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Abstract. The introduction of service-oriented computing has created a more dynamic 
environment for the composition of software applications, where processes are affected by 
events and data changes and also pose data consistency issues that must be considered in 
application design and development. This chapter addresses the need to develop a more 
effective means to model the dynamic aspects of processes in contemporary, distributed 
applications, especially in the context of concurrently executing processes that access 
shared data and cannot enforce traditional transaction properties. After an assessment of 
current tools for process modeling, we outline four approaches for the use of events and 
rules to support dynamic behavior and the manner in which events, rules, and process 
descriptions must come together to support conceptual modeling of processes. The first 
approach is integration rules, supporting the invocation and successful completion of a 
service as separate events that can be used to monitor execution, check constraints, provide 
event-driven interconnection of processes, and monitor business activity. The second 
approach is assurance points, providing checkpoints that are used to store execution data, 
invoke integration rules for testing pre and post conditions, and serve as intermediate 
rollback points in support of recovery activities. The third approach is application 
exception rules, providing a case-based rule structure with exception handling procedures 
that vary depending on the state of the process execution as defined by assurance points. 
The fourth approach is that of invariants for dynamically monitoring data conditions and 
reacting to condition violations in between the assurance points of a process. The chapter 
concludes with a discussion of future research directions for the integrated modeling of 
events, rules, and processes. 

Keywords: service composition, event and rule processing, integration 
rules, application exception rules, invariant conditions, dynamic process 
modeling 

1   Introduction 

The advent of Web Services and service-oriented computing has significantly 
changed software development practices and data access patterns for distributed 
computing environments, creating the ability to develop processes that are 
composed of distributed service executions. These processes are often 
collaborative in nature, involving long-running activities based on loosely-
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coupled, multi-platform, service-based architectures. This new software 
development paradigm makes the concept of virtual organizations a reality, better 
supporting enterprise-to-enterprise business processes and data exchange.  
Service-oriented computing, however, also poses new challenges for software 
process modeling. In particular, processes must be flexible enough to respond to 
the different types of change that can occur during execution. Change occurs, for 
example, when one service is unavailable and needs to be substituted with another 
service. Change occurs when exceptional conditions arise in an application, such 
as a customer canceling or changing an order, or a warehouse discovering 
damaged shipments. Change also occurs when a process fails and needs to be 
recovered in a manner that maintains consistency for the failed process as well as 
for other processes that access shared data with the failed process. Processes must 
also be capable of executing in environments that no longer support traditional 
transactional properties but also guarantee correctness and consistency of 
execution. The ability to respond to change and, at the same time, guarantee 
consistency requires not only a flexible execution environment, but also 
techniques that support the modeling of a process’s ability to correctly respond to 
events and failures that affect the normal flow of execution. 

Many techniques have been designed in the past to support process modeling, 
with the most prevalent techniques being the Unified Modeling Language (UML) 
[13], the Business Process Modeling Notation (BPMN) [44], and Event-Driven 
Process Chains (EPC) [37]. Most of these techniques were developed before the 
emergence of service-oriented computing and the growing prevalence of complex 
events and event-driven applications [30]. Modeling extensions have been 
introduced to many of these tools in recent years to provide support for 
responding to events, handling exceptional conditions, and using events and rules 
as a way to control process flow. In this chapter, we first summarize existing 
techniques for modeling the dynamics of processes. We then introduce additional 
considerations for the use of events and rules in process modeling, especially in 
the context of service-oriented computing. 

In particular, this chapter illustrates the use of integration rules, invariant rules, 
and application exception rules together with the concept of assurance points to 
model the more dynamic nature of service-oriented computing. Integration rules 
are similar to the use of events and rules to control process flow [10, 11, 19, 22, 
38]. They are different, however, in that events are raised before and after the 
execution of services to trigger integration rules that test control logic that is 
orthogonal to the main procedural specification of process flow. Assurance points 
(APs) enhance the use of integration rules, providing checkpoints that are placed 
at critical locations in the flow of a process. An AP is used to store execution data 
that is passed as parameters to integration rules that check pre and post conditions 
and invoke additional execution logic. APs are also used as intermediate rollback 
points to support compensation, retry, and contingent procedures in an attempt to 
maximize forward recovery.  

Whereas integration rules can be used to check data conditions at certain points 
in process execution, invariants provide a stronger way to monitor data conditions 
that must hold over a certain period of time during the execution of a process, 
especially when data items cannot be locked over the span of multiple service 
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executions. Invariants are activated with a starting AP, deactivated with an ending 
AP, and monitor the data of the invariant condition in between APs using a 
concept known as Delta-Enabled Grid Services (DEGS [3]. An invariant therefore 
allows a process to declare data conditions that are critical to the execution of the 
process, but to allow multiple processes to access the same data in an optimistic 
fashion. When critical data conditions are violated, as detected by the DEGS 
capability, recovery conditions can be invoked. 

Finally, application exception rules provide a way to interrupt the execution of 
a process in response to exceptional conditions and to respond to exceptions in 
different ways depending on the state of the executing process as determined by 
assurance points. Application exception rules can also be combined with a data 
dependency analysis procedure associated with the use of DEGS to provide a way 
to help a process determine how its own recovery or forward execution can be 
affected by the failure and recovery of other processes that are accessing shared 
data [46, 47, 49]. This is especially important for maintaining data consistency in 
environments that cannot provide traditional transaction processing guarantees.  

In the sections that follow, we first outline past work in the area of process 
modeling with a specific focus on the use of events, rules, and exception handling 
to provide dynamic behavior. We then provide motivation for integration rules, 
assurance points, invariants, and application exception rules in the context of 
decentralized process execution agents (PEXAs) for service-oriented computing. 
We then elaborate on assurance points and the rule functionality of our research. 
The chapter concludes with a summary and discussion of future research for 
modeling methodologies, modeling tools, and execution environments that 
support the dynamic capabilities outlined in this chapter. 

2   Status of Conceptual Modeling for Business Processes 

As described in a comparative analysis by Lu and Sadiq [29], most modeling 
techniques can be categorized as either graph-based techniques or rule-based 
techniques, where graph-based techniques are based on Petri nets [9] and rule-
based techniques are based on the use of event-condition-action rules and/or agent 
technology. The following subsections summarize graph and rule-based 
techniques, with a focus on support for dynamic capabilities. 

 
2.1 Graph-Based Modeling Techniques 
 
In graph-based modeling techniques such as BPMN [44], UML [13], and EPC 
[37], a business process is described by a graph notation in which activities are 
represented as nodes, and control flow and data dependencies between activities 
as arcs or arrows.  
 
BPMN. The Business Process Modeling Notation (BPMN V1.0) was introduced 
by the Business Process Management Initiative in 2004 [44]. The objective of 
BPMN is to provide a graphical model that can depict business processes and can 
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be understood by both users and developers. Flow objects include symbols to 
represent events, activities, and gateways (i.e., decision points). Flow objects are 
connected to each other via connecting objects that represent sequence flow, 
message flow, and association. A process always starts from an event and ends in 
an event. All other events inside the process are called intermediate events and can 
be part of the normal flow or attached to the boundary of an activity. An attached 
event indicates that the activity to which the event is attached should be 
interrupted when the event is triggered. The attached event can trigger either 
another activity or sub-process. Typically, error handling, exception handling, and 
compensation are triggered by the attached event.  

To detail a business process, swim lanes and artifacts can be used. Swim lanes 
are used to either horizontally or vertically group a process into subgroups by 
rules, such as grouping processes by departments in a company business process. 
Artifacts provide additional information in a business process to make a model 
more readable, such as text descriptions attached to an activity. 
  BPMN (V2.0 beta 1) [2] was released in 2009. In BPMN 2.0, the most 
important update is standardized execution semantics which provide execution 
semantics for all BPMN elements based on token flows. A choreography model is 
also supported in BPMN 2.0. Other significant changes include 1) a data object 
supporting assignments for activity; 2) updated gateways supporting 
exclusive/parallel event-based flow; 3) event-subprocesses used to handle event 
ocurrences in the bounding subprocess; 4) a call activity type that can call another 
process or a global task; and 5) escalation events for transferring control to the 
next higher level of responsibility. 

Since BPMN models are expressed using a graphical notation together with 
natural language, ambiguities can occur in the description of a process. 
Furthermore, BPMN model is not directly executable. There are, however, 
mapping tools that can convert BPMN to executable languages, where the 
translation is enhanced with the execution semantics of BPMN 2.0. For example, 
the Business Process Execution Language (BPEL) [1] is used for executing 
business processes that are composed of Web Services. A well-known, open-
source mapping tool is BPMN2BPEL [33]. BPMN also does not explicitly 
support business rules and, instead, uses gateways to express business rule logic.  
 
UML. The Unified Modeling Language (UML) is a general-purpose modeling 
language with widespread use in software engineering. UML provides a set of 
graphical modeling notations to model a system. An activity diagram describes a 
business process in terms of control flow. A state diagram represents a business 
process using a finite number of states. UML also provides sequence diagrams 
that emphasize interactions between objects.  

In UML 2.0, new notations have been added to activity diagrams to provide 
support for the specification of pre and post conditions, events and actions, time 
triggers, time events, and exceptions. These notations provide more dynamic 
support to process modeling in UML. Researchers have also proposed process 
modeling enhancements to UML. For example, the work in [14] proposes a 
framework that supports exception handling using UML state charts. In [15], the 
authors present a method that can handle exceptions in sequence diagrams.  
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EPC. The Event-driven Process Chain (EPC) method was developed within the 
framework of the Architecture of Integrated Information Systems (ARIS) in the 
early 1990s. The merit of EPC is that it provides an easy-to-understand notation. 
OR, AND, and XOR nodes are used to depict logical operations in the process 
flow. The main elements of a process description include events, functions, 
organization, and material (or resource) objects. The EPC does not have specific 
notation support for exception processing. Instead, EPC uses the logical 
operations to specify the handling of events and exceptional conditions. Recent 
work has modified the EPC notation to provide better support for process 
modeling. For example, in [31], yEPC provides a cancellation notation to model 
either an activity or a scope cancellation process.   

 
Other Related Methods. FlowMake is presented by Sadiq and Orlowska in [35]. 
FlowMake models a workflow using a graphical language, including workflow 
constraints that can be used to verify the syntactic correctness of a graphical 
workflow model. Reichert and Dadam [34] present a formal foundation for the 
support of dynamic structural changes of running workflow instances. ADEPTflex 
is a graph-based modeling methodology that supports users in modifying the 
structure of a running workflow, while maintaining its correctness and consistency 
[34]. YAWL [43] is designed based on Petri nets for the specification of control 
flow. ActivityFlow [27] provides a uniform workflow specification interface to 
describe different types of workflows and helps to increase the flexibility of 
workflow processes in accommodating changes. ActivityFlow also allows 
reasoning about correctness and security of complex workflow activities 
independently from their underlying implementation mechanisms. 

An advantage of graph-based languages is that they are based on formal graph 
foundations that have rich mathematical properties. The visual capabilities also 
enhance process design for users and designers. The disadvantage is that graph-
based modeling methods are not agile for dynamic runtime issues, requiring the 
use of specialized notations that can cause the model to become more complex. 

 
2.2 Rule-Based Modeling Techniques 
 
In a rule-based modeling approach, business rules are defined as statements about 
guidelines and restrictions that are used to model and control the flow of a process 
[16]. More recently, rules are used together with agent technology to provide more 
dynamic ways of handling processes. 
 
Use of Rules in Workflow and Service Composition: Active databases extends 
traditional database technology with the ability to monitor and react to 
circumstances that are of interest to an application through the use of Event-
Condition-Action (ECA) rules [45]. As a dynamic approach to respond to 
unexpected events, ECA rules are widely used in workflow research to achieve 
goals such as workflow control and exception handling.  

The work of Dayal et al. [8] was one of the first projects to use ECA rules to 
dynamically specify control flow and data flow in a workflow. In the CREW 
project [26], ECA rules are used to implement control flow. The TrigSFlow [25] 
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model uses active rules to decide activity ordering, agent selection, and worklist 
management. Database representation of workflows [17] uses Event-Condition-
Message rules to specify workflows and utilize database logging and recovery 
facilities to enhance the fault-tolerance of the workflow application. Migrating 
workflows [7] provide dynamics in workflow instances. A migrating workflow 
transfers its code (specification) and its execution state to a site, negotiates a 
service to be executed, receives the results, and moves on to the next site [7]. ECA 
rules are used to specify the workflow control.  

Active rules also provide a solution for exception handling in workflow 
systems. ADOME [5] and WIDE [4] are commercial workflow systems that use 
active rules in exception handling. Rules are also used in workflow systems to 
respond to ad-hoc events that have predefined actions. Other workflow projects 
that use active rules are described in [6,12]. Active rules have been used to 
generate data exchange policies at acquaintance time among peer databases [24]. 

 
Agent-Based Techniques. Agent technology has been introduced to model 
business processes. Agents are autonomous, self-contained and capable of making 
independent decisions, taking actions to fulfill design goals and to model elements 
in a business process. Agents also support dynamic and automatic workflow 
adaptations, thus providing flexibility for unexpected failures. ADEPT [18] is an 
agent-based business process management system for designing and implementing 
processes. The process logic is defined by a service definition language, where 
agents have sufficient freedom to determine which alternative path should be 
executed at runtime. AgentWork [32] is a flexible workflow support system that 
provides better support for exception handling using an event monitoring agent, an 
adaptation agent, and a workflow monitoring agent. Events represent exceptional 
conditions, with rule conditions and actions used to correct the workflow. The 
adaptation agent performs adjustments to the implementation. The workflow 
monitoring agent checks the consistency of the workflow after adaptation 
implementation. If the workflow is inadequate, the workflow monitoring agent 
will re-estimate the error and invoke a re-adaptation of the workflow. 

Rule and agent-based modeling methods provide better support for flexibility 
and adaptability in process modeling. Rule-based methods support modifications 
at runtime much easier than graph-based methods. It is easy to modify a process 
model by rule-based methods, and, unlike graph-based methods, rule-based 
methods do not need new notations to express exception handling processes. Rule-
based methods, however, can be difficult to use and understand. 

3   Motivation for New Rule Functionality 

As illustrated in the previous section, most process modeling techniques are 
aligned with either a procedural approach, specified as a flow graph, or a rule-
driven approach, where events and rules are used to control the flow of execution. 
Rules provide a more dynamic way to respond to events that represent a need to 
change the normal flow of execution. The use of rules in process modeling is 
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especially important considering the growing prevalence of complex events, 
event-driven applications, and business activity monitoring.  

In our view, a dynamic approach to process modeling for service-oriented 
environments requires a combination of graph and rule-based techniques, where 
graph-based techniques provide a means for specifying the main application logic 
and events are used to interrupt or branch off of the main flow of execution, 
triggering rules that check constraints, respond to exceptions, and initiate parallel 
activity. Events and rules should also play an increased role in supporting failure 
and recovery activity. Planning for failure and recovery should be an integral 
component of process modeling for service-oriented architectures, especially in 
the context of concurrently executing processes that access shared data and cannot 
enforce traditional transactional properties.  

Our research addresses consistency checking as well as failure and recovery 
issues for service-oriented environments through the use of integration rules, 
invariants, and application exception rules, used together with a checkpointing 
concept known as assurance points. Figure 1 provides motivation for the use of 
these concepts together with an overview of the rule functionality presented in this 
chapter. In particular, consider a decentralized execution environment consisting 
of Process Execution Agents (PEXAs). Each PEXA is responsible for monitoring 
the execution of different processes. As shown in Figure 1, PEXA 1 is responsible 
for the execution of P1 and P4, PEXA 2 is responsible for P2, and PEXA 3 is 
responsible for P3. Each process invokes services at distributed locations. As 
shown in Figure 1, P1 invokes operation_a at the site of PEXA 1, operation_b and 
operation_c at the site of PEXA 2, and operation_d at the site of PEXA 3. 

Figure 1 also illustrates that PEXAs are co-located with Delta-Enabled Grid 
Services (DEGS). A DEGS is a Grid Service that has been enhanced with an 
interface that stores the incremental data changes, or deltas, that are associated 
with service execution in the context of globally executing processes [3, 41]. A 
DEGS uses an OGSA-DAI Grid Data Service for database interaction. The 
database captures deltas using capabilities provided by most commercial database 
systems. Our own implementation has experimented with the use of triggers as a 
delta capture mechanism, as well as the Oracle Streams capability [41]. Oracle 
Streams is a feature that monitors database redo logs for changes and publishes 
these changes to a queue to be used for replication or data sharing.  

Deltas captured using DEGS are stored in a delta repository that is local to the 
service. Our past work [46, 50] has experimented with the creation of a Process 
History Capture System (PHCS) that includes deltas from distributed DEGSs and 
the process runtime context generated by the process execution engine. Deltas are 
dynamically merged using timestamps as they arrive in the PHCS to create a time-
ordered schedule of data changes from distributed DEGS. The global delta object 
schedule is used to support recovery activities when process execution fails [46, 
48, 49, 51], where the global delta object schedule provides the basis for 
discovering data dependencies among processes. Our most recent work has 
transformed the global delta object schedule into a distributed schedule with a 
decentralized algorithm for discovering data dependencies [42, 28]. 

Given that processes can execute in an environment where decentralized 
PEXAs can monitor data changes and communicate about data dependencies 
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among concurrently executing processes, consider the assurance point and rule 
functionality illustrated for P1 in Figure 1. As shown for P1, APs can be placed at 
strategic locations in a process, where an AP is a combined logical and physical 
checkpoint that can be used to store execution data, alter program flow, and 
support recovery activity. One use of an AP is to trigger integration rules as 
shown for AP1, where integration rules check pre and post conditions for service 
execution. By checking pre/post conditions, user-defined consistency constraints 
can validated, which is important since most service-oriented environments cannot 
rely on traditional notions of serializability to ensure the correctness of 
concurrently executing processes.  

 
 

   

Figure 1 Decentralized Process Execution Agents with Events and Rules 
 

Another use of an AP is to activate invariant rules. Invariants indicate 
conditions that must be true during process execution between two different APs. 
As shown for P1 in Figure 1, an invariant is monitored during the execution 
between AP2 and AP3, where the invariant represents a data condition that is 
critical to the correct execution of P1. P1, however, may not be able to lock the 
data associated with the invariant during the service executions between AP2 and 
AP3. Given that DEGS can be used to monitor data changes, P1 can activate the 
invariant condition, but still allow concurrent processes to access shared data. P1 
can then be notified if data changes violate the invariant condition. For example, if 
P3 modifies data associated with the invariant of P1, P1 can re-evaluate the 
invariant condition and invoke recovery actions if needed. 

 8



P1 also illustrates the use of application exception rules at AP4. A process 
should be capable of responding to external events that may affect execution flow. 
The response to the event, however, may depend on the current status of the 
process. For example, P1 may respond one way if the process has passed AP4, but 
may respond differently if the process is only at AP1. Application exception rules 
therefore provide a case-based structure that allows a process to use information 
about assurance points to provide greater flexibility in response to events. 
Furthermore, since PEXAs can communicate about data dependencies among 
concurrently executing processes, when a process Pj invokes recovery procedures 
in response to integration rules, invariant conditions, or application exception 
rules, event notifications can be sent through P2P communication to dependent 
processes that are controlled by other PEXAs. Application exception rules can be 
used by a process Pi to intercept such events, determine how the failure and 
recovery of Pj potentially affects the correctness conditions of Pi, and respond in 
different ways depending on the AP status of the process. 

4   Assurance Point and Rule Functionality 

This section provides a more detailed description of the capabilities outlined in 
Section 3. The first subsection elaborates on foundational work with integration 
rules. The following subsections then address assurance points, invariant rules, 
and application exception rules. 

4.1 Dynamic Behavior with Integration Rules 

Integration Rules (IRules) were originally defined in [19, 38] to investigate the 
middle-tier, rule processing technology necessary for the use of declarative, active 
rules in the integration of Enterprise Java Beans (EJB) components. Several 
different subcomponents to the IRules language framework have been defined, 
including the Component Definition Language (CDL) for defining a global object 
model of components and their relationships [10], the IRules Scripting Language 
(ISL) for describing application transactions (a BPEL-like language), the Event 
Definition Language (EDL) for defining events [23, 40], and the Integration Rule 
Language (IRL) for defining active rules [10, 11, 38]. In this section, we focus on 
IRL and the functionality that it provides for dynamically testing the correctness 
of process execution. The remaining subsections then show modifications to IRL 
for additional dynamic modeling capabilities that address exception handling and 
the consistency of concurrent processes. 

IRules are different from past work with the use of rules to control workflow in 
that they are integrated with the use of procedural specifications. Using IRules, the 
main logic of a process can be expressed using a modeling tool such as BPMN. It 
is assumed, however, that the start and end of a process generates application 
transaction events. The execution of individual services within a process also 
generates method events both before and after the execution of a service. IRules 
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are then used to respond to application transaction events and method events, 
controlling rule actions together with the normal process flow using rule coupling 
modes from active database technology [45]. Integration rules can therefore be 
used to check pre and post conditions, to change the flow of execution, to spawn a 
new flow of execution that eventually joins the main flow, to defer a new flow of 
execution upon successful completion of the main flow, or to invoke a new, 
independent, parallel flow of execution in addition to the main flow. 

The structure of an integration rule is shown in Figure 2. Events are generated 
before and after the execution of individual services and their enclosing processes 
by wrappers that coordinate rule and component execution. Rule conditions and 
actions can be enhanced with ec (for event/condition) and ca (for condition/action) 
coupling modes [22]. For example, the immediate synchronous mode implies that 
the main flow of execution (i.e., the one that generated the event that triggered the 
rule) is halted while rule execution occurs. The immediate synchronous mode is 
therefore useful for checking preconditions before the execution of a service. The 
immediate asynchronous mode allows the main flow to continue during rule 
execution, with the rule executing in the same transactional framework as the 
process that triggered the rule. The deferred mode provides a way of triggering a 
rule that schedules the execution of a procedure at the end of the main procedural 
flow. The deferred mode is useful for schedule the execution of a post condition 
that must be used to ensure data consistency at the end of a service execution. 
Alternatively, a post condition can be tested by triggering an integration rule with 
an immediate synchronous mode after the execution of a service. The decoupled 
mode is used to trigger the execution of a rule condition or action that executes in 
parallel with the main flow of execution as a separate transactional entity. The 
decoupled mode therefore provides a way to use rules for invoking procedures that 
involve business activity monitoring.  
 
create rule     ruleName 
event eventName(eventParameters)  
 [on componentName componentVariables] 
condition       [ec coupling] 
 rule condition specification 
action       [ca coupling] 
 rule action 
Figure 2: Structure of an Integration Rule [22] 
 

As an example, consider the integration rule for a stock application in Figure 
3. The purpose of the stockSell rule is to initiate sellStock transactions when a price 
increase occurs. We only want to initiate such transactions, however, for pending 
orders where the NewPrice exceeds the desired selling price in the pending order. 
This situation implies that we need to compare the new price of the stock with the 
old price of the stock to determine if there was a price increase. This can only be 
done by examining the old and new values before the execution of the price 
change in the Stock component, thus illustrating the need for the beforeSetPrice 
event. The coupling mode on the rule condition is immediate, indicating that the 
check for a price increase should be performed as soon as the rule is triggered. 
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The sellStock transactions on the appropriate pending orders, however, should only 
be executed after the completion of the setPrice method. As a result, the action part 
of the rule is deferred, meaning that the action will not be performed until the end 
of the outer-most transaction in which the rule was triggered. 
 
create rule  stockSell 
event  beforeSetPrice(NewPrice) 
 on stock S 
condition  immediate 

when NewPrice>S.price 
action  deferred 
 from Pn in S.pendingTrades 
 where S.price>=Pn.desiredPrice AND Pn.action=”sell” 
 do sellStock(S,Pn); 
Figure 3: Integration Rule Example for a Stock Application [38] 

 
The full details of the integration rule execution model as originally used with 

EJB components can be found in [19-22, 38]. With respect to dynamic process 
modeling, integration rules illustrate the manner in which rules can be used for 
more than just the interconnection of steps in a workflow. Integration rules work 
together with procedural, graph-based specifications and are particularly useful for 
1) checking conditions that validate the correctness of service execution and 2) 
invoking business activity monitoring procedures that execute in parallel with 
business processes. 

4.2 Dynamic Behavior with Assurance Points  

In our current research, we have enhanced the use of integration rules using 
assurance points and recovery actions. An assurance point (AP) is defined as a 
process execution correctness guard as well as a potential rollback point during 
the recovery process [36, 39]. Given that concurrent processes do not execute as 
traditional transactions in a service-oriented environment, inserting APs at critical 
points in a process is important for checking consistency constraints and 
potentially reducing the risk of failure or inconsistent data. An AP also serves as a 
milestone for backward and forward recovery activities. When failures occur, APs 
can be used as rollback points for backward recovery, rechecking pre-conditions 
relevant to forward recovery. 

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?>, where: 
- apID is the unique identifier of the AP 
- apParameters is a list of critical data items to be stored as part of the AP, 
- IRpre is an integration rule defining a pre-condition, 
- IRpost is an integration rule defining a post-condition, 
- IRcond is an integration rule defining additional application rules. 

In the above notation, * indicates 0 or more occurrences, while ? indicates zero 
or one optional occurrences.  
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IRpre, IRpost, and IRcond are expressed in the integration rule format introduced in 
Figure 2, where the eventName is the name of the assurance point that triggers the 
rule.  For IRpre and IRpost, a constraint C is always expressed in a negative form 
(not(C)). The action of a rule is invoked if the pre or post condition is not true, 
invoking a recovery action or an alternative execution path. If the specified action 
is a retry activity, then there is a possibility for the process to execute through the 
same pre or post condition a second time. In such a case, IRpre and IRpost rules 
support the specification of a second action to invoke a different recovery 
procedure the second time through. 

In its most basic form, the recovery action of an integration rule simply invokes 
an alternative process. Recovery actions can also be one of the following actions: 
- APRollback: APRollback is used when the entire process needs to 

compensate its way back to the start of the process. 
- APRetry: APRetry is used when a process needs to be backward recovered 

using compensation to a specific AP. The backward recovery process will go 
to the first AP reached as part of the compensation process. The pre-condition 
defined in the AP is re-checked before resuming the execution.  

- APCascadedContingency (APCC): APCC is a backward recovery process 
that searches backwards through the hierarchical nesting of processes to find a 
contingent procedure for a failed sub-process. During the APCC backward 
recovery process, when an AP is reached, the pre-condition defined in the AP 
is  re-checked before invoking a contingent procedure for forward recovery.  
When the execution of a process reaches an AP, integration rules associated 

with the AP are invoked. The condition of an IRpost is evaluated first. If the post-
condition is violated, the action invoked can be one of the pre-defined recovery 
actions as described above. If the post-condition is not violated, then an IRpre rule 
is evaluated before the next service execution. If the pre-condition is violated, one 
of the pre-defined recovery actions will be invoked. If the pre-condition is 
satisfied, the AP will check for any conditional rules (IRcond) that may exist. IRcond 
rules do not affect the normal flow of execution but provide a way to invoke 
parallel activity based on application requirements. Note that the expression of a 
pre-condition, post-condition or any additional condition is optional. 

As an example, consider a subset of an online shopping process, as shown in 
Figure 4, where two APs are inserted. Both APs have integration rules that must 
be checked when the process execution reaches the APs. The cop and top in the 
process indicate the compensation and contingency of the attached activity, 
respectively. In the subprocess, AP1 is orderPlaced, which reflects that the 
customer has finished placing the shopping order. Before executing the payment 
activity, the pre-condition at AP1 is checked to guarantee that the store has 
enough goods in stock. Otherwise, the process invokes the backOrder process 
instead. Similarly, the CreditCardCharged AP2 after payment activity has a post-
condition that further guarantees that the in-stock quantity must be in a reasonable 
status (not less than zero) after the decInventory operation. Otherwise, a recovery 
action APRetry must be invoked to recover the process back to AP1 and re-execute 
the payment activity. If the post-condition fails after re-execution, then APRollback 
will be invoked to abort the overall process. 
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Add to cart

Select shipping method

Payment information input

Place an order

Subprocess

OrderPlaced (orderId, itemID, N)

Charge credit 
card

Dec inventory

CreditCardCharged (orderId, cardNumber, amount)

cop 
(AbortOrder)

cop(creditBack)

cop(incInventory)

top(eCheckPay)

create rule QuantityCheck::pre
event: OrderPlaced (orderId)
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId 
and L.quantity>I.quantity)
action: backOrderPurchase(orderId)

create rule QuantityCheck::post
event: CreditCardCharged (orderId, 
cardNumber, amount)
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId 
and I.quantity<0)
action1: APRetry
action2: APRollback

AP1

AP2

           Figure 4 Subprocess with Two APs 

4.3 Dynamic Behavior with Invariants 

As described in the previous subsection, APs together with integration rules 
allow data consistency conditions to be checked at specific points in the execution 
of a process [36], using rule actions to invoke recovery procedures. In some 
applications, however, stronger condition checking techniques may be needed to 
monitor data consistency. As a result, an additional way to use rules together with 
APs is through the use of invariants. An invariant is a condition that must be true 
during process execution between two different APs. An invariant is designed for 
use in processes where 1) isolation of data changes in between service executions 
cannot be guaranteed (i.e., critical data items cannot be locked across multiple 
service executions), and 2) it is critical to monitor constraints for the data items 
that cannot be locked. The data monitoring functionality provided by our previous 
work with DEGS makes it possible to monitor invariant conditions. Invariants 
provide a stronger way of monitoring constraints and guaranteeing that a 
condition holds for a specific duration of execution without the use of locking.  
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Using the invariant technique, a process declares an invariant condition when it 
reaches a specific AP in the process execution, also declaring an ending AP for 
monitoring of the invariant condition. When a concurrent process modifies a data 
item of interest in an invariant condition, the process that activated the invariant is 
notified by a monitoring system built on top of Delta-Enabled Grid Services. If the 
invariant condition is violated during the specified execution period, the process 
can invoke the recovery procedures defined in Section 4.2.  The strength of the 
invariant technique is that it provides a way to monitor data consistency in an 
environment where the coordinated locking of data items across multiple service 
executions is not possible. 

An invariant has an identifier, two AP specifications (APs as a starting AP and 
and APe as an ending AP), and optional parameters which are necessary in the 
condition specification. Once APs is reached, the invariant rule condition becomes 
active. The condition is specified as an SQL query.  The condition is initially 
checked and the action is executed if the invariant condition is violated. If the 
invariant condition holds, the rule condition goes into monitoring mode using the 
DEGS capability. The condition monitoring continues until APe is reached or until 
the invariant condition is violated.    

As shown in Figure 5, when an invariant condition goes into monitoring mode, 
the data items of interest in the invariant condition are registered with a 
monitoring service. The monitoring service subscribes to the DEGSs that contain 
the relevant data items referenced in an invariant. For example, if the condition to 
be monitored is a + b > 10, then the relevant DEGS will notify the service of any 
changes to a or to b by concurrent processes. Any deltas that are forwarded to the 
monitoring service will cause the invariant condition to be rechecked. As long as 
the condition still holds, then there is no interference among the concurrent 
process executions. If the condition is violated, then the recovery action of the 
invariant rule will be executed.  

 

 Figure 5: The Semantics of an Invariant under Monitoring Mode 
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As shown in Figure 6, the HotelRoomMonitoring invariant is defined between 
AP1 and AP2.  The process represents a travel planning process, where the 
process is scoping out available hotel and airline options before finalizing the 
plans. Figure 6 shows an invariant that checks a specific hotel for the availability 
of a seaside room that is less that a specified price, where the hotel and price are 
passed as parameters from the BeginTravelPlanning AP. Expression of the AP 
allows the process to continue checking the availability of other travel options, 
such as airline reservations, but to be notified if the room availability changes. 
The condition is expressed as an SQL query, preceded with the not exists clause. 
Therefore, according to the SQL condition defined, if there is not a room that 
meets the criteria, then the select condition will return no tuples, making the not 
exists clause true, which triggers recovery action 1.  If the query returns tuples 
that satisfy the SQL condition, then the process continues and the status of the 
SQL query is monitored using the DEGS capability and the invariant monitoring 
system. If the process reaches the ReadyToBook AP and the desired room type and 
price are still available, then the process continues past the ReadyToBook AP, 
making the appropriate reservations after deactivating the HotelRoomMonitoring 
invariant. If at anytime between the BeginTravelPlanning AP and the ReadyToBook 
AP the room is no longer available, the invariant monitoring system will notify the 
process, which will execute one of the recovery actions.  

4.4 Dynamic Behavior with Application Exception Rules 

Dynamic behavior can also be achieved by using rules to respond to exceptional 
conditions, where exceptions are communicated as events that interrupt the 
normal flow of execution. Whereas past work generally provides a fixed response 
to exceptions, our work with application exception rules, provides a more flexible 
way of using rules to respond to exceptions.  

As with integration rules and invariants, application exception rules are also 
associated with assurance points. An outline of a process with APs is shown in the 
leftmost column of Figure 7, where two different APs are defined. Each AP 
represents the fact that a process has passed certain critical points in the execution 
and that responding to an exception depends on the APs that have been passed for 
individual instances of a process. Application exception rules are then written to 
respond to exceptions according to the AP status of a process. 

As shown in the middle column of Figure 7, application exception rules have a 
case structure, defining recovery actions based on APs. When an exception 
occurs, application exception rules are triggered. The exception handling 
procedure to execute varies according to the AP status of the process, where 
recovery actions can query the execution state associated with the most previous 
AP. As shown in Figure 7, one instance of process A executes recoveryAction1 
since the process has passed AP1 but not AP2. The other instance of process A 
executes recoveryAction2 since the process has passed AP2. For example, in an 
order processing application, if an order is canceled before the packing and 
shipment of the order, then the order processing is simply cancelled. If the order is 
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cancelled after the shipment has occurred, the order processing might be cancelled 
with an additional restocking fee charged to the customer.  

 
Subprocess

BeginTravelPlanning (hotelName, 
price)

.

.

.

ReadyToBook (...)

create rule HotelRoomMonitoring::inv
event: BeginTravelPlanning (ReadyToBookAP, 
hotelName, price)
condition: (Not exists(select * from Hotels H, Rooms R 
where H.hotelName = ‘” + hotelName + “’ and 
R.roomPrice < ‘” + price + “’ and R.roomType = 
‘seaview’ and H.hid = R.hid))
recoveryAction1: APRetry
recoveryAction1: APRollBack

AP1

AP2

.

.

.

.

.

.

.

.

.

 
Figure 6 Subprocess with An Invariant 

 
APs and application exception rules represent the fact that a response to an 

exception is not always a fixed action. The manner in which a process responds to 
an exception depends on the state of the process. Identifying exceptions that alter 
the execution path should be a routine aspect of process modeling. Application 
exception rules advocate that the identification of exceptions should be extended 
to also consider the critical execution points that may affect recovery actions, and 
that rules, together with supportive execution environments, should be designed to 
provide variability of response.  

A broader use of application exception rules is in the context of the 
decentralized execution environment with support for data dependency analysis as 
described in Section 3. Using the data monitoring capabilities of DEGS, we have 
developed a decentralized data dependency analysis algorithm [42, 28]. Using this 
information, it is possible to enhance recovery activities for concurrent processes 
that execute with relaxed isolation properties. In particular, when one process 
fails, recovery activities in the form of compensation can occur. Compensating 
procedures, however, may make changes to the data that has been read and used 
by concurrent processes. Using DEGS together with the decentralized data 
dependency analysis algorithm, the failure and recovery of one process can 
include the identification of other dependent processes that may be executing 
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within the decentralized environment. Events can then be used to interrupt the 
execution of dependent processes, with application exception rules providing a 
way to respond to such events in a flexib ner.  

 
le man

 
Figure 7: The Use of Ap ication Exception Rules 

sses, test 
data consistency conditions, and invoke recovery procedures as needed. 

ore general use of application exception 
rules are currently under development.  

pl
 

We have experimented with this approach using process interference rules 
(PIRs) [46, 47, 49]. A PIR is written from the perspective of an executing process 
(pe) that is interrupted by the recovery of an unknown failed process (pf). The 
interruption occurs because pe is identified as being write dependent or potentially 
read dependent on pf. The condition of the PIR for pe can be expressed to query 
the delta object schedule to 1) determine the data overlap between pe and pf and 2) 
check the current status of the data after pf’s recovery. PIRs are therefore  used to 
test user-defined correctness conditions to determine if a dependent process 
should continue running or invoke its own recovery procedures. We are currently 
integrating the PIR functionality into the concept of application exception rules to 
provide a more dynamic way to 1) recognize potential data inconsistency 
problems among concurrently executing processes and 2) use the event and rule 
functionality of application exception rules to interrupt dependent proce

 
5  Summary and Future Directions 
This chapter has outlined several non-traditional uses of rules for supporting 
dynamic behavior in service-oriented environments. The advantage of the 
techniques presented is that they integrate the use of procedural and rule-based 
techniques for process modeling. As a proof of concept, prototypes have already 
been developed for integration rules, assurance points, the integration rule 
recovery actions, the process interference rule pre-cursor to application exceptions 
rules, and decentralized data dependency analysis [19, 20, 22, 36, 39, 42, 46, 48, 
28]. Prototypes for invariants and the m
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An interesting challenge lies in developing methodologies that are capable of 
supporting each rule paradigm in an integrated manner. Each rule type addresses a 
different dimension of dynamics for service-oriented environments. 
Methodologies are needed to define when and how the different rule forms are 
defined. Notational conventions are needed to enhance existing, graph-based 
approaches with notations that depict the way in which rules are used and 
integrated with procedural specifications. Guidelines are also needed to assist with 
the placement of assurance points, with the specification of the different types of 
rules, and with defining the conditions under which the rules are used.  

To support these methodological issues associated with the integration of 
procedural and rule-based modeling, execution environments are also needed to 
support the dynamic capabilities supported by integration rules, application 
exception rules, and process interference rules. Our own research is focused on the 
development of decentralized Process Execution Agents that communicate in a 
peer-to-peer manner to dynamically determine data dependencies among 
concurrently executing processes and to coordinate the execution of processes 
with the different rule forms outlined in this chapter. We are also addressing the 
correctness of concurrent process execution, together with the correctness of rule 
execution, data dependency analysis, and rule-triggered exception handling and 
recovery procedures. 
 
Acknowledgments. This research has been supported by NSF Grant No. CCF-
0820152 and NSF Grant No. IIS-9978217. 

References  

1. BPEL4WS V1.1 specification. URL 
http://www.ibm.com/developerworks/library/specification/ws-bpel/ (2003).  

2.  BPMN V2.0 Beta 1. URL 
    http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf (2009). 
3.  Blake, L.: The Design and Implementation of Delta-Enabled Grid Services. M.S. 

Thesis, Arizona State University (2006). 
4. Ceri, S., Grefen, P., Sanchez, G.: WIDE-A Distributed Architecture for Workflow 

Management. Proc. of 7th Int. Workshop on Research Issues in Data Engineering  
(1997) 76-79. 

5. Chiu, D.K.W., Li, Q., Karlapalem, K.: Exception Handling with Workflow Evolution in 
ADOME-WFMS: A Taxonomy and Resolution Technique. ACM SIGGROUP Bulletin 
20 (1999) 8-8. 

6. Cichocki, A.: Workflow and Process Automation: Concepts and Technology. Kluwer 
Academic Publishers (1998). 

7. Cichocki, A., Rusinkiewicz, M.: Migrating Workflows. NATO ASI series. Series F: 
Computer and  System Sciences (1997) 339-355. 

8. Dayal, U., Hsu, M., Ladin, R.: A Transactional Model for Long-Running Activities. 
Digital Equipment Corp., Cambridge Research Laboratory (1991). 

9. Desel, J.: Process Modeling Using Petri Nets. Process-Aware Information Systems: 
Bridging People and Software through Process Technology. Hoboken, New Jersey: 
Wiley, S (2005) 147-178. 

10. Dietrich, S.W., Patil, R., Sundermier, A., Urban, S.D.: Component Adaptation for 

 18

http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf


Event-Based Application Integration Using Active Rules. Journal of Systems & 
Software 79 (2006) 1725-1734. 

11. Dietrich, S.W., Urban, S.D., Sundermier, A., Na, Y., Jin, Y., Kambhampati, S.: A 
Language and Framework for Supporting an Active Approach to Component-Based 
Software Integration. Informatica, 25 (2002) 443-454. 

12. Dogac, A.: Workflow Management Systems and Interoperability. Springer (1998). 
13. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling using UML. Process-

aware Information Systems: Bridging People and Software through Process 
Technology. Hoboken, New Jersey: Wiley (2005) 85-117. 

14. Gergely, P., IstvaN, M.: Modeling and Analysis of Exception Handling by Using UML 
Statecharts [J]. Lecture Notes in Computer Science 3409 (2005). 

15. Halvorsen, O., Haugen, O.: Proposed Notation for Exception Handling in UML 2 
Sequence Diagrams. Proc. of the Australian Software Engineering Conf. vol. 26 (2006) 

16. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The Specification of Business 
Rules: A Comparison of Selected Methodologies. Proc. of IFIP WG8, vol. 94 (1994). 

17. Jean, D., Cichock, A., Rusinkiewicz, M.: A Database Environment for Workflow 
Specification and Execution. Proc. Int. Symp. on Cooperative Database Systems Kyoto 
(1996). 

18. Jennings, N.R., Faratin, P., Norman, T.J., O'Brien, P., Odgers, B., Alty, J.L.: 
Implementing a Business Process Management System Using ADEPT: A Real-World 
Case Study. Applied Artificial Intelligence 14 (2000) 421-463. 

19. Jin, Y.: An Architecture and Execution Environment for Component Integration Rules. 
Ph.D. Dissertation, Arizona State University (2004). 

20. Jin, Y., Urban, S.D., Dietrich, S.W.: Extending the OBJECTIVE Benchmark for 
Evaluation of Active Rules in a Distributed Component Integration Environment. 
Journal of Database Management 17 (2006) 47-69. 

21. Jin, Y., Urban, S.D., Dietrich, S.W.: A Concurrent Rule Scheduling Algorithm for 
Active Rules. Data & Knowledge Engineering 60 (2007) 530-546. 

22. Jin, Y., Urban, S.D., Dietrich, S.W., Sundermier, A.: An Integration Rule Processing 
Algorithm and Execution Environment for Distributed Component Integration. 
Informatica 30 (2006) 193-212. 

23. Kambhampati, S.: An Event Service for a Rule-Based Approach to Component 
Integration. M.S. Thesis, Arizona State University (2003). 

24. Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., Arenas, M.: Coordinating 
Peer Databases using ECA Rules. Lecture Notes in Computer Science (2004) 108-122. 

25. Kappel, G., Proll, B., Rausch-Schott, S., Retschitzegger, W.: TriGS flow: Active 
Object-Oriented Workflow Management.  Proc. of HICSS'95, Vol. 2 (1995). 

26. Karnath, M., Ramamritham, K.: Failure Handling and Coordinated Execution of 
Concurrent Workflows. Proc. of the 14th Int. Conf. on Data Eng. (1998) 334-341. 

27. Liu, L., Pu, C.: ActivityFlow: Towards Incremental Specification and Flexible 
Coordination of Workflow Activities. Lecture Notes in Computer Science (1997) 169-
182. 

28. Liu, Z.: Decentralized Data Dependency Analysis for Concurrent Process Execution. 
M.S. Thesis, Texas Tech University (2009).  

29. Lu, R., Sadiq, S.: A Survey of Comparative Business Process Modeling Approaches. 
Lecture Notes in Computer Science 4439 (2007). 

30. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in 
Distributed Enterprise Systems. Springer (2002). 

31. Mendling, J., Neumann, G., Nuttgens, M.: Yet Another Event-Driven Process Chain. 
Lecture Notes in Computer Science 3649 (2005). 

32. Müller, R., Greiner, U., Rahm, E.: AgentWork: A Workflow System Supporting Rule-
Based Workflow Adaptation. Data & Knowledge Engineering 51 (2004) 223-256. 

 19



 20

33. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: From Business 
Process Models to Process-Oriented Software Systems: The BPMN to BPEL Way. 
BPM Center Report BPM-06-27, BPMcenter. org (2006). 

34. Reichert, M., Dadam, P.: Adept Flex—Supporting Dynamic Changes of Workflows 
Without Losing Control. Journal of Intelligent Information Systems 10 (1998) 93-129. 

35. Sadiq, W., Orlowska, M.E.: On Capturing Process Requirements of Workflow Based 
Business Information Systems. Proc. of the 3rd Int. Conf. on Business Information 
Systems (1999). 

36. Shrestha, R.: Using Assurance Points, Events, and Rules for Recovery in Service 
Composition. M.S. Thesis, Texas Tech University (2010). 

37. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-driven Process 
Chains. Process-aware Information Systems: Bridging People and Software through 
Process Technology. Hoboken, New Jersey: Wiley (2005) 119-145. 

38. Urban, S.D., Dietrich, S.W., Na, Y., Jin, Y., Sundermier, A., Saxena, A.: The IRules 
Project: Using Active Rules for the Integration of Distributed Software Components. 
Proceedings of the 9th IFIP Working Conference on Database Semantics: Semantic 
Issues in E-Commerce Systems (2001) 265-286. 

39. Urban, S.D., Gao, L., Shrestha, Courter, A.S.: Achieving Flexibility in Service 
Composition with Assurance Points and Integration Rules. Submitted for review (2010). 

40. Urban, S.D., Kambhampati, S., Dietrich, S.W., Jin, Y., Sundermier, A.: An Event 
Processing System for Rule-Based Component Integration. Proc. of the Int. Conf. on 
Enterprise Information Systems, Porto, Portugal (2004) 312-319. 

41. Urban, S.D., Xiao, Y., Blake, L., Dietrich, S.: Monitoring Data Dependencies in 
Concurrent Process Execution through Delta-Enabled Grid Services. International 
Journal of Web and Grid Services (2009) 85-106. 

42. Urban, S.D., Liu, Z., Gao, L.: Decentralized Data Dependency Analysis for Concurrent 
Process Execution. Proc. of the 13th Enterprise Dist. Object Computing Conf. 
Workshops (Edocw 2009) (2009) 74-83. 

43. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow 
Language. Information Systems 30 (2005) 245-275. 

44. White, S.A.: Business Process Modeling Notation (BPMN). URL http://www. bpmi. 
org/bpmi-downloads/BPMN-V1. 0. pdf (2004). 

45. Widom, J., Ceri, S.: Active Database Systems: Triggers and Rules for Advanced 
Database Processing. Morgan Kaufmann Pub (1996). 

46. Xiao, Y.: Using Deltas to Analyze Data Dependencies and Semantic Correctness in the 
Recovery of Concurrent Process Execution. Ph.D. Diss., Arizona State Univ., (2006) . 

47. Xiao, Y., Urban, S.D.: Process Dependencies and Process Interference Rules for 
Analyzing the Impact of Failure in a Service Composition Environment. Proc. of the 
10th Int. Conf. on Business Information Systems, Poznan, Poland (2007) 67-81. 

48. Xiao, Y., Urban, S.D.: The DeltaGrid Service Composition and Recovery Model. 
International Journal of Web Services Research (2009).  

49. Xiao, Y., Urban, S.D.: Using Data Dependencies to Support the Recovery of 
Concurrent Processes in a Service Composition Environment, Proc. of the Cooperative 
Information Systems Conf. (COOPIS), Monterrey, Mexico (2008), pp. 139-156. 

50. Xiao, Y., Urban, S.D., Dietrich, S.W.: A Process History Capture System for Analysis 
of Data Dependencies in Concurrent Process Execution. Proc. of the 2nd Int. Workshop 
on Data Engineering in E-Commerce and Services, San Francisco, (2006) 152-166. 

51. Xiao, Y., Urban, S.D., Liao, N.: The DeltaGrid Abstract Execution Model: Service 
Composition and Process Interference Handling. Proc. of the Int. Conf. on Conceptual 
Modeling (ER 2006), vol. 4215. Springer, Tucson, Arizona (2006) 40-53. 

  
 


