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Abstract. This paper defines the concept of Assurance Points (APs) 
together with the use of integration rules to provide a flexible way of 
checking constraints and responding to execution errors in service 
composition. An AP is a combined logical and physical checkpoint, 
providing an execution milestone that stores critical data and interacts 
with integration rules to alter program flow and to invoke different 
forms of recovery depending on the execution status. During normal 
execution, APs invoke rules that check pre-conditions, post-conditions, 
and other application rules. When execution errors occur, APs are also 
used as rollback points. Integration rules can invoke backward recovery 
to specific APs using compensation as well as forward recovery 
through rechecking of preconditions before retry attempts or through 
execution of contingencies and alternative execution paths. APs 
together with integration rules provide an increased level of consistency 
checking as well as backward and forward recovery actions.  

Keywords: service composition; data consistency, recovery, 
compensation, contingency, retry, checkpoints.  

1   Introduction 

Web Services and service-oriented computing are becoming widely used for business-
to-business integration. Prevalent techniques [7, 19, 24] have been widely adopted for 
process modeling, with execution engines based on standards such as the Business 
Process Execution Language (BPEL) [10] providing a framework for execution of 
processes composed of services. Service composition for business integration, 
however, creates challenges for traditional process modeling techniques.  

In a service execution environment, a process must be flexible enough to respond 
to errors, exceptions, and interruptions. Backward and forward recovery mechanisms 
[13] can be used to respond to such events. For example, compensation is a backward 
recovery mechanism that performs a logical undo operation. Contingency is a forward 
recovery mechanism that provides an alternative execution path to keep a process 
running. Nevertheless, most service composition techniques do not provide flexibility 
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with respect to the combined use of compensation and contingency. Service 
composition models need to be enhanced with features that allow processes to assess 
their execution status to support more dynamic ways of responding to failures, while 
at the same time validating correctness conditions for process execution. 

This paper presents our investigation of Assurance Points (APs) and integration 
rules to provide a more flexible way of checking constraints and responding to 
execution failures. An AP is a combined logical and physical checkpoint. As a 
physical checkpoint, an AP provides a way to store data at critical points in the 
execution of a process. Unlike past work with checkpointing [6, 15], our work focuses 
on the use of APs for user-defined consistency checking and rollback points that can 
be used to maximize forward recovery options when failures occur. In particular, an 
AP provides an execution milestone that interacts with integration rules. The data 
stored at an AP is passed as parameters to integration rules that are used to check pre-
conditions, post-conditions, and other application conditions. Failure of a pre or post-
condition or the failure of a service execution can invoke several different forms of 
recovery, including backward recovery of the entire process, retry attempts, or 
execution of contingent procedures. The unique aspect of APs is that they provide 
intermediate rollback points when failures occur that allow a process to be 
compensated to a specific AP for the purpose of rechecking pre-conditions before 
retry attempts or the execution of contingent procedures.  

In this paper, we describe the interaction among APs, integration rules, and the 
different forms of recovery actions as defined in [20], illustrating the functionality of 
these concepts using an online shopping scenario. We then provide a comparison of 
our approach to the fault handling and recovery procedures in BPEL [11]. The 
primary contribution of our work is found in the explicit support provided for user-
defined constraints, with rule-driven recovery actions for compensation, retry, and 
contingency procedures that support flexibility with respect to the combined use of 
backward and forward recovery options. 

2   Related Work 

From a historical point of view, our work is founded on past work with Advanced 
Transaction Models (ATMs). ATMs provide better support for Long Running 
Transactions (LRTs) that need relaxed atomicity and isolation properties [4]. In the 
work of [8], sagas were defined as a mechanism to structure long running processes, 
with each sub-transaction having a compensating procedure to reverse the affects of 
the saga when it fails. Other advanced transaction models have also made use of 
compensation for hierarchically structured transactions [18].  
  More recently, events and rules have been used to dynamically specify control flow 
and data flow in a process by using Event Condition Action (ECA) rules [17]. ECA 
rules have also been successfully implemented for exception handling in work such as 
[2, 14]. The work in [14] uses ECA rules to generate reliable and fault-tolerant BPEL 
processes to overcome the limited fault handling capability of BPEL. Our work with 
assurance points also supports the use of rules that separate fault handling from 
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normal business logic. Combined with assurance points, integration rules are used to 
integrate user-defined consistency constraints with the recovery process. 

Several efforts have been made to enhance the BPEL fault and exception handling 
capabilities. BPEL4Job [21] addresses fault-handling design for job flow management 
with the ability to migrate flow instances. The work in [16] proposes mechanisms like 
external variable setting, future alternative behavior, rollback and conditional re-
execution of the Flow, timeout, and redo mechanisms for enabling recovery actions 
using BPEL. The Dynamo [1] framework for the dynamic monitoring of WS-BPEL 
processes weaves rules such as pre/post conditions and invariants into the BPEL 
process. Most of these projects do not fully integrate constraint checking with a 
variety of recovery actions as in our work to support more dynamic and flexible ways 
of reacting to failures. Our research demonstrates the viability of variegated recovery 
approaches within a BPEL-like execution environment. 

In checkpointing systems, consistent execution states are saved during the process 
flow. During failures and exceptions, the activity can be rolled back to the closest 
consistent checkpoint to move the execution to an alternative platform [6, 15]. The 
AP concept presented in this paper also stores critical execution data, but uses the data 
as parameters to rules that perform constraint checking and invoke different types of 
recovery actions. 

The work in [3] illustrates the application of aspect-oriented software development 
concepts to workflow languages to provide flexible and adaptable workflows. 
AO4BPEL [4] is an aspect-oriented extension to BPEL that uses AspectJ to provide 
control flow adaptations [12]. Assurance Points are similar to aspect-oriented 
programming but are more fully integrated into the process execution engine for 
support of recovery actions. 

3   Service Composition and Recovery with Assurance Points 

This section summarizes the service composition and recovery model from [25]. We 
then define and illustrate the use of assurance points and integration rules in the 
context of this model. 

3.1   Overview of the Model 

In [25], a process is defined as a top-level execution entity that is composed of other 
execution entities. A process is denoted as pi, where p represents a process and the 
subscript i represents a unique identifier of the process. An operation represents a 
service invocation, denoted as opi,j, such that op is an operation, i identifies the 
enclosing process pi, and j represents the unique identifier of the operation within pi. 
Compensation (copi,j) is an operation intended for backward recovery, while 
contingency (topi,j) is an operation used for forward recovery.  

Atomic groups and composite groups are logical execution units that enable the 
specification of processes with complex control structure, facilitating service 
execution failure recovery by adding scopes within the context of a process execution. 
An atomic group (denoted agi,j) contains an operation, an optional compensation, and 
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an optional contingency. A composite group (denoted cgi,k) may contain multiple 
atomic groups, and/or multiple composite groups that execute sequentially or in 
parallel. A composite group can have its own compensation and contingency as 
optional elements. Contingency is always tried first upon the failure of an atomic or 
composite group. Compensation, on the other had, is a recovery activity that is only 
applied as a way to reverse the effects of completed atomic and composite groups. 
   Figure 1 shows an online shopping process that is used as an example in the 
remainder of the paper. The process is composed of three composite groups (cg1, cg2 
and cg3). The group cg1 contains four atomic groups and a compensating procedure 
(cg1.cop) that is attached to the entire group, which is known as shallow compensation. 
Shallow compensation involves the execution of a compensating procedure that will 
reverse the effects of the entire composite group. In comparison, cg2 is composed of 
two atomic groups, where each atomic group has its own compensating procedure 
(ag21.cop and ag22.cop), which is known as deep compensation. Deep compensation 
involves the execution of compensating procedures for each group within a composite 
group. In addition, the atomic group ag21 also has a contingent procedure (ag21.top) 
that will be executed if ag21 fails. The composite group cg3 also has a contingent 
procedure (cg3.top). The reader should refer to [25] for a more formal presentation of 
the recovery semantics for shallow compensation, deep compensation, and 
contingency in the context of the service composition model. 

3.2   Assurance Point and Rule Extensions 

Our work has extended the model described in the previous section with the concept 
of assurance points, which are depicted in Figure 1 as ovals. An AP is a process 
execution correctness guard as well as a potential rollback point during the recovery 
process. Given that concurrent processes do not execute as traditional transactions in a 
service-oriented environment, inserting APs at critical points in a process is important 
for checking consistency constraints and potentially reducing the risk of failure or 
inconsistent data. An AP also serves as a milestone for backward and forward 
recovery activities. When failures occur, APs can be used as rollback points for 
backward recovery, rechecking pre-conditions relevant to forward recovery. In the 
current version of our work, we assume that APs are placed at points in a process 
where they are only executed once, and not embedded in iterative control structures. 

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?, IRcond*>, where apID is 
the unique identifier of the AP, apParameters is a list of critical data items to be stored 
as part of the AP, IRpre is an integration rule defining a pre-condition, IRpost is an 
integration rule defining a post-condition, and IRcond is an integration rule defining 
additional application rules. In the above notation, * indicates 0 or more occurrences, 
while ? indicates zero or one optional occurrences. 
IRpre, IRpost, and IRcond are expressed as Event-Condition-Action (ECA) rules based 

on the use of integration rules to interconnect software components [9, 22]. An IR is 
triggered by a process reaching an AP during execution, where an AP serves as the 
event of an integration rule. Upon reaching an AP, the condition of an IR is evaluated.  
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Fig. 1. Online Shopping Process with APs 
   
The action specification is executed if the rule condition evaluates to true. For IRpre 
and IRpost, a constraint C is always expressed in a negative form (not(C)). An action 
(action 1) is invoked if the pre or post condition is not true, invoking a recovery action 
or an alternative execution path.  If the specified action is a retry activity, then there 
is a possibility for the process to execute through the same pre or post condition a 
second time. As a result, integration rules support the capability of specifying a 
second action (action 2). 

In its most basic form, a recovery action simply invokes an alternative process. 
Recovery actions can also be one of the following actions: 
- APRollback: APRollback is used when the entire process needs to compensate its 

way back to the start of the process according to the semantics of the service 
compensation model. 
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- APRetry: APRetry is used when the running process needs to be backward 
recovered using compensation to a specific AP. By default, the backward recovery 
process will go to the first AP reached as part of the shallow or deep compensation 
process within the same scope. The pre-condition defined in the AP is re-checked. 
If the pre-condition is satisfied, the process execution is resumed from that AP by 
re-trying the recovered operations. Otherwise, the action of the pre-condition rule 
is executed. The APRetry command can optionally specify a parameter indicating 
the AP that is the target of the backward recovery process.  

- APCascadedContingency (APCC): APCC is a backward recovery process that 
searches backwards through the hierarchical nesting of composite groups to find a 
possible contingent procedure for a failed composite group. During the APCC 
backward recovery process, when an AP is found before a composite group, the 
pre-condition defined in the AP will be re-checked before invoking any contingent 
procedures for forward recovery. APC is specifically used as a means of forward 
recovery from nested composite groups.  
The most basic use of an AP together with integration rules is shown in Figure 2, 

which shows a process with three composite groups and an AP between each 
composite group. The shaded box shows the functionality of an AP using AP2 as an 
example.  Each AP serves as a checkpoint facility, storing execution status data in a 
checkpoint database (AP data in Figure 2). When the execution reaches AP2, IRs 
associated with the AP are invoked. The condition of an IRpost is evaluated first to 
validate the execution of cg2. If the post-condition is violated, the action invoked can 
be one of the pre-defined recovery actions as described above. If the post-condition is 
not violated, then an IRpre rule is evaluated to check the pre-condition for the next 
service execution. If the pre-condition is violated, one of the pre-defined recovery 
actions will be invoked. If the pre-condition is satisfied, the AP will check for any 
additional, conditional rules (IRcond) that may have been expressed. IRcond rules do not 
affect the normal flow of execution but provide a way to invoke additional parallel 
activity based on application requirements. Note that the expression of a pre-
condition, post-condition or any additional condition is optional.  

 

 
Fig. 2. Basic Use of AP and Integration Rules 
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3.3   Case Study: Assurance Points and Rules 

This section provides an example of assurance points, integration rules, and 
conditional rules using the online shopping application in Figure 1. APs are shown as 
ovals between composite and/or atomic groups, where each AP has a name and a list 
of parameters that are stored at the AP. 

Table 1 shows rules associated with the APs in Figure 1. The orderPlaced AP 
follows the execution of cg1, which is a composite process that supports adding items 
to a cart, selecting a shipping method, entering payment information, and submitting 
an order. The orderPlaced AP marks the transition from placing the order to actually 
processing the order. The AP has a pre-condition called the QuantityChecked1 rule that 
serves as verification that the store has enough goods in stock to proceed with the 
order. The condition validates the status of the inventory and, if the availability has 
changed since the customer began adding items to the cart, the rule invokes the 
backOrderPurchase process. In this case, the rule does not invoke one of the predefined 
recovery actions but, instead, invokes an alternate execution path. 

If the process passes the pre-condition verification, the process then executes cg2, 
which charges the customer’s credit card and decrements the inventory.  The 
composite group is followed by the CreditCardCharged AP, which has a post-condition 
that further guarantees the in-stock quantity is greater than zero after the inventory has 
been decremented. If the post-condition is violated, the APRetry action is invoked. 
APRetry will perform a logical rollback of cg2 by performing deep compensation (i.e., 
executing ag22.cop followed by ag21.cop). According to the retry semantics, when the 
process reverses itself to the orderPlaced AP, the pre-condition of the orderPlaced AP 
will be rechecked. The retry of cg2 will only be allowed if the pre-condition is 
satisfied. Otherwise, the backOrderPurchase process will be invoked. In the case where 
the precondition of the orderPlaced AP is satisfied, the cg2 process will be re-executed. 
If the post-condition of the orderPlaced AP fails a second time, the entire process will 
go through a rollback process by performing deep compensation on cg2 and shallow 
compensation on cg1. Note that in Table 1, the CreditCardCharged AP also has a 
conditional rule that sends a message notification for large charges.  

The APCC recovery action can be specified as a rule action, but it is also the 
default action to take when the execution of an atomic group and the contingency of 
an atomic group fails. As an example, suppose the process is executing inside cg3 and 
fails during the execution of UPSshipping. Since there is no contingency attached to 
UPSshipping, the process will enter APCC mode, which attempts to reverse the process 
to the beginning of the most enclosing composite group, which in this case is cg3. The 
APCC recovery process will then execute the contingency of the composite group 
(cg3.top). The APCC recovery process will alway check for an AP with a precondition 
and test the precondition before executing a contingent procedure. The APCC 
recovery process provides a well-defined procedure for backing out of nested 
composite groups and checking for contingent, forward recovery procedures. 

Since no pre or post condition is specified for the Delivered AP, only the conditional 
rule shippingRefund is evaluated. Assume the delivery method was overnight through 
UPS with an extra shipping fee. If UPS has delivered the item on time, then the 
Delivered AP is complete and execution continues. Otherwise, 
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refundUPSShippingCharge is invoked to refund the extra fee while the main process 
execution continues.   

 
Table 1. AP Rules in the Online Shopping Process 

Integration Rule Conditional Rule 

create rule QuantityCheck1::pre 
event: OrderPlaced (orderId) 
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId and 
L.quantity>I.quantity) 
action: backOrderPurchase(orderId) 

create rule Notice::cond 
event: CreditCardCharged (orderId, 
cardNumber , amount) 
condition: amount > $1000 
action: highExpenseNotice(cardNumber) 

create rule QuantityCheck2::post 
event: CreditCardCharged (orderId, 
cardNumber, amount) 
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId and 
I.quantity<0) 
action1: APRetry 
action2: APRollback 

create rule ShippingRefund::cond 
event: Delivered (orderId, shippingMethod, 
deliveryDate) 
condition: shippingMethod = UPS && 
deliveryDate != 
UPSShipped.UPSShippingDate+1 
action: 
refundUPSShippingCharge(orderId) 

  

4   Comparison to Recovery in BPEL 

We have developed a prototype implementation of the AP concept and also conducted 
a comparison of our work with BPEL. The work in [11] highlights the two main 
problems with the BPEL fault and compensation mechanism: 1) compensation order 
can violate control link dependencies if control links cross the scope boundaries, and 
2) high complexity of default compensation order due to default handler behavior. 
Unlike BPEL, the order of the AP compensation approach is clear since APs support a 
hierarchical process structure and do not support control links between non-peer 
scopes, making the semantics of compensation in the AP approach unambiguous.  

In general, the notion of compensation should also be capable of handling 
constraint violations [5]. Since BPEL’s compensation handling mechanism through 
the <compensate> activity can only be called inside a fault handler, this limits the 
ability to call compensation outside a fault handling. In the case of the AP model, 
compensation can be invoked during normal execution (no error has yet occurred) 
when integration rules are not satisfied. This allows a flexible way to recover the 
process through compensation in response to constraint violations. 

BPEL does not explicitly support a contingency feature other than fault, exception, 
and termination handlers. The designer is responsible for complex fault handling 
logic, which, as pointed out in [5, 11] has the potential to increase complexity and 
create unexpected errors. The AP model provides explicit contingency activities so 
that forward recovery is possible.  
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5   Conclusions and Future Directions 

This research has defined the use of assurance points, integration rules, and recovery 
actions to 1) provide a way of expressing user-defined constraints for process 
execution and 2) provide greater flexibility for use of forward and backward recovery 
options when constraints are not satisfied or execution fails. Assurance points 
enhance traditional work with checkpointing, providing logical points for backward 
recovery with semantics that increase the potential for forward recovery by 
rechecking pre-conditions, retrying services, and looking for contingencies. Planning 
for failure and recovery should be an important part of every process specification.  

There are several directions for future work. We are currently extending the 
recovery algorithms to support parallel execution as in the flow activity of BPEL. 
Another direction involves formalization of the assurance point concept using Petri-
nets and model-checking. Methodological issues for the specification of APs, 
integration rules, and recovery procedures will also be addressed, together with 
refinement of recovery actions for concurrent and iterative activity. We are also 
investigating the integration of assurance points with our work on decentralized data 
dependency analysis [23] in Process Execution Agents (PEXAs), where PEXAs 
communicate about data dependencies so that when one process fails and recovers, 
other data dependent processes can be notified of potential data inconsistencies. The 
AP concept can be used to enhance decentralized PEXAs with greater flexibility for 
process recovery options.  
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