table if they are not already 

stored there.  Another procedure is used in the database to create a new monitored 

object id and ensure a unique identifier. 

Figure 10 shows a high level view of the relationship between the 

MonitoredObject table and the Invariants table.  As can be seen in Figure 10, there can be 

many MonitoredObjects related to many Invariants.  If an Invariant no longer needs to 

be monitored, then it is deactivated and deleted from the Invariants table and if the 

objects related to that invariant are not also related to another invariant, then they will 

also be removed.  The combination of the siteID and unique identifiers of the invariant 

and monitored objects allow relationships to be easily seen and know which invariant 

relates to each monitored object.  Additionally, this structure allows the system to keep 

track of what information should still be monitored and what properties to check.   

 

 



Texas Tech University, Andrew Courter, December 2010 

 38  

 
Figure 10. Invariant Table Relationship 

 

5.4 Invariant Evaluation Web Service 

 An important component of the Invariant Monitoring System is the Invariant 

Evaluation Web Service (Shuman, 2010).  The Web Service is used to initially 

evaluate the SQL query of an invariant to determine if the condition is satisfied. Since 

the invariant may need to be re-evaluated several times between the starting and 

ending APs, the Web Service was designed to make use of materialized views to 

provide a more efficient way of checking the status of the invariant. 

 A materialized view is a database object that contains the results of a query and 

is automatically updated after a table that is in its SQL query is changed.  Therefore, 

simply selecting the number of tuples from the materialized view is faster and more 

efficient than re-executing the SQL query. 

Figure 11 presents an example structure for creating a materialized view. The 

name of the materialized view is the invariant identifier with “inv” preceding it.  Since 

we always want to refresh the materialized view after a commit of any changes to 

relevant tables, the “REFRESH FORCE” option is used.  If a “FAST” refresh is not 

possible then the materialized view will execute a “COMPLETE” refresh.  A “FAST” 

refresh only applies data changes from recent data changes and is the most efficient 

way to refresh the materialized view.  A “COMPLETE” refresh starts from scratch 

and completely rebuilds the materialized view, which takes longer than a “FAST” 

refresh but still refreshes the materialized view.  The next line allows the materialized 



Texas Tech University, Andrew Courter, December 2010 

 39  

view to rewrite the query to optimize it and make the query more efficient.  The last 

line in Figure 11 is the actual SQL that the materialized view executes. 

              CREATE MATERIALIZED VIEW inv123 

REFRESH FORCE ON COMMIT  

ENABLE QUERY REWRITE AS  

<select statement for invariant> 

Figure 11. Materialized View Example  

 Because the “FAST” refresh requires logs on each table of the SQL query, the 

invariant evaluation Web Service checks to make sure that logs have been created for 

each table in the SQL statement.  Figure 12 describes the functionality of a Web 

Service to evaluate the invariant.  Instead of simply re-executing the SQL query to re-

evaluate the SQL, an invariant evaluation service creates a materialized view and then 

rechecks the materialized view.  After creating any necessary logs, the invariant 

evaluation Web Service checks if the materialized view exists.  If the view does not 

exist the view is created and the number of tuples is queried from the view.  If the 

view already exists then the number of tuples are queried from the view. 

 



Texas Tech University, Andrew Courter, December 2010 

 40  

Figure 12.  Evaluation Web Service Functionality 

5.5 Extensions to DEGS 

 To allow the monitoring of invariants, changes had to be made to the existing 

DEGS System.  Instead of only gathering information about certain attributes in a 

table, all attributes of a table are forwarded to the DEGS.  Figure 13 describes the 

format of the delta after modifying the DEGS.  The original DEGS only gave the old 

and new values of the items that had changed.  Therefore in an update, only one value 

would be stored in the delta.  In order to monitor data conditions, more information 

was needed to narrow down deltas that related to monitored objects.  The DEGS was 

modified to capture all fields so that all information could be parsed in the Delta 

Analysis Agent.  If a column or attribute is unchanged then the old and new values in 

the delta would be the same value.  This new structure gives the Delta Analysis Agent 

the necessary information it needs to filter through deltas and determine if any 

violations have occurred. 

 
Figure 13. New Delta Representation 

In addition to the changes in the delta structure, the Delta Analysis Agent is also now 

incorporated into the DEGS to allow the Delta Analysis Agent to filter out specific 

deltas to check for violations to invariants currently being monitored. 

5.6 The Delta Analysis Process 

 The Delta Analysis Process invokes the filtering of delta information against 

the monitored objects. This section first outlines the storage of information about 

monitored objects.  The remainder of the section outlines the algorithm for filtering 

objects and rechecking invariant conditions.   



Texas Tech University, Andrew Courter, December 2010 

 41  

5.6.1 Invariant Storage Container 
 To support the delta filtering process, a storage container for the monitored 

objects is required.  Figure 14 shows the Delta Analysis Agent (DAA) Invariant 

Storage Container which consists of two hashtables.  The first hash table is the 

table/attribute hashtable containing a vector of invariant identifiers that have 

monitored objects containing the same table/attribute combination as the key.  For 

example, if an invariant is monitoring the price attribute in the orders table then the key 

would be orders/price and the invariant identifier of that invariant would be inserted 

into the container of that key in the table/attribute hashtable.  The second hashtable or 

invariant hashtable uses the invariant identifier as the key and relates that key to a 

container of Monitored Objects of that invariant.  The first monitored object in the 

container contains information about the number of tuples that the last evaluation of 

the invariant found, the current number of violations found against that invariant 

identifier, and the invariant identifier.  The rest of the container holds the monitored 

objects that are related to that invariant so that all conditions related to that invariant 

can be checked at the same time.   



Texas Tech University, Andrew Courter, December 2010 

 42  

 
Figure 14. Delta Analysis Agent Storage Structure 

 Figure 15 introduces the algorithm for updating the DAA structure with new 

invariant information.  The Invariant Agent sends a string containing the invariant 

identifier and the list of monitored objects to the DAA.  The list is tokenized using a 

string tokenizer and while there are more tokens the function continues to build upon 

the temporary monitored object container to be inserted into the DAA structure.  The 

first token is always the invariant identifier.  This token is stored in a temporary 

monitored object and then inserted into the temporary monitored object container.  

The algorithm then loops through the rest of the monitored objects that have been 

tokenized and capture the tablename, attributename, relation, and setvalue in the 

temporary monitored object. This information is then inserted into the temporary 

monitored object container.  If there is already a table/attribute key in the 

table/attribute hashtable, then the algorithm adds the new invariant identifier to the 

invariant container.  If the table/attribute key does not already exist, a new entry is 



Texas Tech University, Andrew Courter, December 2010 

 43  

created.  After looping through all the monitored objects, the algorithm inserts the 

temporary monitored object container into the Invariant hashtable using the invariant 

identifier as the key.  Lastly, the algorithm checks to make sure the hashtable has been 

updated accordingly and returns true if the size is greater than zero and false 

otherwise.   

 
Figure 15. UpdateMonitoring Algorithm 



Texas Tech University, Andrew Courter, December 2010 

 44  

 Figure 16 demonstrates the removal of invariants and monitored objects.  This 

algorithm is used when an invariant that is being monitored needs to be deactivated 

and removed.  Similar to the update monitoring algorithm, a string containing the 

invariant identifier and the list of monitored objects is sent from the Invariant Agent 

when an invariant is being removed or deactivated.  The string is tokenized and the 

while loop continues while there are more tokens.  The invariant identifier is extracted 

from the first token.  Then the following tokens are checked to see if they are a key in 

the table/attribute hashtable.  If a token is a key, then the container of invariant 

identifiers is captured and the invariant identifier of the invariant being removed is 

removed from the container.  If the last or only invariant left in that container was just 

removed then the algorithm removes the entry in the table/attribute hashtable.  After 

removing the invariant identifier from all entries in the table/attribute hashtable, the 

invariant is removed from the Invariant hashtable.  If there are no errors then the 

function returns true and the invariant has been successfully removed from both 

hashtables. 



Texas Tech University, Andrew Courter, December 2010 

 45  

 
Figure 16. RemoveMonitoring Algorithm 

5.6.2 Overview of the Delta Filtering Process 

 To process delta notifications from the Oracle source database, the Delta 

Filtering Process was used. To begin, the DAA receives the table name from a java 

stored procedure in the Oracle database when a table has been modified.  Next, each 

delta table related to that received table name is queried first for inserts, then updates, 

and lastly deletes.  When a delta is found it is sent to the checkForViolations function to 



Texas Tech University, Andrew Courter, December 2010 

 46  

check against the monitored objects currently being monitored.  If enough violations 

are found then the Delta Process Filtering forwards the invariant identifier to the 

Invariant Agent to re-evaluate the invariant condition. 

 To handle inserts, deletes and updates in a delta notification, two algorithms 

were developed.  One algorithm handles insert and delete operations. The other 

algorithm handles updates, where a delta for an update contains old and new values for 

each attribute in the tuple.   

 To allow a more efficient method of determining when to re-evaluate the 

invariant for single tables, a variable containing the number of tuples returned from 

the SQL query was introduced.  When monitoring a single table, if the number of 

tuples equals the number of violations found then there are no more tuples left that 

satisfy the invariant condition and so the Delta Analysis Agent can know that the 

condition has been violated without re-evaluating the condition.  Using the number of 

tuples and number of violations, calling the Invariant Agent to re-evaluate the 

condition can be eliminated, saving unnecessary re-evaluation.  For a single table 

invariant, when an insert is received the Delta Filtering Process checks if the newly 

inserted tuple satisfies all of the conditions in the monitored objects.  If the tuple 

satisfies all of the conditions then the number of tuples is incremented by one.  If the 

tuple does not satisfy all of the conditions then it is ignored.  When a delta containing 

a delete operation is received monitoring a single table the Delta Filtering Process 

checks tuple against all of the monitored object conditions of the invariant.  If the 

tuple satisfies all of the conditions then the number of violations is incremented by 

one.  If the tuple does not satisfy all of the conditions then it is ignored. 

 When monitoring multiple tables a threshold is used instead of comparing the 

number of tuples and the number of violations found.  Invariants that involve join 

conditions and, therefore, multiple tables, require rechecking the invariant condition.  

A tuple from one table can join with multiple tuples from another table. As a result, an 

insert, delete, or update can cause multiple tuples to enter or leave the result of the 

invariant. Furthermore, depending on the number of tuples in the invariant result, these 



Texas Tech University, Andrew Courter, December 2010 

 47  

changes do not necessarily violate the invariant condition.  It is not desirable, 

therefore, to check the invariant after each change to a relevant table.  A threshold 

value is used as a way to periodically initiate a re-evaluation.  A threshold value is a 

percentage of the number of tuples that determines when to re-evaluate the invariant 

condition.  This research has used a threshold value of 25% of the invariant tuples. To 

more accurately determine what threshold to set, statistical analysis of the joins 

involved in the invariant should be used so that re-evaluations occur often enough to 

catch when there are a small number of tuples left and wait long enough between re-

evaluations to reduce overhead as much as possible.  This statistical analysis is beyond 

the scope of this research and is left for future research. 

5.6.3 Delta Filtering Algorithms 

 Figure 17 presents the algorithm that handles a delta that corresponds to an 

insert or delete operation.  The algorithm begins by iterating through each delta 

received that corresponds to either an insert or delete operation in the source database.  

Since the delta contains information about each column in the table, each column or 

attribute in the delta is checked.  The table and attribute combination is checked to see 

if it is a key in the table/attribute hashtable.  If the key exists then the algorithm 

extracts the container of invariant identifiers that relate to this table/attribute.   

 For each invariant identifier, the algorithm gets the monitored object container 

using the Invariant hashtable.  If the algorithm has not already checked this invariant 

identifier then the algorithm checks all the monitored objects inside the monitored 

object container that relate to the table the delta came from.  If this insert or delete 

violates a condition of a monitored object and is not a calculated value, then checking 

the rest of the monitored objects is not necessary.  The algorithm stops checking 

because it is looking for changes that affect the amount of tuples that satisfy the SQL 

condition of the invariant.  If the condition of the insert or delete does not match those 

of the monitored object, then this delta did not affect the amount of tuples.   

 If there is no violation in the entire monitored object container and the delta 

contains a delete operation, then the numViolations variable is incremented in the 



Texas Tech University, Andrew Courter, December 2010 

 48  

monitored object container.  If there is no violation in the entire monitored object 

container and the delta contains an insert operation, and the invariant is over a single 

table, then the tupleCount variable is incremented in the monitored object container.  

Inserts for multiple tables are ignored because the algorithm cannot keep record of 

changes across multiple tables.  After incrementing the numViolations, the threshold is 

calculated by multiplying the number of tuples by the threshold percentage if the 

invariant is monitoring multiple tables.  In an invariant monitoring multiple tables, if 

the number of violations is greater than the threshold then the algorithm forwards the 

invariant identifier to the Invariant Agent to re-evaluate the SQL condition.  Instead of 

re-evaluating the SQL condition after every violation, re-evaluation only occurs after 

the number of violations affect a certain threshold or percentage of tuples.  This 

minimizes the number of re-evaluations to only happen when an increased amount of 

activity has been seen in tuples related to the SQL condition.  If the invariant is 

monitoring a single table then the algorithm compares the numViolations to the 

tupleCount.  If these values are equal then there are no more tuples and the algorithm 

forwards the invariant identifier to the Invariant Agent to re-evaluate the SQL 

condition.   

The following cases illustrate different aspects of the filtering process. 

 

Case 1: Single table insert 

Invariant: “select r.price from room r where r.price < ‘30’ and r.roomType = ‘seaview’ 

and r.hotelid = ‘234’“ 

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (room, 

hotelid, =, ‘234’)] 

Number of Satisfying Tuples: 1 

Case Description: If a tuple satisfying all of the monitored object conditions is inserted 

into the room table, then the number of tuples is incremented by one.  If even one of 

the monitored object conditions is violated by the tuple then the number of tuples is 

not incremented. 



Texas Tech University, Andrew Courter, December 2010 

 49  

 

Case 2: Single table delete 

Invariant: “select r.price from room r where r.price < ‘30’ and r.roomType = ‘seaview’ 

and r.hotelid = ‘234’“ 

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (room, 

hotelid, =, ‘234’)] 

Number of Satisfying Tuples: 1 

Case Description: If the one tuple is deleted by an external process then the number of 

violations will be incremented and the number of tuples will equal the number of 

violations.  Therefore, notification will be sent to the process monitoring the invariant 

condition, the invariant will be removed from the monitoring process, and the process 

will be informed of the violation. 

 

Case 3: Multiple table insert 

Invariant: “select r.price from room r, hotel h where r.price < ‘30’ and r.roomType = 

‘seaview’ and r.hotelid = h.hotelid and h.state = ‘Texas’“ 

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (hotel, 

state, =, ‘Texas’)] 

Number of Satisfying Tuples: 25 

Threshold: 25% 

Case Description:  All inserts into multiple table invariants are ignored.  Inserting 

tuples can potentially increase the size of the number of tuples that satisfy the 

invariant condition, but will not cause a violation. 

 

Case 4: Multiple table delete 

Invariant: “select r.price from room r, hotel h where r.price < ‘30’ and r.roomType = 

‘seaview’ and r.hotelid = h.hotelid and h.state = ‘Texas’“ 

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (hotel, 

state, =, ‘Texas’)] 



Texas Tech University, Andrew Courter, December 2010 

 50  

Number of Satisfying Tuples: 25 

Threshold: 25%  

Case Description: If 7 tuples from the room table satisfying the invariant condition are 

deleted one after another by an external process then the number of violations will be 

incremented each time and after the seventh deletion the number of violations will be 

greater than the threshold(7 > .25*25).  Therefore, the invariant condition will be re-

evaluated and because tuples are found, the invariant will update the number of tuples, 

reset the number of violations to zero and continue monitoring.  If the process 

continues and after another re-evaluation no more tuples were found, notification 

would be sent to the process monitoring the invariant condition and the invariant 

would be removed.   

 If a tuple in the hotel table that is in ‘Texas’ is deleted by an external process 

and this deletion triggers 7 rooms related to that hotel to also be deleted.  Then, after 

the seventh deletion from the room table the number of violations will be greater than 

the threshold (7 > .25*25). Therefore, the invariant condition will be re-evaluated and 

because tuples are found, the invariant will update the number of tuples, reset the 

number of violations to zero and continue monitoring.  If the process continues and 

after another re-evaluation no more tuples were found, notification would be sent to 

the process monitoring the invariant condition and the invariant would be removed.   



Texas Tech University, Andrew Courter, December 2010 

 51  

 
Figure 17. Checking Insert or Delete Delta Algorithm 

 Figure 18 presents the algorithm that handles a delta that corresponds to an 

update operation.  The algorithm begins by iterating through each delta received that 

corresponds to an update operation in the source database.  Since the delta contains 

information about each column in the table, each column or attribute in the delta is 

checked.  The table and attribute combination are checked to see if they are a key in 

the table/attribute hashtable.  If the key exists then the algorithm extracts the container 

of invariant identifiers that relate to this table/attribute.   



Texas Tech University, Andrew Courter, December 2010 

 52  

 For each invariant identifier, the algorithm gets the monitored object container 

using the Invariant hashtable.  If the algorithm has not already checked this invariant 

identifier then it continues to check all the monitored objects inside the monitored 

object container that relate to the table the delta came from.  An update operation can 

have one or more values that have been changed and one or more values that stay the 

same.  Therefore, for the attributes that have been changed in this delta, if the attribute 

is a calculated value or if the change violates the condition being monitored by the 

current monitored object in the monitored object container, the algorithm flags this 

attribute for a violation.   

 If the attribute has not been changed, the attribute value must be the same as 

the condition specified in the current monitored object.  If the unchanged attribute 

violates the condition specified in the current monitored object then this delta does not 

relate to the current monitored object and the algorithm stops checking the monitored 

object container.  If at least one violation is found and a violation is not encountered 

for unchanged values in the monitored object container then the algorithm increments 

the number of violations. After incrementing the numViolations, the threshold is 

calculated by multiplying the number of tuples by the threshold percentage if the 

invariant is monitoring multiple tables.  In an invariant monitoring multiple tables, if 

the number of violations is greater than the threshold then the algorithm forwards the 

invariant identifier to the Invariant Agent to re-evaluate the SQL condition.  If the 

invariant is monitoring a single table then the algorithm compares the numViolations to 

the tupleCount.  If these values are equal then there are no more tuples and the 

algorithm forwards the invariant identifier to the Invariant Agent to re-evaluate the 

SQL condition.   

 The following cases illustrate the filtering process described in the algorithm. 

 

Case 1: Single table update 

Invariant: “select r.price from room r where r.price < ‘30’ and r.roomType = ‘seaview’ 

and r.hotelid = ‘234’“ 



Texas Tech University, Andrew Courter, December 2010 

 53  

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (room, 

hotelid, =, ‘234’)] 

Number of Satisfying Tuples: 25  

Case Description: Assume a tuple satisfying the invariant condition is updated by an 

external process to now have a price of ‘60’ and the roomType to ‘noview’.  Because 

the tuple used to satisfy the invariant before the change in price and roomType, a 

violation is found and the number of violations is incremented.  But, because the 

number of violations is not equal to the number of tuples, no action is taken.  If the 

external process continues to update tuples, changing any or all of the attributes that 

are being monitored by the monitored objects until the number of violations is 25 then 

the number of violations and the number of tuples will equal the number of violations.  

Therefore, notification will be sent to the process monitoring the invariant condition 

and the invariant will update the number of tuples, reset the number of violations to 

zero, and notify the process if the number of tuples is zero.  If the number of tuples 

equals zero then the invariant and monitored objects will also be removed. 

 

Case 2: Multiple table update 

Invariant: “select r.price from room r, hotel h where r.price < ‘30’ and r.roomType = 

‘seaview’ and r.hotelid = h.hotelid and h.state = ‘Texas’“ 

Monitored Objects: [(room, price, <, ‘30’), (room, roomType, =, ‘seaview’), (hotel, 

state, =, ‘Texas’)] 

Number of Satisfying Tuples: 25 

Threshold: 25%  

Case Description: If a tuple in the room table satisfying the invariant condition is 

updated by an external process to now have a price of ‘60’ and the roomType to 

‘noview’.  Because the tuple used to satisfy the invariant before the change in price 

and roomType, a violation is found and the number of violations is incremented.  But, 

because the number of violations is not greater than to the threshold(1 < .25*25), no 

action is taken.  If the external process continues to update tuples, changing any or all 



Texas Tech University, Andrew Courter, December 2010 

 54  

of the attributes that are being monitored by the monitored objects until the number of 

violations are greater than the threshold.  Therefore, the invariant condition will be re-

evaluated and because tuples are found, the invariant will update the number of tuples, 

reset the number of violations to zero and continue monitoring.  If the process 

continues and after another re-evaluation no more tuples were found, notification 

would be sent to the process monitoring the invariant condition and the invariant 

would be removed.   

 If a tuple in the hotel table that is in ‘Texas’ is updated by an external process 

and this update triggers 7 rooms related to that hotel to also be updated.  Then, after 

the seventh update from the room table the number of violations will be greater than 

the threshold (7 > .25*25). Therefore, the invariant condition will be re-evaluated and 

because tuples are found, the invariant will update the number of tuples, reset the 

number of violations to zero and continue monitoring.  If the process continues and 

after another re-evaluation no more tuples were found, notification would be sent to 

the process monitoring the invariant condition and the invariant would be removed.   



Texas Tech University, Andrew Courter, December 2010 

 55  

 
Figure 18. Checking Update Delta Algorithm 

 Figure 19 describes the updateTupleInv function that is called after evaluating 

the invariant condition.  The Invariant Agent receives the number of tuples from the 

SQL evaluation Web Service and forwards the invariant identifier and the number of 



Texas Tech University, Andrew Courter, December 2010 

 56  

tuples to the updateTupleInv function.  The function begins by separating the invariant 

identifier from the number of tuples using a String tokenizer.  After extracting the 

invariant identifier, the algorithm checks to make sure it is monitoring this invariant 

identifier in the first hashtable.  If the invariant identifier is not found in the hashtable 

then there is an error and something did not execute correctly.  Next, the Monitored 

Object Container related to the invariant identifier is retrieved and the tupleCount is 

updated to the received value of the tuple count.  The number of violations is then 

reset back to zero and the update is successful. However, if there are no more tuples 

then monitoring of this invariant identifier is removed because a violation has 

occurred.  The algorithm iterates through the monitored objects in the Monitored 

Object Container and builds the String to send to the removeMonitoring function that 

was previously described.  The removeMonitoring function will take care of removing 

the invariant and its Monitored Object Container so that the Delta Analysis Agent will 

no longer be monitoring those data conditions.  After finishing, the function returns 

true if there were no errors and the number of tuples and number of violations has 

been successfully updated. 

 
Figure 19. UpdateInvTupleCount Algorithm 



Texas Tech University, Andrew Courter, December 2010 

 57  

CHAPTER VI 

TESTING AND EVALUATION OF THE INVARIANT MONITORING SYSTEM 

 To evaluate the prototype of the Invariant Monitoring System, a testing 

environment and test cases were created and initialized.  The primary focus of the 

evaluation was on the performance of the Invariant Evaluation Web Service to 

determine if the use of materialized views improves the performance of the re-

evaluation process. 

 Section 6.1 describes the test environment and the setup of the test 

environment.  Section 6.2 and its sub-sections describe specific test cases and Section 

6.3 provides results of the evaluation. 

6.1 Testing Environment Setup 

 The testing example used was the Hotel monitoring example that was 

previously described.  This example required two tables, a Hotel table and a Room 

table.  Figure 20 shows the tables and their column names used for this example.   

 
Figure 20. Example Table Structure 

 Next, the DEGS was setup to monitor changes to all columns of both the Hotel 

table and the Room table.  After setting up the delta monitoring in the source database, 

a process with Assurance Points was created for activating and deactivating different 

test invariants.  Another concurrent process was also needed to modify the monitored 

data in the source database.  As a result, an additional Web Service was created to 



Texas Tech University, Andrew Courter, December 2010 

 58  

insert, update and delete data in the source database and was deployed along with a 

client to pass information to the Web Service.   

 To test the example, the capture and apply procedures for the Oracle Streams 

features were started in the source database to make sure delta notifications are 

received when an operation was done on either the hotel or room tables.  Next, the 

DEGS and Invariant Monitoring System were deployed inside of the container of all 

the Grid Services using the OGSA-DAI framework.  After deploying the DEGS and 

Invariant Monitoring System, the process with assurance points was executed, calling 

the Invariant Monitoring System to activate the invariant upon reaching the startAP.  

This setup was used to test cases to evaluate the functionality of the Invariant 

Monitoring System can be investigated. 

6.2 Test Cases 

 To test the performance of the Invariant Evaluation Web Service, two groups 

of test cases similar to those previously explained in Chapter 5 were used.  Both test 

cases used were over multiple tables so that the Invariant Evaluation Web Service 

would be called.  Since re-evaluation occurs primarily in the context of multiple table 

invariants, the focus of the evaluation was on invariants that involve join conditions.  

The first test case updated 25 tuples, with changes ranging from satisfying the 

invariant condition to not satisfying the invariant condition.  These updates triggered 

the invariant condition to be re-evaluated, but the test was design so that the invariant 

condition was still satisfied and, as a result, the invariant was not removed.  The 

second test case updated all of the tuples with the changes ranging from satisfying the 

invariant condition to not satisfying the invariant condition.  This test group was 

designed so that the invariant was violated and, as a result, monitoring of the invariant 

was removed.  The performance of both test cases is described in the next section. 

6.3 Performance of Invariant Evaluation 

 The primary focus of this performance evaluation is based on the performance 

of the Invariant Evaluation Web Service and calling the Web Service from the 



Texas Tech University, Andrew Courter, December 2010 

 59  

Invariant Agent and the Delta Analysis Agent.  The performance of the Invariant 

Evaluation Web Service is crucial to the Invariant Monitoring System because the 

invariant condition must be evaluated often.  The more efficient the Web Service is, 

the more efficient the Invariant Monitoring System can be.  Table 1 describes different 

measurements that were taken and the times that each took.  Using the multiple table 

test cases described above, the time it took to execute tasks in the Invariant Monitoring 

System were observed.   
 The measurements taken include creating the materialized view, total time of 

the evaluation Web Service, evaluating from the Invariant Agent, evaluating from the 

Delta Analysis Agent, selecting from the materialized view, and executing the SQL 

instead of creating a materialized view.  Creating the materialized view is done when 

the view does not already exist and the time it takes includes creating the view and 

extracting the number of tuples from the newly created view.  The total time of the 

evaluation Web Service includes checking and creating any logs, and either creating 

and querying from the materialized view or just querying from the materialized view if 

it already exists.  Evaluating from the Invariant Agent is the time is takes to call and 

receive feedback from the re-evaluation function in the Invariant Agent for evaluating 

the invariant condition the first time.  Evaluating from the Delta Analysis Agent is the 

time is takes to call and receive feedback from the re-evaluation function in the 

Invariant Agent and the time taken can also include the time it takes to remove the 

invariant condition if there are no more tuples.  The time measurement for selecting 

from the materialized view is the time required to extract the number of tuples from a 

view that already exists.  Executing the SQL is the time it takes to re-execute the 

invariant condition instead of creating a materialized view and querying from it.   

 Both multiple table test cases were executed 25 times and an average time in 

microseconds was recorded for all measurements.  During testing, the Oracle database 

used had at least 100 tuples that satisfied the invariant condition on the initial 

evaluation.  The machine used for testing was a Dell Precision T3400 with 2.99GHz 



Texas Tech University, Andrew Courter, December 2010 

 60  

Intel Core 2 Extreme processor and 4Gb of RAM, running Microsoft Windows XP 

Professional x64 Edition.   

 Creating the materialized view in both multiple table test cases took about the 

same time as well as the total time the evaluation Web Service took.  As can be seen 

from Table 1, the values that are significantly different in the test cases are the times 

for evaluating from the Delta Analysis Agent.  This time difference is because the 

invariant condition is completely removed from the Invariant Agent and Delta 

Analysis Agent before returning back from the Delta Analysis Agent evaluation.   

 A key observation from Table 1 is that the time difference between creating the 

materialized view and just querying from the materialized view is significantly 

different and affects the invariant evaluation time.  The time it takes to query from an 

existing materialized view is also much less than using the SQL to repeatedly query 

the source database from the evaluation Web Service.  If the process is long running 

between the starting and ending APs of an invariant and might potentially re-execute 

the SQL query of the invariant often, then creating the materialized view is beneficial, 

otherwise using the SQL would be a better choice for shorter process.   

 In addition to using the most efficient way of re-evaluation, fine tuning the 

SQL statement to narrow down the search space can potentially eliminate having to re-

evaluate the SQL statement more than once, saving even more execution time.  Figure 

21 presents two invariants that are monitoring similar attributes from the room table.  

Invariant 1 is looking for a room with a price less than 30, with a roomType of ‘seaview’ 

and in ‘Texas’.  This is a general select statement and because multiple tables are 

involved a join must happen between the hotel and room table.  Invariant 2 is looking 

for a room with a price less than 30, with a roomType of ‘seaview’ and in the hotel with 

hotelid ‘234’.  This query is more specific and is querying only one table as opposed to 

two.  Therefore there are no joins in invariant 2 and this invariant condition will 

execute faster than invariant 1.  Simplifying the SQL results in less overhead and 

saving execution time. 



Texas Tech University, Andrew Courter, December 2010 

 61  

 

Figure 21. Invariant SQL Comparison 

 

Table 1. Performance of Multiple Test Cases 

Measurement Description Avg Time (Microsec) with 

Invariant Removal 

Avg Time (Microsec) 

without Invariant Removal 

Creating Materialized 

View 

249492     269974 

EvalWS Total Time 371234 371025 

Evaluating from Invariant 

Agent 

575150 603457 

Select from Existing 

Materialized View 

452 443 

EvalWS Total Time 

(without creating 

materialized view) 

107844 117455 

Evaluating from Delta 

Analysis Agent 

618913 292364 

Executing Select Query 2143 2079 

 

 



Texas Tech University, Andrew Courter, December 2010 

 62  

CHAPTER VII 

SUMMARY AND FUTURE RESEARCH 

To investigate the invariant concept, this research involved the design of an 

invariant monitoring system. The system included an Invariant Agent and a Delta 

Analysis Agent.  The Invariant Agent begins the monitoring process by registering the 

invariant condition and is a key component in the re-evaluation of the condition.  The 

Delta Analysis Agent filters through delta notifications from the DEGS system and 

determines if and when an invariant condition must be re-evaluated. The work is 

supported by a Web Service for evaluating invariants. Since an invariant may need to 

be evaluated several times between Assurance Points, the Web Service was designed 

to make use of materialized views for more efficient re-evaluation of invariant 

conditions.  

 Future research should include more efficient methods of checking invariant 

conditions.  Using the DEGS to monitor the created materialized views could provide 

a more immediate and less complex solution to monitoring multiple tables.  The key to 

monitoring the materialized views would be to determine when a tuple has been 

inserted, deleted or updated.  The DEGS relies on the insert, delete or update 

commands for transaction logs to determine what action to take.  The transaction logs, 

however, do not include changes in a materialized view.  If changes to a materialized 

view could be monitored by the Oracle Streams system, then invariant condition 

checking would be more efficient.  More statistical analysis of the threshold value 

should also be done to fine tune the number and frequency of re-evaluations.  The 

analysis should look into how often the tables in join conditions are changed and how 

many changes are made over certain periods of time.  Additionally, the evaluation 

Web Service could be modified to add a push feature to notify the Invariant Agent 

when the number of tuples in a materialized view has reached zero.  If the DEGS 

system were to still be a key part in the Invariant Monitoring System, then more 



Texas Tech University, Andrew Courter, December 2010 

 63  

research should be done into how to handle a heavy load of delta notifications, 

possibly using time stamping to handle a busy execution environment.  

Further performance testing should also be done by executing concurrent 

processes that have APs and invariants and observing the performance under different 

conditions related to the overlap of the data that they access and modify. Future 

research should also include an investigation of the methodology for using invariants 

to determine the types of applications that are more appropriate for the expression of 

invariants.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Andrew Courter, December 2010 

 64  

 

 

 

 

REFERENCES 

 
Baker, A., Leavens, G., & Ruby, C. (2005). Preliminary Design of JML: A Behavioral 

Interface Specification Language for Java. TR 98-06-rev27, Iowa State 
University.    

Baresi, L., Ghezzi, C., & Guinea, S. (2004). Smart Monitors for Composed Services. 
Proceedings of the 2nd International Conference on Service Oriented 
Computing.  

Baresi, L., & Guinea, S. (2005). Towards Dynamic Monitoring of WS-BPEL 
Processes. Service-Oriented Computing-ICSOC 2005, vol 3826, pp. 269-282.  

Blake, L. Y. (2005). Design and Implementation of Delta-Enabled Grid Services. M.S. 
Thesis, Arizona State University.    

Charfi, A., & Mezini, M. (2006). Aspect-Oriented Workflow Languages. Lecture 
Notes in Computer Science, 4275(183).  

Charfi, A., & Mezini, M. (2007). AO4BPEL: An Aspect-Oriented Extension to BPEL. 
World Wide Web, 10(3), pp. 309-344.  

Elmasri, R. Y., & Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.): 
Addison-Wesley Longman Publishing Co., Inc. 

Garcia-Molina, H., & Salem, K. (1987). Sagas. Proceedings of the ACM SIGMOD 
Conference, pp249-259.  

Georgakopoulos, D., Hornick, M., Krychniak, P., & Manola, F. (1994). Specification 
and Management of Extended Transactions in a Programmable Transaction 
Environment. Proceedings of the International Conference of Data 
Engineering, IEEE, Los Alamitos, Ca,(USA), 1994, pp. 462-473.  

Greenfield, P., Fekete, A., Jang, J., & Kuo, D. (2003). Compensation is Not Enough. 
Proceedings of the 7th International Enterprise Distributed Object Computing 
Conference (EDOC).  

Irwin, J., Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., et al. 
(1997). Aspect-Oriented Programming. Proceedings of the European 
Conference on Object-Oriented Programming (ECOOP).  

Jin, W., Rusinkiewicz, M., Ness, L., & Sheth, A. (1993). Concurrency Control and 
Recovery of Multidatabase Work Flows in Telecommunication Applications. 
Proceedings of the 1993 ACM SIGMOD International Conference on 
Management of Data, pp. 456-459.  

Jin, Y. (2004). An Architecture and Execution Environment for Component 
Integration Rules: Ph.D Dissertation, Arizona State University. 



Texas Tech University, Andrew Courter, December 2010 

 65  

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. (2001). 
An overview of AspectJ. Lecture Notes in Computer Science, pp327-353.  

Limthanmaphon, B., & Zhang, Y. (2004). Web Service Composition Transaction 
Management. Proceedings of the Fifteenth Australian Database Conference, 
vol. 27 of CRPIT, pp. 171-179.  

Liu, Z. (2009). Decentralized Data Dependency Analysis for Concurrent Process 
Execution. M.S. Thesis, Texas Tech University.    

Luckham, D. C. (1990). Programming with Specifications: An Introduction to Anna, 
A Language for Specifying Ada Programs. Texts and Monographs in 
Computer Science.  

Martens, A. (2005). Analyzing Web Service Based Business Processes. M. Cerioli, 
Editor, Proceedings of 8th International Conference on Fundamental 
Approaches to Software Engineering FASE 2005, Lecture Notes in Computer 
Science vol. 3442, pp. 19-33.  

Mikalsen, T., Tai, S., & Rouvellou, I. (2002). Transactional Attitudes: Reliable 
Composition of Autonomous Web Services. Workshop on Dependable 
Middleware Based Systems.  

Mikalsen, T., Tai, S., & Rouvellou, I. (March 2002). Transactional attitudes: Reliable 
composition of autonomous Web services. in Workshop on Dependable 
Middleware Based Systems.  

Moffat, A., & Zobel, J. (2006). Inverted Files for Text Search Engines. ACM 
Computing Survey, 38(2).  

Papazoglou, M. P. (2003). Web Services and Business Transactions. World Wide Web, 
vol. 6(1), pp49-91.  

Reichert, M., & Dadam, P. (1998). ADEPT Flex Supporting Dynamic Changes of 
Workflows Without Losing Control. Journal of Intelligent Information 
Systems, vol. 10(2), pp. 93-129.  

Reuter, A., & Wächter, H. (1991). The Contract Model A. Elmagarmid (ed.), 
Database Transaction Models for Advanced Applications: Morgan Kaufmann 
Publishers. 

Shrestha, R. (2010). Using Assurance Points and Integration Rules for Recovery in 
Service Composition. M.S. Thesis, Texas Tech University.    

Shuman, M. (2010). A Database Service for Checking Invariants. Technical Report, 
Department of Computer Science, Texas Tech University. 

Urban, S. D., Dietrich, S. W., Na, Y., Jin, Y., Sundermier, A., & Saxena, A. (2001). 
The IRules Project: Using Active Rules for the Integration of Distributed 
Software Components. Proceedings of the 9th IFIP Working Conference on 
Database Semantics: Semantic Issues in E-Commerce Systems, pp. 265-286.  

Urban, S. D., Xiao, Y., Blake, L., & Dietrich, S. W. (2009). Monitoring Data 
Dependencies in Concurrent Process Execution through Delta-Enabled Grid 
Services. 5(1), pp85-106.  

Worah, D., & Sheth, A. (1997). Transactions in Transactional Workflows Advanced 
Transaction Models and Architectures, edited by S. Jajodia and L. Kershberg: 
Springer. 



Texas Tech University, Andrew Courter, December 2010 

 66  

Wu, G., Wei, J., & Huang, T. (2008). Flexible pattern monitoring for WS-BPEL 
through stateful aspect extension. ICWS '08, Beijing, China.  

Wu, G., Wei, J., Ye, C., Zhong, H., & Huang, T. (2010). Detecting Data Inconsistency 
Failure of Composite Web Services through Parametric Stateful Aspect. 2010 
IEEE International Conference on Web Services.  

Zhao, W., Moser, L. E., & Melliar-Smith, P. M. (2009). A reservation-based 
coordination protocol for Web Services. In Proceedings of 3rd IEEE 
International Conference on Web Services (ICWS’05).  

 
 


