
Achieving Recovery in Service Composition with Assurance Points and

Integration Rules

 Short Paper

Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

Texas Tech University, Department of Computer Science
Lubbock, TX 79409 +1-806-742-2484

{susan.urban | le.gao | rajiv.shrestha | s.courter} @ ttu.edu

Abstract. This paper defines the concept of Assurance Points (APs)
together with the use of integration rules to provide a flexible way of
checking constraints and responding to execution errors in service
composition. An AP is a combined logical and physical checkpoint,
providing an execution milestone that stores critical data and interacts
with integration rules to alter program flow and to invoke different
forms of recovery depending on the execution status. During normal
execution, APs invoke rules that check pre-conditions, post-conditions,
and other application rules. When execution errors occur, APs are also
used as rollback points. Integration rules can invoke backward recovery
to specific APs using compensation as well as forward recovery
through rechecking of preconditions before retry attempts or through
execution of contingencies and alternative execution paths. APs
together with integration rules provide an increased level of consistency
checking as well as backward and forward recovery actions.

Keywords: service composition; data consistency, recovery,
compensation, contingency, retry, checkpoints.

1 Introduction

Web Services and service-oriented computing are becoming widely used for business-
to-business integration. Prevalent techniques [7, 19, 24] have been widely adopted for
process modeling, with execution engines based on standards such as the Business
Process Execution Language (BPEL) [10] providing a framework for execution of
processes composed of services. Service composition for business integration,
however, creates challenges for traditional process modeling techniques.

In a service execution environment, a process must be flexible enough to respond
to errors, exceptions, and interruptions. Backward and forward recovery mechanisms
[13] can be used to respond to such events. For example, compensation is a backward
recovery mechanism that performs a logical undo operation. Contingency is a forward
recovery mechanism that provides an alternative execution path to keep a process
running. Nevertheless, most service composition techniques do not provide flexibility

2

with respect to the combined use of compensation and contingency. Service
composition models need to be enhanced with features that allow processes to assess
their execution status to support more dynamic ways of responding to failures, while
at the same time validating correctness conditions for process execution.

This paper presents our investigation of Assurance Points (APs) and integration
rules to provide a more flexible way of checking constraints and responding to
execution failures. An AP is a combined logical and physical checkpoint. As a
physical checkpoint, an AP provides a way to store data at critical points in the
execution of a process. Unlike past work with checkpointing [6, 15], our work focuses
on the use of APs for user-defined consistency checking and rollback points that can
be used to maximize forward recovery options when failures occur. In particular, an
AP provides an execution milestone that interacts with integration rules. The data
stored at an AP is passed as parameters to integration rules that are used to check pre-
conditions, post-conditions, and other application conditions. Failure of a pre or post-
condition or the failure of a service execution can invoke several different forms of
recovery, including backward recovery of the entire process, retry attempts, or
execution of contingent procedures. The unique aspect of APs is that they provide
intermediate rollback points when failures occur that allow a process to be
compensated to a specific AP for the purpose of rechecking pre-conditions before
retry attempts or the execution of contingent procedures.

In this paper, we describe the interaction among APs, integration rules, and the
different forms of recovery actions as defined in [20], illustrating the functionality of
these concepts using an online shopping scenario. We then provide a comparison of
our approach to the fault handling and recovery procedures in BPEL [11]. The
primary contribution of our work is found in the explicit support provided for user-
defined constraints, with rule-driven recovery actions for compensation, retry, and
contingency procedures that support flexibility with respect to the combined use of
backward and forward recovery options.

2 Related Work

From a historical point of view, our work is founded on past work with Advanced
Transaction Models (ATMs). ATMs provide better support for Long Running
Transactions (LRTs) that need relaxed atomicity and isolation properties [4]. In the
work of [8], sagas were defined as a mechanism to structure long running processes,
with each sub-transaction having a compensating procedure to reverse the affects of
the saga when it fails. Other advanced transaction models have also made use of
compensation for hierarchically structured transactions [18].
 More recently, events and rules have been used to dynamically specify control flow
and data flow in a process by using Event Condition Action (ECA) rules [17]. ECA
rules have also been successfully implemented for exception handling in work such as
[2, 14]. The work in [14] uses ECA rules to generate reliable and fault-tolerant BPEL
processes to overcome the limited fault handling capability of BPEL. Our work with
assurance points also supports the use of rules that separate fault handling from

3

normal business logic. Combined with assurance points, integration rules are used to
integrate user-defined consistency constraints with the recovery process.

Several efforts have been made to enhance the BPEL fault and exception handling
capabilities. BPEL4Job [21] addresses fault-handling design for job flow management
with the ability to migrate flow instances. The work in [16] proposes mechanisms like
external variable setting, future alternative behavior, rollback and conditional re-
execution of the Flow, timeout, and redo mechanisms for enabling recovery actions
using BPEL. The Dynamo [1] framework for the dynamic monitoring of WS-BPEL
processes weaves rules such as pre/post conditions and invariants into the BPEL
process. Most of these projects do not fully integrate constraint checking with a
variety of recovery actions as in our work to support more dynamic and flexible ways
of reacting to failures. Our research demonstrates the viability of variegated recovery
approaches within a BPEL-like execution environment.

In checkpointing systems, consistent execution states are saved during the process
flow. During failures and exceptions, the activity can be rolled back to the closest
consistent checkpoint to move the execution to an alternative platform [6, 15]. The
AP concept presented in this paper also stores critical execution data, but uses the data
as parameters to rules that perform constraint checking and invoke different types of
recovery actions.

The work in [3] illustrates the application of aspect-oriented software development
concepts to workflow languages to provide flexible and adaptable workflows.
AO4BPEL [4] is an aspect-oriented extension to BPEL that uses AspectJ to provide
control flow adaptations [12]. Assurance Points are similar to aspect-oriented
programming but are more fully integrated into the process execution engine for
support of recovery actions.

3 Service Composition and Recovery with Assurance Points

This section summarizes the service composition and recovery model from [25]. We
then define and illustrate the use of assurance points and integration rules in the
context of this model.

3.1 Overview of the Model

In [25], a process is defined as a top-level execution entity that is composed of other
execution entities. A process is denoted as pi, where p represents a process and the
subscript i represents a unique identifier of the process. An operation represents a
service invocation, denoted as opi,j, such that op is an operation, i identifies the
enclosing process pi, and j represents the unique identifier of the operation within pi.
Compensation (copi,j) is an operation intended for backward recovery, while
contingency (topi,j) is an operation used for forward recovery.

Atomic groups and composite groups are logical execution units that enable the
specification of processes with complex control structure, facilitating service
execution failure recovery by adding scopes within the context of a process execution.
An atomic group (denoted agi,j) contains an operation, an optional compensation, and

4

an optional contingency. A composite group (denoted cgi,k) may contain multiple
atomic groups, and/or multiple composite groups that execute sequentially or in
parallel. A composite group can have its own compensation and contingency as
optional elements. Contingency is always tried first upon the failure of an atomic or
composite group. Compensation, on the other had, is a recovery activity that is only
applied as a way to reverse the effects of completed atomic and composite groups.
 Figure 1 shows an online shopping process that is used as an example in the
remainder of the paper. The process is composed of three composite groups (cg1, cg2
and cg3). The group cg1 contains four atomic groups and a compensating procedure
(cg1.cop) that is attached to the entire group, which is known as shallow compensation.
Shallow compensation involves the execution of a compensating procedure that will
reverse the effects of the entire composite group. In comparison, cg2 is composed of
two atomic groups, where each atomic group has its own compensating procedure
(ag21.cop and ag22.cop), which is known as deep compensation. Deep compensation
involves the execution of compensating procedures for each group within a composite
group. In addition, the atomic group ag21 also has a contingent procedure (ag21.top)
that will be executed if ag21 fails. The composite group cg3 also has a contingent
procedure (cg3.top). The reader should refer to [25] for a more formal presentation of
the recovery semantics for shallow compensation, deep compensation, and
contingency in the context of the service composition model.

3.2 Assurance Point and Rule Extensions

Our work has extended the model described in the previous section with the concept
of assurance points, which are depicted in Figure 1 as ovals. An AP is a process
execution correctness guard as well as a potential rollback point during the recovery
process. Given that concurrent processes do not execute as traditional transactions in a
service-oriented environment, inserting APs at critical points in a process is important
for checking consistency constraints and potentially reducing the risk of failure or
inconsistent data. An AP also serves as a milestone for backward and forward
recovery activities. When failures occur, APs can be used as rollback points for
backward recovery, rechecking pre-conditions relevant to forward recovery. In the
current version of our work, we assume that APs are placed at points in a process
where they are only executed once, and not embedded in iterative control structures.

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?, IRcond*>, where apID is
the unique identifier of the AP, apParameters is a list of critical data items to be stored
as part of the AP, IRpre is an integration rule defining a pre-condition, IRpost is an
integration rule defining a post-condition, and IRcond is an integration rule defining
additional application rules. In the above notation, * indicates 0 or more occurrences,
while ? indicates zero or one optional occurrences.
IRpre, IRpost, and IRcond are expressed as Event-Condition-Action (ECA) rules based

on the use of integration rules to interconnect software components [9, 22]. An IR is
triggered by a process reaching an AP during execution, where an AP serves as the
event of an integration rule. Upon reaching an AP, the condition of an IR is evaluated.

5

Fig. 1. Online Shopping Process with APs

The action specification is executed if the rule condition evaluates to true. For IRpre
and IRpost, a constraint C is always expressed in a negative form (not(C)). An action
(action 1) is invoked if the pre or post condition is not true, invoking a recovery action
or an alternative execution path. If the specified action is a retry activity, then there
is a possibility for the process to execute through the same pre or post condition a
second time. As a result, integration rules support the capability of specifying a
second action (action 2).

In its most basic form, a recovery action simply invokes an alternative process.
Recovery actions can also be one of the following actions:
- APRollback: APRollback is used when the entire process needs to compensate its

way back to the start of the process according to the semantics of the service
compensation model.

6

- APRetry: APRetry is used when the running process needs to be backward
recovered using compensation to a specific AP. By default, the backward recovery
process will go to the first AP reached as part of the shallow or deep compensation
process within the same scope. The pre-condition defined in the AP is re-checked.
If the pre-condition is satisfied, the process execution is resumed from that AP by
re-trying the recovered operations. Otherwise, the action of the pre-condition rule
is executed. The APRetry command can optionally specify a parameter indicating
the AP that is the target of the backward recovery process.

- APCascadedContingency (APCC): APCC is a backward recovery process that
searches backwards through the hierarchical nesting of composite groups to find a
possible contingent procedure for a failed composite group. During the APCC
backward recovery process, when an AP is found before a composite group, the
pre-condition defined in the AP will be re-checked before invoking any contingent
procedures for forward recovery. APC is specifically used as a means of forward
recovery from nested composite groups.
The most basic use of an AP together with integration rules is shown in Figure 2,

which shows a process with three composite groups and an AP between each
composite group. The shaded box shows the functionality of an AP using AP2 as an
example. Each AP serves as a checkpoint facility, storing execution status data in a
checkpoint database (AP data in Figure 2). When the execution reaches AP2, IRs
associated with the AP are invoked. The condition of an IRpost is evaluated first to
validate the execution of cg2. If the post-condition is violated, the action invoked can
be one of the pre-defined recovery actions as described above. If the post-condition is
not violated, then an IRpre rule is evaluated to check the pre-condition for the next
service execution. If the pre-condition is violated, one of the pre-defined recovery
actions will be invoked. If the pre-condition is satisfied, the AP will check for any
additional, conditional rules (IRcond) that may have been expressed. IRcond rules do not
affect the normal flow of execution but provide a way to invoke additional parallel
activity based on application requirements. Note that the expression of a pre-
condition, post-condition or any additional condition is optional.

Fig. 2. Basic Use of AP and Integration Rules

7

3.3 Case Study: Assurance Points and Rules

This section provides an example of assurance points, integration rules, and
conditional rules using the online shopping application in Figure 1. APs are shown as
ovals between composite and/or atomic groups, where each AP has a name and a list
of parameters that are stored at the AP.

Table 1 shows rules associated with the APs in Figure 1. The orderPlaced AP
follows the execution of cg1, which is a composite process that supports adding items
to a cart, selecting a shipping method, entering payment information, and submitting
an order. The orderPlaced AP marks the transition from placing the order to actually
processing the order. The AP has a pre-condition called the QuantityChecked1 rule that
serves as verification that the store has enough goods in stock to proceed with the
order. The condition validates the status of the inventory and, if the availability has
changed since the customer began adding items to the cart, the rule invokes the
backOrderPurchase process. In this case, the rule does not invoke one of the predefined
recovery actions but, instead, invokes an alternate execution path.

If the process passes the pre-condition verification, the process then executes cg2,
which charges the customer’s credit card and decrements the inventory. The
composite group is followed by the CreditCardCharged AP, which has a post-condition
that further guarantees the in-stock quantity is greater than zero after the inventory has
been decremented. If the post-condition is violated, the APRetry action is invoked.
APRetry will perform a logical rollback of cg2 by performing deep compensation (i.e.,
executing ag22.cop followed by ag21.cop). According to the retry semantics, when the
process reverses itself to the orderPlaced AP, the pre-condition of the orderPlaced AP
will be rechecked. The retry of cg2 will only be allowed if the pre-condition is
satisfied. Otherwise, the backOrderPurchase process will be invoked. In the case where
the precondition of the orderPlaced AP is satisfied, the cg2 process will be re-executed.
If the post-condition of the orderPlaced AP fails a second time, the entire process will
go through a rollback process by performing deep compensation on cg2 and shallow
compensation on cg1. Note that in Table 1, the CreditCardCharged AP also has a
conditional rule that sends a message notification for large charges.

The APCC recovery action can be specified as a rule action, but it is also the
default action to take when the execution of an atomic group and the contingency of
an atomic group fails. As an example, suppose the process is executing inside cg3 and
fails during the execution of UPSshipping. Since there is no contingency attached to
UPSshipping, the process will enter APCC mode, which attempts to reverse the process
to the beginning of the most enclosing composite group, which in this case is cg3. The
APCC recovery process will then execute the contingency of the composite group
(cg3.top). The APCC recovery process will alway check for an AP with a precondition
and test the precondition before executing a contingent procedure. The APCC
recovery process provides a well-defined procedure for backing out of nested
composite groups and checking for contingent, forward recovery procedures.

Since no pre or post condition is specified for the Delivered AP, only the conditional
rule shippingRefund is evaluated. Assume the delivery method was overnight through
UPS with an extra shipping fee. If UPS has delivered the item on time, then the
Delivered AP is complete and execution continues. Otherwise,

8

refundUPSShippingCharge is invoked to refund the extra fee while the main process
execution continues.

Table 1. AP Rules in the Online Shopping Process

Integration Rule Conditional Rule

create rule QuantityCheck1::pre
event: OrderPlaced (orderId)
condition: exists(select L.itemId from
Inventory I, LineItem L where
L.orderId=orderId and L.itemId=I.itemId and
L.quantity>I.quantity)
action: backOrderPurchase(orderId)

create rule Notice::cond
event: CreditCardCharged (orderId,
cardNumber , amount)
condition: amount > $1000
action: highExpenseNotice(cardNumber)

create rule QuantityCheck2::post
event: CreditCardCharged (orderId,
cardNumber, amount)
condition: exists(select L.itemId from
Inventory I, LineItem L where
L.orderId=orderId and L.itemId=I.itemId and
I.quantity<0)
action1: APRetry
action2: APRollback

create rule ShippingRefund::cond
event: Delivered (orderId, shippingMethod,
deliveryDate)
condition: shippingMethod = UPS &&
deliveryDate !=
UPSShipped.UPSShippingDate+1
action:
refundUPSShippingCharge(orderId)

4 Comparison to Recovery in BPEL

We have developed a prototype implementation of the AP concept and also conducted
a comparison of our work with BPEL. The work in [11] highlights the two main
problems with the BPEL fault and compensation mechanism: 1) compensation order
can violate control link dependencies if control links cross the scope boundaries, and
2) high complexity of default compensation order due to default handler behavior.
Unlike BPEL, the order of the AP compensation approach is clear since APs support a
hierarchical process structure and do not support control links between non-peer
scopes, making the semantics of compensation in the AP approach unambiguous.

In general, the notion of compensation should also be capable of handling
constraint violations [5]. Since BPEL’s compensation handling mechanism through
the <compensate> activity can only be called inside a fault handler, this limits the
ability to call compensation outside a fault handling. In the case of the AP model,
compensation can be invoked during normal execution (no error has yet occurred)
when integration rules are not satisfied. This allows a flexible way to recover the
process through compensation in response to constraint violations.

BPEL does not explicitly support a contingency feature other than fault, exception,
and termination handlers. The designer is responsible for complex fault handling
logic, which, as pointed out in [5, 11] has the potential to increase complexity and
create unexpected errors. The AP model provides explicit contingency activities so
that forward recovery is possible.

9

5 Conclusions and Future Directions

This research has defined the use of assurance points, integration rules, and recovery
actions to 1) provide a way of expressing user-defined constraints for process
execution and 2) provide greater flexibility for use of forward and backward recovery
options when constraints are not satisfied or execution fails. Assurance points
enhance traditional work with checkpointing, providing logical points for backward
recovery with semantics that increase the potential for forward recovery by
rechecking pre-conditions, retrying services, and looking for contingencies. Planning
for failure and recovery should be an important part of every process specification.

There are several directions for future work. We are currently extending the
recovery algorithms to support parallel execution as in the flow activity of BPEL.
Another direction involves formalization of the assurance point concept using Petri-
nets and model-checking. Methodological issues for the specification of APs,
integration rules, and recovery procedures will also be addressed, together with
refinement of recovery actions for concurrent and iterative activity. We are also
investigating the integration of assurance points with our work on decentralized data
dependency analysis [23] in Process Execution Agents (PEXAs), where PEXAs
communicate about data dependencies so that when one process fails and recovers,
other data dependent processes can be notified of potential data inconsistencies. The
AP concept can be used to enhance decentralized PEXAs with greater flexibility for
process recovery options.

Acknowledgments. This research has been supported by NSF Grant CCF-0820152.
Opinions, findings, conclusions or recommendations expressed in this paper are those
of the author(s) and do not necessarily reflect the views of NSF.

References

1. Baresi, L., Guinea, S., Pasquale, L.: Self-Healing BPEL Processes with Dynamo
and the JBoss Rule Engine. ACM Int. Workshop on Eng. of Software Services
for Pervasive Environments, pp. 11-20. ACM New York, (2007)

2. Brambilla, M., Ceri, S., Comai, S., Tziviskou, C.: Exception Handling in
Workflow-Driven Web Applications. Proc. of the14th Int. Conf. on World Wide
Web, pp. 170-179. ACM New York, (2005)

3. Charfi, A., Mezini, M.: Aspect-Oriented Workflow Languages. Lecture Notes in
Computer Science 4275, 183 (2006)

4. Cichocki, A.: Workflow and Process Automation: Concepts and Technology.
Kluwer Academic Pub (1998)

5. Coleman, J.: Examining BPEL's Compensation Construct. Workshop on
Rigorous Eng. of Fault-Tolerant Systems (2005)

6. Dialani, V., Miles, S., Moreau, L., De Roure, D., Luck, M.: Transparent Fault
Tolerance for Web Services Based Architectures. Lecture Notes in Computer
Science 889-898 (2002)

7. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling using UML.

10

Process-Aware Information Systems: Bridging People and Software through
Process Technology. Hoboken, New Jersey: Wiley 85-117 (2005)

8. Garcia-Molina, H., Salem, K.: Sagas. Morgan Kaufmann Publishers Inc., (1994)
9. Jin, Y.: An Architecture and Execution Environment for Component Integration

Rules. Ph.D. Diss., Arizona State University (2004)
10. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,

Curbera, F., Ford, M., Goland, Y.: Web Services Business Process Execution
Language Version 2.0. OASIS Standard 11, (2007)

11. Khalaf, R., Roller, D., Leymann, F.: Revisiting the Behavior of Fault and
Compensation Handlers in WS-BPEL. On the Move to Meaningful Internet
Systems: OTM 2009, 286-303 (2009)

12. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. Lecture Notes in Computer Science 327-353 (2001)

13. Lee, P.A., Anderson, T., Laprie, J.C., Avizienis, A., Kopetz, H.: Fault Tolerance:
Principles and Practice. Springer-Verlag New York (1990)

14. Liu, A., Li, Q., Huang, L., Xiao, M.: A Declarative Approach to Enhancing the
Reliability of BPEL Processes, Proc. Of the Int. Conf. on Web Services, pp. 272-
279. (2007)

15. Luo, Z.W.: Checkpointing for Workflow Recovery. Proc. of the 38th Annual
Southeast Regional Conf., pp. 79-80. ACM New York, (2000)

16. Modafferi, S., Conforti, E.: Methods for Enabling Recovery Actions in WS-
BPEL. Lecture Notes in Computer Science 4275, 219 (2006)

17. Paton, N.W., Díaz, O.: Active Database Systems. ACM Computing Surveys 31,
(1999)

18. Rolf, A., Klas, W., Veijalainen, J.: Transaction Management Support for
Cooperative Applications. Kluwer Academic Pub (1997)

19. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-driven
Process Chains. Process-aware Information Systems: Bridging People and
Software through Process Technology. New Jersey: Wiley 119-145 (2005)

20. Shrestha, R.: Using Assurance Points, Events, and Rules for Recovery in Service
Composition. M.S. Thesis, Texas Tech University (2010)

21. Tan, W., Fong, L., Bobroff, N.: Bpel4job: A Fault-Handling Design for Job Flow
Management. Lecture Notes in Computer Science 4749, 27 (2007)

22. Urban, S.D., Dietrich, S.W., Na, Y., Jin, Y., Sundermier, A., Saxena, A.: The
IRules Project: Using Active Rules for the Integration of Distributed Software
Components. Proc. of the 9th IFIP Working Conf. on Database Semantics:
Semantic Issues in E-Commerce Systems, pp. 265-286. (2001)

23. Urban, S.D., Liu, Z.A., Gao, L.: Decentralized Data Dependency Analysis for
Concurrent Process Execution. Proc. of the 13th Enterprise Dist. Object
Computing Conf. Workshops (Edocw 2009) 74-83 (2009)

24. White, S.A.: Business Process Modeling Notation (BPMN). URL http://www.
bpmi. org/bpmi-downloads/BPMN-V1. 0. pdf (2004)

25. Xiao, Y., Urban, S.D.: The DeltaGrid Service Composition and Recovery Model.
Int. Journal of Web Services Research (2009)

