
The Dynamics of Process Modeling: New Directions
for the Use of Events and Rules in Service-Oriented

Computing

Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

Texas Tech University
Edward E. Whitaker Jr. College of Engineering

Department of Computer Science
Lubbock, TX 79409

susan.urban@ttu.edu le.gao@ttu.edu

Abstract. The introduction of service-oriented computing has created a more dynamic
environment for the composition of software applications, where processes are affected by
events and data changes and also pose data consistency issues that must be considered in
application design and development. This chapter addresses the need to develop a more
effective means to model the dynamic aspects of processes in contemporary, distributed
applications, especially in the context of concurrently executing processes that access
shared data and cannot enforce traditional transaction properties. After an assessment of
current tools for process modeling, we outline four approaches for the use of events and
rules to support dynamic behavior and the manner in which events, rules, and process
descriptions must come together to support conceptual modeling of processes. The first
approach is integration rules, supporting the invocation and successful completion of a
service as separate events that can be used to monitor execution, check constraints, provide
event-driven interconnection of processes, and monitor business activity. The second
approach is assurance points, providing checkpoints that are used to store execution data,
invoke integration rules for testing pre and post conditions, and serve as intermediate
rollback points in support of recovery activities. The third approach is application
exception rules, providing a case-based rule structure with exception handling procedures
that vary depending on the state of the process execution as defined by assurance points.
The fourth approach is that of invariants for dynamically monitoring data conditions and
reacting to condition violations in between the assurance points of a process. The chapter
concludes with a discussion of future research directions for the integrated modeling of
events, rules, and processes.

Keywords: service composition, event and rule processing, integration
rules, application exception rules, invariant conditions, dynamic process
modeling

1 Introduction

The advent of Web Services and service-oriented computing has significantly
changed software development practices and data access patterns for distributed
computing environments, creating the ability to develop processes that are
composed of distributed service executions. These processes are often
collaborative in nature, involving long-running activities based on loosely-

mailto:susan.urban@ttu.edu
mailto:le.gao@ttu.edu

coupled, multi-platform, service-based architectures. This new software
development paradigm makes the concept of virtual organizations a reality, better
supporting enterprise-to-enterprise business processes and data exchange.
Service-oriented computing, however, also poses new challenges for software
process modeling. In particular, processes must be flexible enough to respond to
the different types of change that can occur during execution. Change occurs, for
example, when one service is unavailable and needs to be substituted with another
service. Change occurs when exceptional conditions arise in an application, such
as a customer canceling or changing an order, or a warehouse discovering
damaged shipments. Change also occurs when a process fails and needs to be
recovered in a manner that maintains consistency for the failed process as well as
for other processes that access shared data with the failed process. Processes must
also be capable of executing in environments that no longer support traditional
transactional properties but also guarantee correctness and consistency of
execution. The ability to respond to change and, at the same time, guarantee
consistency requires not only a flexible execution environment, but also
techniques that support the modeling of a process’s ability to correctly respond to
events and failures that affect the normal flow of execution.

Many techniques have been designed in the past to support process modeling,
with the most prevalent techniques being the Unified Modeling Language (UML)
[13], the Business Process Modeling Notation (BPMN) [44], and Event-Driven
Process Chains (EPC) [37]. Most of these techniques were developed before the
emergence of service-oriented computing and the growing prevalence of complex
events and event-driven applications [30]. Modeling extensions have been
introduced to many of these tools in recent years to provide support for
responding to events, handling exceptional conditions, and using events and rules
as a way to control process flow. In this chapter, we first summarize existing
techniques for modeling the dynamics of processes. We then introduce additional
considerations for the use of events and rules in process modeling, especially in
the context of service-oriented computing.

In particular, this chapter illustrates the use of integration rules, invariant rules,
and application exception rules together with the concept of assurance points to
model the more dynamic nature of service-oriented computing. Integration rules
are similar to the use of events and rules to control process flow [10, 11, 19, 22,
38]. They are different, however, in that events are raised before and after the
execution of services to trigger integration rules that test control logic that is
orthogonal to the main procedural specification of process flow. Assurance points
(APs) enhance the use of integration rules, providing checkpoints that are placed
at critical locations in the flow of a process. An AP is used to store execution data
that is passed as parameters to integration rules that check pre and post conditions
and invoke additional execution logic. APs are also used as intermediate rollback
points to support compensation, retry, and contingent procedures in an attempt to
maximize forward recovery.

Whereas integration rules can be used to check data conditions at certain points
in process execution, invariants provide a stronger way to monitor data conditions
that must hold over a certain period of time during the execution of a process,
especially when data items cannot be locked over the span of multiple service

 2

executions. Invariants are activated with a starting AP, deactivated with an ending
AP, and monitor the data of the invariant condition in between APs using a
concept known as Delta-Enabled Grid Services (DEGS [3]. An invariant therefore
allows a process to declare data conditions that are critical to the execution of the
process, but to allow multiple processes to access the same data in an optimistic
fashion. When critical data conditions are violated, as detected by the DEGS
capability, recovery conditions can be invoked.

Finally, application exception rules provide a way to interrupt the execution of
a process in response to exceptional conditions and to respond to exceptions in
different ways depending on the state of the executing process as determined by
assurance points. Application exception rules can also be combined with a data
dependency analysis procedure associated with the use of DEGS to provide a way
to help a process determine how its own recovery or forward execution can be
affected by the failure and recovery of other processes that are accessing shared
data [46, 47, 49]. This is especially important for maintaining data consistency in
environments that cannot provide traditional transaction processing guarantees.

In the sections that follow, we first outline past work in the area of process
modeling with a specific focus on the use of events, rules, and exception handling
to provide dynamic behavior. We then provide motivation for integration rules,
assurance points, invariants, and application exception rules in the context of
decentralized process execution agents (PEXAs) for service-oriented computing.
We then elaborate on assurance points and the rule functionality of our research.
The chapter concludes with a summary and discussion of future research for
modeling methodologies, modeling tools, and execution environments that
support the dynamic capabilities outlined in this chapter.

2 Status of Conceptual Modeling for Business Processes

As described in a comparative analysis by Lu and Sadiq [29], most modeling
techniques can be categorized as either graph-based techniques or rule-based
techniques, where graph-based techniques are based on Petri nets [9] and rule-
based techniques are based on the use of event-condition-action rules and/or agent
technology. The following subsections summarize graph and rule-based
techniques, with a focus on support for dynamic capabilities.

2.1 Graph-Based Modeling Techniques

In graph-based modeling techniques such as BPMN [44], UML [13], and EPC
[37], a business process is described by a graph notation in which activities are
represented as nodes, and control flow and data dependencies between activities
as arcs or arrows.

BPMN. The Business Process Modeling Notation (BPMN V1.0) was introduced
by the Business Process Management Initiative in 2004 [44]. The objective of
BPMN is to provide a graphical model that can depict business processes and can

 3

http://en.wikipedia.org/wiki/Business_Process_Management_Initiative

be understood by both users and developers. Flow objects include symbols to
represent events, activities, and gateways (i.e., decision points). Flow objects are
connected to each other via connecting objects that represent sequence flow,
message flow, and association. A process always starts from an event and ends in
an event. All other events inside the process are called intermediate events and can
be part of the normal flow or attached to the boundary of an activity. An attached
event indicates that the activity to which the event is attached should be
interrupted when the event is triggered. The attached event can trigger either
another activity or sub-process. Typically, error handling, exception handling, and
compensation are triggered by the attached event.

To detail a business process, swim lanes and artifacts can be used. Swim lanes
are used to either horizontally or vertically group a process into subgroups by
rules, such as grouping processes by departments in a company business process.
Artifacts provide additional information in a business process to make a model
more readable, such as text descriptions attached to an activity.
 BPMN (V2.0 beta 1) [2] was released in 2009. In BPMN 2.0, the most
important update is standardized execution semantics which provide execution
semantics for all BPMN elements based on token flows. A choreography model is
also supported in BPMN 2.0. Other significant changes include 1) a data object
supporting assignments for activity; 2) updated gateways supporting
exclusive/parallel event-based flow; 3) event-subprocesses used to handle event
ocurrences in the bounding subprocess; 4) a call activity type that can call another
process or a global task; and 5) escalation events for transferring control to the
next higher level of responsibility.

Since BPMN models are expressed using a graphical notation together with
natural language, ambiguities can occur in the description of a process.
Furthermore, BPMN model is not directly executable. There are, however,
mapping tools that can convert BPMN to executable languages, where the
translation is enhanced with the execution semantics of BPMN 2.0. For example,
the Business Process Execution Language (BPEL) [1] is used for executing
business processes that are composed of Web Services. A well-known, open-
source mapping tool is BPMN2BPEL [33]. BPMN also does not explicitly
support business rules and, instead, uses gateways to express business rule logic.

UML. The Unified Modeling Language (UML) is a general-purpose modeling
language with widespread use in software engineering. UML provides a set of
graphical modeling notations to model a system. An activity diagram describes a
business process in terms of control flow. A state diagram represents a business
process using a finite number of states. UML also provides sequence diagrams
that emphasize interactions between objects.

In UML 2.0, new notations have been added to activity diagrams to provide
support for the specification of pre and post conditions, events and actions, time
triggers, time events, and exceptions. These notations provide more dynamic
support to process modeling in UML. Researchers have also proposed process
modeling enhancements to UML. For example, the work in [14] proposes a
framework that supports exception handling using UML state charts. In [15], the
authors present a method that can handle exceptions in sequence diagrams.

 4

http://en.wikipedia.org/wiki/Web_Services
http://www.bpm.fit.qut.edu.au/projects/babel/tools/
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/State_%28computer_science%29

EPC. The Event-driven Process Chain (EPC) method was developed within the
framework of the Architecture of Integrated Information Systems (ARIS) in the
early 1990s. The merit of EPC is that it provides an easy-to-understand notation.
OR, AND, and XOR nodes are used to depict logical operations in the process
flow. The main elements of a process description include events, functions,
organization, and material (or resource) objects. The EPC does not have specific
notation support for exception processing. Instead, EPC uses the logical
operations to specify the handling of events and exceptional conditions. Recent
work has modified the EPC notation to provide better support for process
modeling. For example, in [31], yEPC provides a cancellation notation to model
either an activity or a scope cancellation process.

Other Related Methods. FlowMake is presented by Sadiq and Orlowska in [35].
FlowMake models a workflow using a graphical language, including workflow
constraints that can be used to verify the syntactic correctness of a graphical
workflow model. Reichert and Dadam [34] present a formal foundation for the
support of dynamic structural changes of running workflow instances. ADEPTflex
is a graph-based modeling methodology that supports users in modifying the
structure of a running workflow, while maintaining its correctness and consistency
[34]. YAWL [43] is designed based on Petri nets for the specification of control
flow. ActivityFlow [27] provides a uniform workflow specification interface to
describe different types of workflows and helps to increase the flexibility of
workflow processes in accommodating changes. ActivityFlow also allows
reasoning about correctness and security of complex workflow activities
independently from their underlying implementation mechanisms.

An advantage of graph-based languages is that they are based on formal graph
foundations that have rich mathematical properties. The visual capabilities also
enhance process design for users and designers. The disadvantage is that graph-
based modeling methods are not agile for dynamic runtime issues, requiring the
use of specialized notations that can cause the model to become more complex.

2.2 Rule-Based Modeling Techniques

In a rule-based modeling approach, business rules are defined as statements about
guidelines and restrictions that are used to model and control the flow of a process
[16]. More recently, rules are used together with agent technology to provide more
dynamic ways of handling processes.

Use of Rules in Workflow and Service Composition: Active databases extends
traditional database technology with the ability to monitor and react to
circumstances that are of interest to an application through the use of Event-
Condition-Action (ECA) rules [45]. As a dynamic approach to respond to
unexpected events, ECA rules are widely used in workflow research to achieve
goals such as workflow control and exception handling.

The work of Dayal et al. [8] was one of the first projects to use ECA rules to
dynamically specify control flow and data flow in a workflow. In the CREW
project [26], ECA rules are used to implement control flow. The TrigSFlow [25]

 5

http://en.wikipedia.org/wiki/Architecture_of_Integrated_Information_Systems

model uses active rules to decide activity ordering, agent selection, and worklist
management. Database representation of workflows [17] uses Event-Condition-
Message rules to specify workflows and utilize database logging and recovery
facilities to enhance the fault-tolerance of the workflow application. Migrating
workflows [7] provide dynamics in workflow instances. A migrating workflow
transfers its code (specification) and its execution state to a site, negotiates a
service to be executed, receives the results, and moves on to the next site [7]. ECA
rules are used to specify the workflow control.

Active rules also provide a solution for exception handling in workflow
systems. ADOME [5] and WIDE [4] are commercial workflow systems that use
active rules in exception handling. Rules are also used in workflow systems to
respond to ad-hoc events that have predefined actions. Other workflow projects
that use active rules are described in [6,12]. Active rules have been used to
generate data exchange policies at acquaintance time among peer databases [24].

Agent-Based Techniques. Agent technology has been introduced to model
business processes. Agents are autonomous, self-contained and capable of making
independent decisions, taking actions to fulfill design goals and to model elements
in a business process. Agents also support dynamic and automatic workflow
adaptations, thus providing flexibility for unexpected failures. ADEPT [18] is an
agent-based business process management system for designing and implementing
processes. The process logic is defined by a service definition language, where
agents have sufficient freedom to determine which alternative path should be
executed at runtime. AgentWork [32] is a flexible workflow support system that
provides better support for exception handling using an event monitoring agent, an
adaptation agent, and a workflow monitoring agent. Events represent exceptional
conditions, with rule conditions and actions used to correct the workflow. The
adaptation agent performs adjustments to the implementation. The workflow
monitoring agent checks the consistency of the workflow after adaptation
implementation. If the workflow is inadequate, the workflow monitoring agent
will re-estimate the error and invoke a re-adaptation of the workflow.

Rule and agent-based modeling methods provide better support for flexibility
and adaptability in process modeling. Rule-based methods support modifications
at runtime much easier than graph-based methods. It is easy to modify a process
model by rule-based methods, and, unlike graph-based methods, rule-based
methods do not need new notations to express exception handling processes. Rule-
based methods, however, can be difficult to use and understand.

3 Motivation for New Rule Functionality

As illustrated in the previous section, most process modeling techniques are
aligned with either a procedural approach, specified as a flow graph, or a rule-
driven approach, where events and rules are used to control the flow of execution.
Rules provide a more dynamic way to respond to events that represent a need to
change the normal flow of execution. The use of rules in process modeling is

 6

http://en.wiktionary.org/wiki/autonomy

especially important considering the growing prevalence of complex events,
event-driven applications, and business activity monitoring.

In our view, a dynamic approach to process modeling for service-oriented
environments requires a combination of graph and rule-based techniques, where
graph-based techniques provide a means for specifying the main application logic
and events are used to interrupt or branch off of the main flow of execution,
triggering rules that check constraints, respond to exceptions, and initiate parallel
activity. Events and rules should also play an increased role in supporting failure
and recovery activity. Planning for failure and recovery should be an integral
component of process modeling for service-oriented architectures, especially in
the context of concurrently executing processes that access shared data and cannot
enforce traditional transactional properties.

Our research addresses consistency checking as well as failure and recovery
issues for service-oriented environments through the use of integration rules,
invariants, and application exception rules, used together with a checkpointing
concept known as assurance points. Figure 1 provides motivation for the use of
these concepts together with an overview of the rule functionality presented in this
chapter. In particular, consider a decentralized execution environment consisting
of Process Execution Agents (PEXAs). Each PEXA is responsible for monitoring
the execution of different processes. As shown in Figure 1, PEXA 1 is responsible
for the execution of P1 and P4, PEXA 2 is responsible for P2, and PEXA 3 is
responsible for P3. Each process invokes services at distributed locations. As
shown in Figure 1, P1 invokes operation_a at the site of PEXA 1, operation_b and
operation_c at the site of PEXA 2, and operation_d at the site of PEXA 3.

Figure 1 also illustrates that PEXAs are co-located with Delta-Enabled Grid
Services (DEGS). A DEGS is a Grid Service that has been enhanced with an
interface that stores the incremental data changes, or deltas, that are associated
with service execution in the context of globally executing processes [3, 41]. A
DEGS uses an OGSA-DAI Grid Data Service for database interaction. The
database captures deltas using capabilities provided by most commercial database
systems. Our own implementation has experimented with the use of triggers as a
delta capture mechanism, as well as the Oracle Streams capability [41]. Oracle
Streams is a feature that monitors database redo logs for changes and publishes
these changes to a queue to be used for replication or data sharing.

Deltas captured using DEGS are stored in a delta repository that is local to the
service. Our past work [46, 50] has experimented with the creation of a Process
History Capture System (PHCS) that includes deltas from distributed DEGSs and
the process runtime context generated by the process execution engine. Deltas are
dynamically merged using timestamps as they arrive in the PHCS to create a time-
ordered schedule of data changes from distributed DEGS. The global delta object
schedule is used to support recovery activities when process execution fails [46,
48, 49, 51], where the global delta object schedule provides the basis for
discovering data dependencies among processes. Our most recent work has
transformed the global delta object schedule into a distributed schedule with a
decentralized algorithm for discovering data dependencies [42, 28].

Given that processes can execute in an environment where decentralized
PEXAs can monitor data changes and communicate about data dependencies

 7

among concurrently executing processes, consider the assurance point and rule
functionality illustrated for P1 in Figure 1. As shown for P1, APs can be placed at
strategic locations in a process, where an AP is a combined logical and physical
checkpoint that can be used to store execution data, alter program flow, and
support recovery activity. One use of an AP is to trigger integration rules as
shown for AP1, where integration rules check pre and post conditions for service
execution. By checking pre/post conditions, user-defined consistency constraints
can validated, which is important since most service-oriented environments cannot
rely on traditional notions of serializability to ensure the correctness of
concurrently executing processes.

Figure 1 Decentralized Process Execution Agents with Events and Rules

Another use of an AP is to activate invariant rules. Invariants indicate
conditions that must be true during process execution between two different APs.
As shown for P1 in Figure 1, an invariant is monitored during the execution
between AP2 and AP3, where the invariant represents a data condition that is
critical to the correct execution of P1. P1, however, may not be able to lock the
data associated with the invariant during the service executions between AP2 and
AP3. Given that DEGS can be used to monitor data changes, P1 can activate the
invariant condition, but still allow concurrent processes to access shared data. P1
can then be notified if data changes violate the invariant condition. For example, if
P3 modifies data associated with the invariant of P1, P1 can re-evaluate the
invariant condition and invoke recovery actions if needed.

 8

P1 also illustrates the use of application exception rules at AP4. A process
should be capable of responding to external events that may affect execution flow.
The response to the event, however, may depend on the current status of the
process. For example, P1 may respond one way if the process has passed AP4, but
may respond differently if the process is only at AP1. Application exception rules
therefore provide a case-based structure that allows a process to use information
about assurance points to provide greater flexibility in response to events.
Furthermore, since PEXAs can communicate about data dependencies among
concurrently executing processes, when a process Pj invokes recovery procedures
in response to integration rules, invariant conditions, or application exception
rules, event notifications can be sent through P2P communication to dependent
processes that are controlled by other PEXAs. Application exception rules can be
used by a process Pi to intercept such events, determine how the failure and
recovery of Pj potentially affects the correctness conditions of Pi, and respond in
different ways depending on the AP status of the process.

4 Assurance Point and Rule Functionality

This section provides a more detailed description of the capabilities outlined in
Section 3. The first subsection elaborates on foundational work with integration
rules. The following subsections then address assurance points, invariant rules,
and application exception rules.

4.1 Dynamic Behavior with Integration Rules

Integration Rules (IRules) were originally defined in [19, 38] to investigate the
middle-tier, rule processing technology necessary for the use of declarative, active
rules in the integration of Enterprise Java Beans (EJB) components. Several
different subcomponents to the IRules language framework have been defined,
including the Component Definition Language (CDL) for defining a global object
model of components and their relationships [10], the IRules Scripting Language
(ISL) for describing application transactions (a BPEL-like language), the Event
Definition Language (EDL) for defining events [23, 40], and the Integration Rule
Language (IRL) for defining active rules [10, 11, 38]. In this section, we focus on
IRL and the functionality that it provides for dynamically testing the correctness
of process execution. The remaining subsections then show modifications to IRL
for additional dynamic modeling capabilities that address exception handling and
the consistency of concurrent processes.

IRules are different from past work with the use of rules to control workflow in
that they are integrated with the use of procedural specifications. Using IRules, the
main logic of a process can be expressed using a modeling tool such as BPMN. It
is assumed, however, that the start and end of a process generates application
transaction events. The execution of individual services within a process also
generates method events both before and after the execution of a service. IRules

 9

are then used to respond to application transaction events and method events,
controlling rule actions together with the normal process flow using rule coupling
modes from active database technology [45]. Integration rules can therefore be
used to check pre and post conditions, to change the flow of execution, to spawn a
new flow of execution that eventually joins the main flow, to defer a new flow of
execution upon successful completion of the main flow, or to invoke a new,
independent, parallel flow of execution in addition to the main flow.

The structure of an integration rule is shown in Figure 2. Events are generated
before and after the execution of individual services and their enclosing processes
by wrappers that coordinate rule and component execution. Rule conditions and
actions can be enhanced with ec (for event/condition) and ca (for condition/action)
coupling modes [22]. For example, the immediate synchronous mode implies that
the main flow of execution (i.e., the one that generated the event that triggered the
rule) is halted while rule execution occurs. The immediate synchronous mode is
therefore useful for checking preconditions before the execution of a service. The
immediate asynchronous mode allows the main flow to continue during rule
execution, with the rule executing in the same transactional framework as the
process that triggered the rule. The deferred mode provides a way of triggering a
rule that schedules the execution of a procedure at the end of the main procedural
flow. The deferred mode is useful for schedule the execution of a post condition
that must be used to ensure data consistency at the end of a service execution.
Alternatively, a post condition can be tested by triggering an integration rule with
an immediate synchronous mode after the execution of a service. The decoupled
mode is used to trigger the execution of a rule condition or action that executes in
parallel with the main flow of execution as a separate transactional entity. The
decoupled mode therefore provides a way to use rules for invoking procedures that
involve business activity monitoring.

create rule ruleName
event eventName(eventParameters)
 [on componentName componentVariables]
condition [ec coupling]
 rule condition specification
action [ca coupling]
 rule action
Figure 2: Structure of an Integration Rule [22]

As an example, consider the integration rule for a stock application in Figure
3. The purpose of the stockSell rule is to initiate sellStock transactions when a price
increase occurs. We only want to initiate such transactions, however, for pending
orders where the NewPrice exceeds the desired selling price in the pending order.
This situation implies that we need to compare the new price of the stock with the
old price of the stock to determine if there was a price increase. This can only be
done by examining the old and new values before the execution of the price
change in the Stock component, thus illustrating the need for the beforeSetPrice
event. The coupling mode on the rule condition is immediate, indicating that the
check for a price increase should be performed as soon as the rule is triggered.

 10

The sellStock transactions on the appropriate pending orders, however, should only
be executed after the completion of the setPrice method. As a result, the action part
of the rule is deferred, meaning that the action will not be performed until the end
of the outer-most transaction in which the rule was triggered.

create rule stockSell
event beforeSetPrice(NewPrice)
 on stock S
condition immediate

when NewPrice>S.price
action deferred
 from Pn in S.pendingTrades
 where S.price>=Pn.desiredPrice AND Pn.action=”sell”
 do sellStock(S,Pn);
Figure 3: Integration Rule Example for a Stock Application [38]

The full details of the integration rule execution model as originally used with

EJB components can be found in [19-22, 38]. With respect to dynamic process
modeling, integration rules illustrate the manner in which rules can be used for
more than just the interconnection of steps in a workflow. Integration rules work
together with procedural, graph-based specifications and are particularly useful for
1) checking conditions that validate the correctness of service execution and 2)
invoking business activity monitoring procedures that execute in parallel with
business processes.

4.2 Dynamic Behavior with Assurance Points

In our current research, we have enhanced the use of integration rules using
assurance points and recovery actions. An assurance point (AP) is defined as a
process execution correctness guard as well as a potential rollback point during
the recovery process [36, 39]. Given that concurrent processes do not execute as
traditional transactions in a service-oriented environment, inserting APs at critical
points in a process is important for checking consistency constraints and
potentially reducing the risk of failure or inconsistent data. An AP also serves as a
milestone for backward and forward recovery activities. When failures occur, APs
can be used as rollback points for backward recovery, rechecking pre-conditions
relevant to forward recovery.

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?>, where:
- apID is the unique identifier of the AP
- apParameters is a list of critical data items to be stored as part of the AP,
- IRpre is an integration rule defining a pre-condition,
- IRpost is an integration rule defining a post-condition,
- IRcond is an integration rule defining additional application rules.

In the above notation, * indicates 0 or more occurrences, while ? indicates zero
or one optional occurrences.

 11

IRpre, IRpost, and IRcond are expressed in the integration rule format introduced in
Figure 2, where the eventName is the name of the assurance point that triggers the
rule. For IRpre and IRpost, a constraint C is always expressed in a negative form
(not(C)). The action of a rule is invoked if the pre or post condition is not true,
invoking a recovery action or an alternative execution path. If the specified action
is a retry activity, then there is a possibility for the process to execute through the
same pre or post condition a second time. In such a case, IRpre and IRpost rules
support the specification of a second action to invoke a different recovery
procedure the second time through.

In its most basic form, the recovery action of an integration rule simply invokes
an alternative process. Recovery actions can also be one of the following actions:
- APRollback: APRollback is used when the entire process needs to

compensate its way back to the start of the process.
- APRetry: APRetry is used when a process needs to be backward recovered

using compensation to a specific AP. The backward recovery process will go
to the first AP reached as part of the compensation process. The pre-condition
defined in the AP is re-checked before resuming the execution.

- APCascadedContingency (APCC): APCC is a backward recovery process
that searches backwards through the hierarchical nesting of processes to find a
contingent procedure for a failed sub-process. During the APCC backward
recovery process, when an AP is reached, the pre-condition defined in the AP
is re-checked before invoking a contingent procedure for forward recovery.
When the execution of a process reaches an AP, integration rules associated

with the AP are invoked. The condition of an IRpost is evaluated first. If the post-
condition is violated, the action invoked can be one of the pre-defined recovery
actions as described above. If the post-condition is not violated, then an IRpre rule
is evaluated before the next service execution. If the pre-condition is violated, one
of the pre-defined recovery actions will be invoked. If the pre-condition is
satisfied, the AP will check for any conditional rules (IRcond) that may exist. IRcond
rules do not affect the normal flow of execution but provide a way to invoke
parallel activity based on application requirements. Note that the expression of a
pre-condition, post-condition or any additional condition is optional.

As an example, consider a subset of an online shopping process, as shown in
Figure 4, where two APs are inserted. Both APs have integration rules that must
be checked when the process execution reaches the APs. The cop and top in the
process indicate the compensation and contingency of the attached activity,
respectively. In the subprocess, AP1 is orderPlaced, which reflects that the
customer has finished placing the shopping order. Before executing the payment
activity, the pre-condition at AP1 is checked to guarantee that the store has
enough goods in stock. Otherwise, the process invokes the backOrder process
instead. Similarly, the CreditCardCharged AP2 after payment activity has a post-
condition that further guarantees that the in-stock quantity must be in a reasonable
status (not less than zero) after the decInventory operation. Otherwise, a recovery
action APRetry must be invoked to recover the process back to AP1 and re-execute
the payment activity. If the post-condition fails after re-execution, then APRollback
will be invoked to abort the overall process.

 12

Add to cart

Select shipping method

Payment information input

Place an order

Subprocess

OrderPlaced (orderId, itemID, N)

Charge credit
card

Dec inventory

CreditCardCharged (orderId, cardNumber, amount)

cop
(AbortOrder)

cop(creditBack)

cop(incInventory)

top(eCheckPay)

create rule QuantityCheck::pre
event: OrderPlaced (orderId)
condition: exists(select L.itemId from
Inventory I, LineItem L where
L.orderId=orderId and L.itemId=I.itemId
and L.quantity>I.quantity)
action: backOrderPurchase(orderId)

create rule QuantityCheck::post
event: CreditCardCharged (orderId,
cardNumber, amount)
condition: exists(select L.itemId from
Inventory I, LineItem L where
L.orderId=orderId and L.itemId=I.itemId
and I.quantity<0)
action1: APRetry
action2: APRollback

AP1

AP2

 Figure 4 Subprocess with Two APs

4.3 Dynamic Behavior with Invariants

As described in the previous subsection, APs together with integration rules
allow data consistency conditions to be checked at specific points in the execution
of a process [36], using rule actions to invoke recovery procedures. In some
applications, however, stronger condition checking techniques may be needed to
monitor data consistency. As a result, an additional way to use rules together with
APs is through the use of invariants. An invariant is a condition that must be true
during process execution between two different APs. An invariant is designed for
use in processes where 1) isolation of data changes in between service executions
cannot be guaranteed (i.e., critical data items cannot be locked across multiple
service executions), and 2) it is critical to monitor constraints for the data items
that cannot be locked. The data monitoring functionality provided by our previous
work with DEGS makes it possible to monitor invariant conditions. Invariants
provide a stronger way of monitoring constraints and guaranteeing that a
condition holds for a specific duration of execution without the use of locking.

 13

Using the invariant technique, a process declares an invariant condition when it
reaches a specific AP in the process execution, also declaring an ending AP for
monitoring of the invariant condition. When a concurrent process modifies a data
item of interest in an invariant condition, the process that activated the invariant is
notified by a monitoring system built on top of Delta-Enabled Grid Services. If the
invariant condition is violated during the specified execution period, the process
can invoke the recovery procedures defined in Section 4.2. The strength of the
invariant technique is that it provides a way to monitor data consistency in an
environment where the coordinated locking of data items across multiple service
executions is not possible.

An invariant has an identifier, two AP specifications (APs as a starting AP and
and APe as an ending AP), and optional parameters which are necessary in the
condition specification. Once APs is reached, the invariant rule condition becomes
active. The condition is specified as an SQL query. The condition is initially
checked and the action is executed if the invariant condition is violated. If the
invariant condition holds, the rule condition goes into monitoring mode using the
DEGS capability. The condition monitoring continues until APe is reached or until
the invariant condition is violated.

As shown in Figure 5, when an invariant condition goes into monitoring mode,
the data items of interest in the invariant condition are registered with a
monitoring service. The monitoring service subscribes to the DEGSs that contain
the relevant data items referenced in an invariant. For example, if the condition to
be monitored is a + b > 10, then the relevant DEGS will notify the service of any
changes to a or to b by concurrent processes. Any deltas that are forwarded to the
monitoring service will cause the invariant condition to be rechecked. As long as
the condition still holds, then there is no interference among the concurrent
process executions. If the condition is violated, then the recovery action of the
invariant rule will be executed.

 Figure 5: The Semantics of an Invariant under Monitoring Mode

 14

As shown in Figure 6, the HotelRoomMonitoring invariant is defined between
AP1 and AP2. The process represents a travel planning process, where the
process is scoping out available hotel and airline options before finalizing the
plans. Figure 6 shows an invariant that checks a specific hotel for the availability
of a seaside room that is less that a specified price, where the hotel and price are
passed as parameters from the BeginTravelPlanning AP. Expression of the AP
allows the process to continue checking the availability of other travel options,
such as airline reservations, but to be notified if the room availability changes.
The condition is expressed as an SQL query, preceded with the not exists clause.
Therefore, according to the SQL condition defined, if there is not a room that
meets the criteria, then the select condition will return no tuples, making the not
exists clause true, which triggers recovery action 1. If the query returns tuples
that satisfy the SQL condition, then the process continues and the status of the
SQL query is monitored using the DEGS capability and the invariant monitoring
system. If the process reaches the ReadyToBook AP and the desired room type and
price are still available, then the process continues past the ReadyToBook AP,
making the appropriate reservations after deactivating the HotelRoomMonitoring
invariant. If at anytime between the BeginTravelPlanning AP and the ReadyToBook
AP the room is no longer available, the invariant monitoring system will notify the
process, which will execute one of the recovery actions.

4.4 Dynamic Behavior with Application Exception Rules

Dynamic behavior can also be achieved by using rules to respond to exceptional
conditions, where exceptions are communicated as events that interrupt the
normal flow of execution. Whereas past work generally provides a fixed response
to exceptions, our work with application exception rules, provides a more flexible
way of using rules to respond to exceptions.

As with integration rules and invariants, application exception rules are also
associated with assurance points. An outline of a process with APs is shown in the
leftmost column of Figure 7, where two different APs are defined. Each AP
represents the fact that a process has passed certain critical points in the execution
and that responding to an exception depends on the APs that have been passed for
individual instances of a process. Application exception rules are then written to
respond to exceptions according to the AP status of a process.

As shown in the middle column of Figure 7, application exception rules have a
case structure, defining recovery actions based on APs. When an exception
occurs, application exception rules are triggered. The exception handling
procedure to execute varies according to the AP status of the process, where
recovery actions can query the execution state associated with the most previous
AP. As shown in Figure 7, one instance of process A executes recoveryAction1
since the process has passed AP1 but not AP2. The other instance of process A
executes recoveryAction2 since the process has passed AP2. For example, in an
order processing application, if an order is canceled before the packing and
shipment of the order, then the order processing is simply cancelled. If the order is

 15

cancelled after the shipment has occurred, the order processing might be cancelled
with an additional restocking fee charged to the customer.

Subprocess

BeginTravelPlanning (hotelName,
price)

.

.

.

ReadyToBook (...)

create rule HotelRoomMonitoring::inv
event: BeginTravelPlanning (ReadyToBookAP,
hotelName, price)
condition: (Not exists(select * from Hotels H, Rooms R
where H.hotelName = ‘” + hotelName + “’ and
R.roomPrice < ‘” + price + “’ and R.roomType =
‘seaview’ and H.hid = R.hid))
recoveryAction1: APRetry
recoveryAction1: APRollBack

AP1

AP2

.

.

.

.

.

.

.

.

.

Figure 6 Subprocess with An Invariant

APs and application exception rules represent the fact that a response to an

exception is not always a fixed action. The manner in which a process responds to
an exception depends on the state of the process. Identifying exceptions that alter
the execution path should be a routine aspect of process modeling. Application
exception rules advocate that the identification of exceptions should be extended
to also consider the critical execution points that may affect recovery actions, and
that rules, together with supportive execution environments, should be designed to
provide variability of response.

A broader use of application exception rules is in the context of the
decentralized execution environment with support for data dependency analysis as
described in Section 3. Using the data monitoring capabilities of DEGS, we have
developed a decentralized data dependency analysis algorithm [42, 28]. Using this
information, it is possible to enhance recovery activities for concurrent processes
that execute with relaxed isolation properties. In particular, when one process
fails, recovery activities in the form of compensation can occur. Compensating
procedures, however, may make changes to the data that has been read and used
by concurrent processes. Using DEGS together with the decentralized data
dependency analysis algorithm, the failure and recovery of one process can
include the identification of other dependent processes that may be executing

 16

within the decentralized environment. Events can then be used to interrupt the
execution of dependent processes, with application exception rules providing a
way to respond to such events in a flexib ner.

le man

Figure 7: The Use of Ap ication Exception Rules

sses, test
data consistency conditions, and invoke recovery procedures as needed.

ore general use of application exception
rules are currently under development.

pl

We have experimented with this approach using process interference rules
(PIRs) [46, 47, 49]. A PIR is written from the perspective of an executing process
(pe) that is interrupted by the recovery of an unknown failed process (pf). The
interruption occurs because pe is identified as being write dependent or potentially
read dependent on pf. The condition of the PIR for pe can be expressed to query
the delta object schedule to 1) determine the data overlap between pe and pf and 2)
check the current status of the data after pf’s recovery. PIRs are therefore used to
test user-defined correctness conditions to determine if a dependent process
should continue running or invoke its own recovery procedures. We are currently
integrating the PIR functionality into the concept of application exception rules to
provide a more dynamic way to 1) recognize potential data inconsistency
problems among concurrently executing processes and 2) use the event and rule
functionality of application exception rules to interrupt dependent proce

5 Summary and Future Directions
This chapter has outlined several non-traditional uses of rules for supporting
dynamic behavior in service-oriented environments. The advantage of the
techniques presented is that they integrate the use of procedural and rule-based
techniques for process modeling. As a proof of concept, prototypes have already
been developed for integration rules, assurance points, the integration rule
recovery actions, the process interference rule pre-cursor to application exceptions
rules, and decentralized data dependency analysis [19, 20, 22, 36, 39, 42, 46, 48,
28]. Prototypes for invariants and the m

 17

An interesting challenge lies in developing methodologies that are capable of
supporting each rule paradigm in an integrated manner. Each rule type addresses a
different dimension of dynamics for service-oriented environments.
Methodologies are needed to define when and how the different rule forms are
defined. Notational conventions are needed to enhance existing, graph-based
approaches with notations that depict the way in which rules are used and
integrated with procedural specifications. Guidelines are also needed to assist with
the placement of assurance points, with the specification of the different types of
rules, and with defining the conditions under which the rules are used.

To support these methodological issues associated with the integration of
procedural and rule-based modeling, execution environments are also needed to
support the dynamic capabilities supported by integration rules, application
exception rules, and process interference rules. Our own research is focused on the
development of decentralized Process Execution Agents that communicate in a
peer-to-peer manner to dynamically determine data dependencies among
concurrently executing processes and to coordinate the execution of processes
with the different rule forms outlined in this chapter. We are also addressing the
correctness of concurrent process execution, together with the correctness of rule
execution, data dependency analysis, and rule-triggered exception handling and
recovery procedures.

Acknowledgments. This research has been supported by NSF Grant No. CCF-
0820152 and NSF Grant No. IIS-9978217.

References

1. BPEL4WS V1.1 specification. URL
http://www.ibm.com/developerworks/library/specification/ws-bpel/ (2003).

2. BPMN V2.0 Beta 1. URL
 http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf (2009).
3. Blake, L.: The Design and Implementation of Delta-Enabled Grid Services. M.S.

Thesis, Arizona State University (2006).
4. Ceri, S., Grefen, P., Sanchez, G.: WIDE-A Distributed Architecture for Workflow

Management. Proc. of 7th Int. Workshop on Research Issues in Data Engineering
(1997) 76-79.

5. Chiu, D.K.W., Li, Q., Karlapalem, K.: Exception Handling with Workflow Evolution in
ADOME-WFMS: A Taxonomy and Resolution Technique. ACM SIGGROUP Bulletin
20 (1999) 8-8.

6. Cichocki, A.: Workflow and Process Automation: Concepts and Technology. Kluwer
Academic Publishers (1998).

7. Cichocki, A., Rusinkiewicz, M.: Migrating Workflows. NATO ASI series. Series F:
Computer and System Sciences (1997) 339-355.

8. Dayal, U., Hsu, M., Ladin, R.: A Transactional Model for Long-Running Activities.
Digital Equipment Corp., Cambridge Research Laboratory (1991).

9. Desel, J.: Process Modeling Using Petri Nets. Process-Aware Information Systems:
Bridging People and Software through Process Technology. Hoboken, New Jersey:
Wiley, S (2005) 147-178.

10. Dietrich, S.W., Patil, R., Sundermier, A., Urban, S.D.: Component Adaptation for

 18

http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf

Event-Based Application Integration Using Active Rules. Journal of Systems &
Software 79 (2006) 1725-1734.

11. Dietrich, S.W., Urban, S.D., Sundermier, A., Na, Y., Jin, Y., Kambhampati, S.: A
Language and Framework for Supporting an Active Approach to Component-Based
Software Integration. Informatica, 25 (2002) 443-454.

12. Dogac, A.: Workflow Management Systems and Interoperability. Springer (1998).
13. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling using UML. Process-

aware Information Systems: Bridging People and Software through Process
Technology. Hoboken, New Jersey: Wiley (2005) 85-117.

14. Gergely, P., IstvaN, M.: Modeling and Analysis of Exception Handling by Using UML
Statecharts [J]. Lecture Notes in Computer Science 3409 (2005).

15. Halvorsen, O., Haugen, O.: Proposed Notation for Exception Handling in UML 2
Sequence Diagrams. Proc. of the Australian Software Engineering Conf. vol. 26 (2006)

16. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The Specification of Business
Rules: A Comparison of Selected Methodologies. Proc. of IFIP WG8, vol. 94 (1994).

17. Jean, D., Cichock, A., Rusinkiewicz, M.: A Database Environment for Workflow
Specification and Execution. Proc. Int. Symp. on Cooperative Database Systems Kyoto
(1996).

18. Jennings, N.R., Faratin, P., Norman, T.J., O'Brien, P., Odgers, B., Alty, J.L.:
Implementing a Business Process Management System Using ADEPT: A Real-World
Case Study. Applied Artificial Intelligence 14 (2000) 421-463.

19. Jin, Y.: An Architecture and Execution Environment for Component Integration Rules.
Ph.D. Dissertation, Arizona State University (2004).

20. Jin, Y., Urban, S.D., Dietrich, S.W.: Extending the OBJECTIVE Benchmark for
Evaluation of Active Rules in a Distributed Component Integration Environment.
Journal of Database Management 17 (2006) 47-69.

21. Jin, Y., Urban, S.D., Dietrich, S.W.: A Concurrent Rule Scheduling Algorithm for
Active Rules. Data & Knowledge Engineering 60 (2007) 530-546.

22. Jin, Y., Urban, S.D., Dietrich, S.W., Sundermier, A.: An Integration Rule Processing
Algorithm and Execution Environment for Distributed Component Integration.
Informatica 30 (2006) 193-212.

23. Kambhampati, S.: An Event Service for a Rule-Based Approach to Component
Integration. M.S. Thesis, Arizona State University (2003).

24. Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., Arenas, M.: Coordinating
Peer Databases using ECA Rules. Lecture Notes in Computer Science (2004) 108-122.

25. Kappel, G., Proll, B., Rausch-Schott, S., Retschitzegger, W.: TriGS flow: Active
Object-Oriented Workflow Management. Proc. of HICSS'95, Vol. 2 (1995).

26. Karnath, M., Ramamritham, K.: Failure Handling and Coordinated Execution of
Concurrent Workflows. Proc. of the 14th Int. Conf. on Data Eng. (1998) 334-341.

27. Liu, L., Pu, C.: ActivityFlow: Towards Incremental Specification and Flexible
Coordination of Workflow Activities. Lecture Notes in Computer Science (1997) 169-
182.

28. Liu, Z.: Decentralized Data Dependency Analysis for Concurrent Process Execution.
M.S. Thesis, Texas Tech University (2009).

29. Lu, R., Sadiq, S.: A Survey of Comparative Business Process Modeling Approaches.
Lecture Notes in Computer Science 4439 (2007).

30. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Springer (2002).

31. Mendling, J., Neumann, G., Nuttgens, M.: Yet Another Event-Driven Process Chain.
Lecture Notes in Computer Science 3649 (2005).

32. Müller, R., Greiner, U., Rahm, E.: AgentWork: A Workflow System Supporting Rule-
Based Workflow Adaptation. Data & Knowledge Engineering 51 (2004) 223-256.

 19

 20

33. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: From Business
Process Models to Process-Oriented Software Systems: The BPMN to BPEL Way.
BPM Center Report BPM-06-27, BPMcenter. org (2006).

34. Reichert, M., Dadam, P.: Adept Flex—Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems 10 (1998) 93-129.

35. Sadiq, W., Orlowska, M.E.: On Capturing Process Requirements of Workflow Based
Business Information Systems. Proc. of the 3rd Int. Conf. on Business Information
Systems (1999).

36. Shrestha, R.: Using Assurance Points, Events, and Rules for Recovery in Service
Composition. M.S. Thesis, Texas Tech University (2010).

37. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-driven Process
Chains. Process-aware Information Systems: Bridging People and Software through
Process Technology. Hoboken, New Jersey: Wiley (2005) 119-145.

38. Urban, S.D., Dietrich, S.W., Na, Y., Jin, Y., Sundermier, A., Saxena, A.: The IRules
Project: Using Active Rules for the Integration of Distributed Software Components.
Proceedings of the 9th IFIP Working Conference on Database Semantics: Semantic
Issues in E-Commerce Systems (2001) 265-286.

39. Urban, S.D., Gao, L., Shrestha, Courter, A.S.: Achieving Flexibility in Service
Composition with Assurance Points and Integration Rules. Submitted for review (2010).

40. Urban, S.D., Kambhampati, S., Dietrich, S.W., Jin, Y., Sundermier, A.: An Event
Processing System for Rule-Based Component Integration. Proc. of the Int. Conf. on
Enterprise Information Systems, Porto, Portugal (2004) 312-319.

41. Urban, S.D., Xiao, Y., Blake, L., Dietrich, S.: Monitoring Data Dependencies in
Concurrent Process Execution through Delta-Enabled Grid Services. International
Journal of Web and Grid Services (2009) 85-106.

42. Urban, S.D., Liu, Z., Gao, L.: Decentralized Data Dependency Analysis for Concurrent
Process Execution. Proc. of the 13th Enterprise Dist. Object Computing Conf.
Workshops (Edocw 2009) (2009) 74-83.

43. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30 (2005) 245-275.

44. White, S.A.: Business Process Modeling Notation (BPMN). URL http://www. bpmi.
org/bpmi-downloads/BPMN-V1. 0. pdf (2004).

45. Widom, J., Ceri, S.: Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Pub (1996).

46. Xiao, Y.: Using Deltas to Analyze Data Dependencies and Semantic Correctness in the
Recovery of Concurrent Process Execution. Ph.D. Diss., Arizona State Univ., (2006) .

47. Xiao, Y., Urban, S.D.: Process Dependencies and Process Interference Rules for
Analyzing the Impact of Failure in a Service Composition Environment. Proc. of the
10th Int. Conf. on Business Information Systems, Poznan, Poland (2007) 67-81.

48. Xiao, Y., Urban, S.D.: The DeltaGrid Service Composition and Recovery Model.
International Journal of Web Services Research (2009).

49. Xiao, Y., Urban, S.D.: Using Data Dependencies to Support the Recovery of
Concurrent Processes in a Service Composition Environment, Proc. of the Cooperative
Information Systems Conf. (COOPIS), Monterrey, Mexico (2008), pp. 139-156.

50. Xiao, Y., Urban, S.D., Dietrich, S.W.: A Process History Capture System for Analysis
of Data Dependencies in Concurrent Process Execution. Proc. of the 2nd Int. Workshop
on Data Engineering in E-Commerce and Services, San Francisco, (2006) 152-166.

51. Xiao, Y., Urban, S.D., Liao, N.: The DeltaGrid Abstract Execution Model: Service
Composition and Process Interference Handling. Proc. of the Int. Conf. on Conceptual
Modeling (ER 2006), vol. 4215. Springer, Tucson, Arizona (2006) 40-53.

