Achieving Recovery in Service Composition with Assurance Pointsand

Integration Rules

Short Paper

Susan D. Urban, Le Gao, Rajiv Shrestha, and An@eurter
Texas Tech University, Department of Computer Smen
Lubbock, TX 79409 +1-806-742-2484
{susan.urban | le.gao | rajiv.shrestha | s.cou@tu.edu

Abstract. This paper defines the concept of Assurance P@his)
together with the use of integration rules to pdeva flexible way of
checking constraints and responding to executioorgrin service
composition. An AP is a combined logical and phgbicheckpoint,
providing an execution milestone that stores aitidata and interacts
with integration rules to alter program flow and itovoke different
forms of recovery depending on the execution stabuging normal
execution, APs invoke rules that check pre-condgjgost-conditions,
and other application rules. When execution eromaur, APs are also
used as rollback points. Integration rules can levioackward recovery
to specific APs using compensation as well as fodweecovery
through rechecking of preconditions before rettgrapts or through
execution of contingencies and alternative exeautjmaths. APs
together with integration rules provide an increblesel of consistency
checking as well as backward and forward recovetip@as.

Keywords: service composition; data consistency, recovery,
compensation, contingency, retry, checkpoints.

1 Introduction

Web Services and service-oriented computing arerbaw widely used for business-
to-business integration. Prevalent techniques$724] have been widely adopted for
process modeling, with execution engines basedtamdards such as the Business
Process Execution Language (BPEL) [10] providinfaanework for execution of
processes composed of services. Service composftonbusiness integration,
however, creates challenges for traditional procgsdeling techniques.

In a service execution environment, a process medtexible enough to respond
to errors, exceptions, and interruptions. Backward forward recovery mechanisms
[13] can be used to respond to such events. Fongea compensation is a backward
recovery mechanism that performs a logical undoatfms. Contingency is a forward
recovery mechanism that provides an alternativeeugien path to keep a process
running. Nevertheless, most service compositiohrtiggies do not provide flexibility

with respect to the combined use of compensatiod eontingency. Service
composition models need to be enhanced with fesitilnat allow processes to assess
their execution status to support more dynamic vaygsponding to failures, while
at the same time validating correctness conditfongrocess execution.

This paper presents our investigationAsturance Points (APs) andintegration
rules to provide a more flexible way of checking constte and responding to
execution failures. An AP is a combined logical gpidysical checkpoint. As a
physical checkpoint, an AP provides a way to stdaga at critical points in the
execution of a process. Unlike past work with clpetiting [6, 15], our work focuses
on the use of APs for user-defined consistencylihgcnd rollback points that can
be used to maximize forward recovery options wtalurfes occur. In particular, an
AP provides an execution milestone that interadth wtegration rules. The data
stored at an AP is passed as parameters to irtegrates that are used to check pre-
conditions, post-conditions, and other applicatonditions. Failure of a pre or post-
condition or the failure of a service execution @avoke several different forms of
recovery, including backward recovery of the entpeocess, retry attempts, or
execution of contingent procedures. The unique @speAPs is that they provide
intermediate rollback points when failures occumtthallow a process to be
compensated to a specific AP for the purpose dfigeking pre-conditions before
retry attempts or the execution of contingent pdoces.

In this paper, we describe the interaction among,ARtegration rules, and the
different forms of recovery actions as defined20][illustrating the functionality of
these concepts using an online shopping scenar@théh provide a comparison of
our approach to the fault handling and recoverycgdores in BPEL [11]. The
primary contribution of our work is found in thepixit support provided for user-
defined constraints, with rule-driven recovery aes for compensation, retry, and
contingency procedures that support flexibility lwiespect to the combined use of
backward and forward recovery options.

2 Redated Work

From a historical point of view, our work is fourtden past work with Advanced
Transaction Models (ATMs). ATMs provide better sagpfor Long Running
Transactions (LRTSs) that need relaxed atomicity msothtion properties [4]. In the
work of [8], sagas were defined as a mechanisntrt@tsire long running processes,
with each sub-transaction having a compensatingegghare to reverse the affects of
the saga when it fails. Other advanced transaatiodels have also made use of
compensation for hierarchically structured transast[18].

More recently, events and rules have been usdgrtamically specify control flow
and data flow in a process by using Event Condifiation (ECA) rules [17]. ECA
rules have also been successfully implementedxoepmion handling in work such as
[2, 14]. The work in [14] uses ECA rules to generadliable and fault-tolerant BPEL
processes to overcome the limited fault handlirgpbdity of BPEL. Our work with
assurance points also supports the use of ruldsst#parate fault handling from

normal business logic. Combined with assurancetpointegration rules are used to
integrate user-defined consistency constraints thighrecovery process.

Several efforts have been made to enhance the BiHland exception handling
capabilities. BPEL4Job [21] addresses fault-hagddiasign for job flow management
with the ability to migrate flow instances. The wan [16] proposes mechanisms like
external variable setting, future alternative betwgvrollback and conditional re-
execution of the Flow, timeout, and redo mechanifinenabling recovery actions
using BPEL. The Dynamo [1] framework for the dynarmonitoring of WS-BPEL
processes weaves rules such as pre/post condaimhsinvariants into the BPEL
process. Most of these projects do not fully inségrconstraint checking with a
variety of recovery actions as in our work to supmaore dynamic and flexible ways
of reacting to failures. Our research demonstritesviability of variegated recovery
approaches within a BPEL-like execution environment

In checkpointing systems, consistent executiorestate saved during the process
flow. During failures and exceptions, the activign be rolled back to the closest
consistent checkpoint to move the execution to lgerraative platform [6, 15]. The
AP concept presented in this paper also storasaréxecution data, but uses the data
as parameters to rules that perform constraintkthgand invoke different types of
recovery actions.

The work in [3] illustrates the application of asperiented software development
concepts to workflow languages to provide flexilded adaptable workflows.
AO4BPEL [4] is an aspect-oriented extension to BREAt uses AspectJ to provide
control flow adaptations [12]. Assurance Points a&imilar to aspect-oriented
programming but are more fully integrated into {h@cess execution engine for
support of recovery actions.

3 Service Composition and Recovery with Assurance Points

This section summarizes the service compositionrandvery model from [25]. We
then define and illustrate the use of assurancetpand integration rules in the
context of this model.

3.1 Overview of the Model

In [25], a process is defined as a top-level exeoutntity that is composed of other
execution entities. A process is denotedviasvherep represents a process and the
subscripti represents a unique identifier of the process.ofaration represents a
service invocation, denoted aij, such thatop is an operationj identifies the
enclosing procesg, andj represents the unique identifier of the operatidthin pi.
Compensation cbpij) is an operation intended for backward recovenhilav
contingencyopi;) is an operation used for forward recovery.

Atomic groups and composite groups are logical ettec units that enable the
specification of processes with complex controlustre, facilitating service
execution failure recovery by adding scopes withancontext of a process execution.
An atomic group (denoteal;) contains an operation, an optional compensatad,

an optional contingency. A composite group (denaiggd may contain multiple
atomic groups, and/or multiple composite groupst tiweecute sequentially or in
parallel. A composite group can have its own corsp8aon and contingency as
optional elements. Contingency is always triect finson the failure of an atomic or
composite group. Compensation, on the other haa recovery activity that is only
applied as a way to reverse the effects of completemic and composite groups.

Figure 1 shows an online shopping process thatsed as an example in the
remainder of the paper. The process is compos¢iaredé composite groupsgf, cgz
andcgs). The groupcg: contains four atomic groups and a compensatingeghare
(cg1.cop) that is attached to the entire group, which isvmn as shallow compensation.
Shallow compensation involves the execution of mmensating procedure that will
reverse the effects of the entire composite gréugomparisonggz is composed of
two atomic groups, where each atomic group hasws compensating procedure
(agz21.cop and agz2.cop), which is known as deep compensation. Deep cosgtiem
involves the execution of compensating procedwesgdch group within a composite
group. In addition, the atomic growgz1 also has a contingent proceduag:{top)
that will be executed ifgz fails. The composite grouggs also has a contingent
procedure dgs.top). The reader should refer to [25] for a more fdrpr@sentation of
the recovery semantics for shallow compensationgpdeompensation, and
contingency in the context of the service compesithodel.

3.2 Asaurance Point and Rule Extensions

Our work has extended the model described in tegipus section with the concept
of assurance points, which are depicted in Figur@s lovals. An AP is a process
execution correctness guard as well as a potewntiglack point during the recovery

process. Given that concurrent processes do notiexas traditional transactions in a
service-oriented environment, inserting APs aiaaitpoints in a process is important
for checking consistency constraints and potegtiedducing the risk of failure or

inconsistent data. An AP also serves as a milesfonebackward and forward

recovery activities. When failures occur, APs can used as rollback points for
backward recovery, rechecking pre-conditions releva forward recovery. In the

current version of our work, we assume that APspdaeed at points in a process
where they are only executed once, and not embdddestative control structures.

An AP is defined asAP = <apld, apParameters®, IRpre?, IRpost?, IRcond™, whereaplD is
the unique identifier of the ARpParameters is a list of critical data items to be stored
as part of the APIRye is an integration rule defining a pre-conditidRpest iS an
integration rule defining a post-condition, aldne is an integration rule defining
additional application rules. In the above notatioimdicates O or more occurrences,
while ? indicates zero or one optional occurrences.

IRpre, IRpost, @andIRcong are expressed as Event-Condition-Action (ECA)gllesed
on the use of integration rules to interconnectvemfe components [9, 22]. An IR is
triggered by a process reaching an AP during ei@tutvhere an AP serves as the
event of an integration rule. Upon reaching an the,condition of an IR is evaluated.

cgl

agt | Add to cart |

]

ag12 | Select shipping method |

ag13 | Payment information input |

v

ag14 | Place an order |
|

{UegTeep
. (AkortQrder).

cg2

ag21.cop(creditBack)
ag21.top(eCheckPay)

ag21 Charge credit card

ag22 ag22.cop(incinventory)

CreditCardCharged (orderld, cardNumber, amount)

UPS USPS

cg3

ag31 ag32

UPS shipping | | USPS shipping |

egdtop
UPSShipped(orderld,) i (Fedex
UPSShippingDate) USPSShipped (orderld) — shipping). |

Deliver order

Delivered(orderld, shippingMethod, deliveryDate)

A

Check next day
automatically

| Order Close |

Fig. 1. Online Shopping Process with APs

The action specification is executed if the ruledition evaluates to true. FdRpre
and IRpest, @ constrainC is always expressed in a negative fqnui(C)). An action
(action 1) is invoked if the pre or post condition is nater invoking a recovery action
or an alternative execution path. If the specifietion is a retry activity, then there
is a possibility for the process to execute throtigh same pre or post condition a
second time. As a result, integration rules supplogt capability of specifying a
second actionagtion 2).
In its most basic form, a recovery action simplydkes an alternative process.
Recovery actions can also be one of the followittgpas:
- APRoallback: APRollback is used when the entire process needsmpensate its
way back to the start of the process accordinghto semantics of the service
compensation model.

- APRetry: APRetry is used when the running process needbetdackward
recovered using compensation to a specific AP. &gault, the backward recovery
process will go to the first AP reached as pathefshallow or deep compensation
process within the same scope. The pre-conditifinattin the AP is re-checked.
If the pre-condition is satisfied, the process eien is resumed from that AP by
re-trying the recovered operations. Otherwise attéon of the pre-condition rule
is executed. The APRetry command can optionallgigp@ parameter indicating
the AP that is the target of the backward recopeogess.

- APCascadedContingency (APCC): APCC is a backward recovery process that
searches backwards through the hierarchical nesfisgmposite groups to find a
possible contingent procedure for a failed compogitoup. During the APCC
backward recovery process, when an AP is foundrbedocomposite group, the
pre-condition defined in the AP will be re-checlefore invoking any contingent
procedures for forward recovery. APC is specificaited as a means of forward
recovery from nested composite groups.

The most basic use of an AP together with integratules is shown in Figure 2,
which shows a process with three composite groups @an AP between each
composite group. The shaded box shows the fundifprad an AP usingAP2 as an
example. Each AP serves as a checkpoint facflttying execution status data in a
checkpoint database\R data in Figure 2). When the execution reachd®, IRs
associated with the AP are invoked. The conditibramIRyest is evaluated first to
validate the execution afj.. If the post-condition is violated, the action aked can
be one of the pre-defined recovery actions as destabove. If the post-condition is
not violated, then afRpe rule is evaluated to check the pre-condition fog hext
service execution. If the pre-condition is violgtexhe of the pre-defined recovery
actions will be invoked. If the pre-condition istiséed, the AP will check for any
additional, conditional ruledReond) that may have been expressdng rules do not
affect the normal flow of execution but provide aywto invoke additional parallel
activity based on application requirements. Notat tthe expression of a pre-
condition, post-condition or any additional coralitis optional.

Service Composition with AP

Recovery Actions

APRollback

APRetry

APCC

fernative
Process

4

Conditional Operation

ﬁQ
Iﬁ

3

Fig. 2. Basic Use of AP and Integration Rules

3.3 Case Study: Assurance Pointsand Rules

This section provides an example of assurance goiimtegration rules, and
conditional rules using the online shopping appiacain Figure 1. APs are shown as
ovals between composite and/or atomic groups, whach AP has a name and a list
of parameters that are stored at the AP.

Table 1 shows rules associated with the APs inreigu TheorderPlaced AP
follows the execution afg:, which is a composite process that supports adtkngs
to a cart, selecting a shipping method, enteringrnt information, and submitting
an order. TherderPlaced AP marks the transition from placing the ordertdually
processing the order. The AP has a pre-conditiiaccéheQuantityChecked1 rule that
serves as verification that the store has enougligin stock to proceed with the
order. The condition validates the status of thesimtory and, if the availability has
changed since the customer began adding itemsetacdit, the rule invokes the
backOrderPurchase process. In this case, the rule does not invokeobtize predefined
recovery actions but, instead, invokes an alterea¢eution path.

If the process passes the pre-condition verificattbe process then executgs,
which charges the customer’s credit card and demmé&snthe inventory. The
composite group is followed by tlzeditCardCharged AP, which has a post-condition
that further guarantees the in-stock quantity &atgr than zero after the inventory has
been decremented. If the post-condition is violated APRetry action is invoked.
APRetry will perform a logical rollback afy. by performing deep compensation (i.e.,
executingagz.cop followed byagzi.cop). According to the retry semantics, when the
process reverses itself to tbelerPlaced AP, the pre-condition of therderPlaced AP
will be rechecked. The retry afg: will only be allowed if the pre-condition is
satisfied. Otherwise, thmackOrderPurchase process will be invoked. In the case where
the precondition of therderPlaced AP is satisfied, theg. process will be re-executed.
If the post-condition of therderPlaced AP fails a second time, the entire process will
go through a rollback process by performing deeppsnsation oreg, and shallow
compensation oregi. Note that in Table 1, th€reditCardCharged AP also has a
conditional rule that sends a message notificdtoarge charges.

The APCC recovery action can be specified as a aaten, but it is also the
default action to take when the execution of ammitagroup and the contingency of
an atomic group fails. As an example, suppose theegs is executing insiadgs and
fails during the execution diPSshipping. Since there is no contingency attached to
UPSshipping, the process will enter APCC mode, which attertpteverse the process
to the beginning of the most enclosing compositaigr which in this case tgs. The
APCC recovery process will then execute the cometiiey of the composite group
(cgs.top). The APCC recovery process will alway check forA® with a precondition
and test the precondition before executing a cgaetibh procedure. The APCC
recovery process provides a well-defined procediore backing out of nested
composite groups and checking for contingent, fodwacovery procedures.

Since no pre or post condition is specified forDbkvered AP, only the conditional
rule shippingRefund is evaluated. Assume the delivery method was dgktrihrough
UPS with an extra shipping fee. If UPS has deligetlee item on time, then the
Delivered AP is complete and execution continues. Otherwise,

refundUPSShippingCharge is invoked to refund the extra fee while the mpmocess
execution continues.

Table 1. AP Rules in the Online Shopping Process

Integration Rule Conditional Rule
create rule QuantityCheck1::pre create rule Notice::cond
event: OrderPlaced (orderld) event: CreditCardCharged (orderld,
condition: exists(select L.itemld from cardNumber , amount)
Inventory |, Lineltem L where condition: amount > $1000

L.orderld=orderld and L.itemld=L.itemld and | action: highExpenseNotice(cardNumber)
L.quantity>l.quantity)
action: backOrderPurchase(orderld)

create rule QuantityCheck2::post create rule ShippingRefund::cond

event: CreditCardCharged (orderld, event: Delivered (orderld, shippingMethod,
cardNumber, amount) deliveryDate)

condition: exists(select L.itemld from condition: shippingMethod = UPS &&
Inventory |, Lineltem L where deliveryDate 1=

L.orderld=orderld and L.itemld=1.itemld and | UPSShipped.UPSShippingDate+1
l.quantity<0) action:

action1: APRetry refundUPSShippingCharge(orderld)

action2: APRollback

4 Comparison to Recovery in BPEL

We have developed a prototype implementation offReconcept and also conducted
a comparison of our work with BPEL. The work in JMighlights the two main
problems with the BPEL fault and compensation meigm: 1) compensation order
can violate control link dependencies if controks cross the scope boundaries, and
2) high complexity of default compensation ordee da default handler behavior.
Unlike BPEL, the order of the AP compensation applois clear since APs support a
hierarchical process structure and do not suppontral links between non-peer
scopes, making the semantics of compensation iAFhapproach unambiguous.

In general, the notion of compensation should aiso capable of handling
constraint violations [5]. Since BPEL's compensatimandling mechanism through
the <compensate> activity can only be called inside a fault handldmis limits the
ability to call compensation outside a fault hangliIn the case of the AP model,
compensation can be invoked during normal executmnerror has yet occurred)
when integration rules are not satisfied. Thisvadlaa flexible way to recover the
process through compensation in response to camstialations.

BPEL does not explicitly support a contingency ieatother than fault, exception,
and termination handlers. The designer is resptnddr complex fault handling
logic, which, as pointed out in [5, 11] has thegutial to increase complexity and
create unexpected errors. The AP model providesicitxpontingency activities so
that forward recovery is possible.

5 Conclusions and Future Directions

This research has defined the use of assurancéspuwitegration rules, and recovery
actions to 1) provide a way of expressing userrgefi constraints for process
execution and 2) provide greater flexibility foreusf forward and backward recovery
options when constraints are not satisfied or et@cufails. Assurance points
enhance traditional work with checkpointing, pramg logical points for backward
recovery with semantics that increase the potenfiml forward recovery by
rechecking pre-conditions, retrying services, avaking for contingencies. Planning
for failure and recovery should be an important paevery process specification.

There are several directions for future work. We aurrently extending the
recovery algorithms to support parallel executienirathe flow activity of BPEL.
Another direction involves formalization of the assnce point concept using Petri-
nets and model-checking. Methodological issues tfo specification of APs,
integration rules, and recovery procedures willoale addressed, together with
refinement of recovery actions for concurrent atetative activity. We are also
investigating the integration of assurance pointd wur work on decentralized data
dependency analysis [23] in Process Execution Ag€REXAsS), where PEXAs
communicate about data dependencies so that whempmtess fails and recovers,
other data dependent processes can be notifiedtental data inconsistencies. The
AP concept can be used to enhance decentralized\®Rith greater flexibility for
process recovery options.

Acknowledgments. This research has been supported by NSF Grant(326152.
Opinions, findings, conclusions or recommendatiexgressed in this paper are those
of the author(s) and do not necessarily reflecvibers of NSF.

References

1. Baresi, L., Guinea, S., Pasquale, L.: Self-HgpBPEL Processes with Dynamo
and the JBoss Rule Engine. ACM Int. Workshop on.ErigSoftware Services
for Pervasive Environments, pp. 11-20. ACM New Y,d2007)

2. Brambilla, M., Ceri, S., Comai, S., Tziviskou,: Exception Handling in
Workflow-Driven Web Applications. Proc. of thel4ifit. Conf. on World Wide
Web, pp. 170-179. ACM New York, (2005)

3. Charfi, A., Mezini, M.: Aspect-Oriented Workflohanguages. Lecture Notes in
Computer Science 427583 (2006)

4. Cichocki, A.: Workflow and Process Automationori€epts and Technology.
Kluwer Academic Pub (1998)

5. Coleman, J.: Examining BPEL's Compensation Coost Workshop on
Rigorous Eng. of Fault-Tolerant Systems (2005)

6. Dialani, V., Miles, S., Moreau, L., De Roure,, Quck, M.: Transparent Fault
Tolerance for Web Services Based ArchitecturestutecNotes in Computer
Science 889-898 (2002)

7. Engels, G., Forster, A., Heckel, R., Thone, Bocess Modeling using UML.

Process-Aware Information Systems: Bridging Peoghel Software through
Process Technology. Hoboken, New Jersey: Wiley B6{2005)

8. Garcia-Molina, H., Salem, K.: Sagas. Morgan Kaafin Publishers Inc., (1994)

9. Jin, Y.: An Architecture and Execution Enviromméor Component Integration
Rules. Ph.D. Diss., Arizona State University (2004)

10.Jordan, D., Evdemon, J., Alves, A., Arkin, Askary, S., Barreto, C., Bloch, B.,
Curbera, F., Ford, M., Goland, Y.: Web ServicesiBess Process Execution
Language Version 2.0. OASIS Standard (P007)

11.Khalaf, R., Roller, D., Leymann, F.: Revisitinbe Behavior of Fault and
Compensation Handlers in WS-BPEL. On the Move toaMmgful Internet
Systems: OTM 2009, 286-303 (2009)

12.Kiczales, G., Hilsdale, E., Hugunin, J., Kenst™., Palm, J., Griswold, W.G.:
An Overview of AspectJ. Lecture Notes in ComputeieS8ce 327-353 (2001)

13.Lee, P.A., Anderson, T., Laprie, J.C., AvizgerA., Kopetz, H.: Fault Tolerance:
Principles and Practice. Springer-Verlag New Ydr&90)

14.Liu, A, Li, Q., Huang, L., Xiao, M.: A Decldige Approach to Enhancing the
Reliability of BPEL Processes, Proc. Of the Inth€mn Web Services, pp. 272-
279. (2007)

15.Luo, Z.W.: Checkpointing for Workflow Recoverlproc. of the 38th Annual
Southeast Regional Conf., pp. 79-80. ACM New Y ¢2000)

16.Modafferi, S., Conforti, E.: Methods for Enaigi Recovery Actions in WS-
BPEL. Lecture Notes in Computer Science 42718 (2006)

17.Paton, N.W., Diaz, O.: Active Database Systeh@®M Computing Surveys 31,
(1999)

18.Rolf, A., Klas, W., Veijalainen, J.: TransactidManagement Support for
Cooperative Applications. Kluwer Academic Pub (1997

19.Scheer, AW., Thomas, O., Adam, O.: Processdlilngl Using Event-driven
Process Chains. Process-aware Information Systdnsiging People and
Software through Process Technology. New Jerseleywii19-145 (2005)

20.Shrestha, R.: Using Assurance Points, EventsRaules for Recovery in Service
Composition. M.S. Thesis, Texas Tech Universityl(0

21.Tan, W., Fong, L., Bobroff, N.: Bpel4job: A RaHandling Design for Job Flow
Management. Lecture Notes in Computer Science 27A4Q007)

22.Urban, S.D., Dietrich, S.W., Na, Y., Jin, YurBermier, A., Saxena, A.: The
IRules Project: Using Active Rules for the Integratof Distributed Software
Components. Proc. of the 9th IFIP Working Conf. Database Semantics:
Semantic Issues in E-Commerce Systems, pp. 265¢2861)

23.Urban, S.D., Liu, Z.A., Gao, L.: DecentralizBéta Dependency Analysis for
Concurrent Process Execution. Proc. of the 13therprise Dist. Object
Computing Conf. Workshops (Edocw 2009) 74-83 (2009)

24.White, S.A.: Business Process Modeling Nota(BRMN). URL http://www.
bpmi. org/bpmi-downloads/BPMN-VL1. 0. pdf (2004)

25.Xiao, Y., Urban, S.D.: The DeltaGrid Servicengmsition and Recovery Model.
Int. Journal of Web Services Research (2009)

10

