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Abstract—This research has developed the concept of 
invariants for monitoring data in a service-oriented 
environment that allows concurrent data accessibility with 
relaxed isolation. The invariant approach is an extension of the 
assurance point concept, where an assurance point is a logical 
and physical checkpoint that is used to store critical data 
values and to check pre and post conditions related to service 
execution. Invariants provide a stronger way of monitoring 
constraints and guaranteeing that a condition holds for a 
specific duration of execution as defined by starting and ending 
assurance points, using the change notification capabilities of 
Delta-Enabled Grid Services. This paper outlines the 
specification of invariants as well as the invariant monitoring 
system for activating invariants, evaluating and re-evaluating 
invariant conditions, and deactivating invariants. The system is 
supported by an invariant evaluation web service that uses 
materialized views for more efficient re-evaluation of invariant 
conditions. The research includes a performance analysis of 
the invariant evaluation Web Service. The strength of the 
invariant technique is that it provides a way to monitor data 
consistency in an environment where the coordinated locking 
of data items across multiple service executions is not possible. 

Keywords: web services, invariants, data consistency, data 
monitoring, concurrent data access 

I.  INTRODUCTION 

 In service-oriented computing, business processes are 
composed by executing Web Services [12]. Although each 
Web Service is autonomous and self-contained, composing 
business processes and achieving a correct global solution is 
a difficult and sometimes error-prone task, especially in the 
context of concurrently executing processes that access 
shared data. 

In traditional distributed transaction systems, the two-
phase commit (2PC) protocol [5] has been used to support 
the ACID properties of atomicity, consistency, isolation, 
and durability. In service-oriented computing, however, it is 
generally not feasible to support ACID properties by 
coordinating the commit time of all services that are part of 
a global process because of the loosely-coupled, 
autonomous, and heterogeneous nature of services. 
Moreover, in traditional transaction processing, the concept 
of serializability is supported by using locking protocols [5]. 

In service-oriented computing, however, it is not practical to 
require constituent services to lock data for the entire 
duration of a global process. This is especially true for long-
running processes, causing processes to execute using a 
relaxed form of isolation in between service executions. As 
a result, the correctness of a process might be affected by 
another concurrently running process if both processes are 
accessing shared data. Insuring the consistency of data in a 
service-oriented environment with relaxed isolation is a 
challenging task. 

This paper presents the concept of invariants for 
monitoring data in a service-oriented environment that 
allows concurrent data accessibility with relaxed isolation. 
The invariant technique is an extension to the concept of an 
assurance point (AP) as defined in [14, 19]. An AP is a 
logical checkpoint created in between the service calls of a 
process, defining a named point that can be used to store 
critical data values, to express a post-condition for 
completed services, and to express a precondition for the 
next service to execute. APs are also used as intermediate 
rollback points to assist with backward and forward 
recovery actions when process failure occurs.  

An invariant is a condition that must remain true during 
process execution in between two different APs. An 
invariant is specifically designed for use in processes where 
1) isolation of data changes in between service executions 
cannot be guaranteed (i.e., critical data items cannot be 
locked across multiple service executions), and 2) it is 
critical to monitor constraints for the data items that cannot 
be locked. The data monitoring functionality provided by 
the work with Delta-Enabled Grid Services (DEGS) [2, 18] 
makes it possible to declare and monitor invariant 
conditions.  

This research has involved the specification of invariant 
conditions as well as the design and development of a 
prototype invariant monitoring system. When a process 
declares an invariant condition, if a concurrent process 
modifies a data item of interest in an invariant condition, the 
process that activated the invariant is notified by the 
monitoring system built on top of Delta-Enabled Grid 
Services. If the invariant condition is violated during the 
specified execution period, the process can invoke recovery 



procedures as defined in [19]. The monitoring system 
includes the design of a Web Service for evaluating 
invariants. Since an invariant may need to be evaluated 
several times between the starting and ending APs of an 
invariant, the invariant evaluation Web Service was 
designed to make use of materialized views for more 
efficient re-evaluation of invariant conditions [15]. The 
research includes a performance analysis of the invariant 
evaluation Web Service, illustrating the benefits of using 
materialized views.  

Whereas the original work with APs allows data 
consistency conditions to be checked at specific points in 
the execution, invariants provide a stronger way of 
monitoring constraints to determine if a condition holds for 
a specific duration of execution without the use of locking.  

The remainder of this paper is organized as follow. After 
outlining related work in Section II, Section III provides an 
overview of the Delta-Enabled Grid Services and Assurance 
Point concepts that provide the basis for supporting the 
invariant approach. Section IV presents an overview of the 
design and functionality of the Invariant Monitoring System. 
A prototype of the Invariant Monitoring System is described 
in Section V, followed by a discussion of the testing and 
evaluation results in Section VI. The paper concludes in 
Section VII with a summary and discussion of future 
research.     

II. RELATED WORK 

Past research with transactional workflows has investigated 
the need to relax ACID properties for long running 
workflow activities [21]. The Saga transaction model was 
proposed as a base model for long-running activities and 
defines a chain of transactions as a unit of control [6]. The 
Saga model relaxes the requirement of the entire transaction 
as an atomic action by releasing a resource before it 
completes without sacrificing the consistency of the 
database. Models similar to the Saga model are called 
Advanced Transaction Models (ATMs). A model that has 
been used to define and study transactional workflow is the 
ConTracts model [20].  

Several new approaches for addressing transactional 
issues have been defined in the context of web services. A 
goal of the Promises project [7] is to make sure that certain 
values are not overwritten or changed by concurrently 
executing Web Services. A promise is an agreement 
between a client application and a service or promise maker. 
The promise maker guarantees that some set of conditions 
will be maintained over a set of resources for a specified 
period of time. Another similar method to temporarily 
perform physical and logical locks over data in a concurrent 
environment is the reservation-based approach [22]. The 
reservation-based approach reserves resources that meet the 
criteria of what the Web Service has requested. Only the 
required amount of a resource is reserved, rather than 
locking the database record or the entire resource for an 
extended period of time.  

Transactional Attitudes are used as a framework to 
handle the transactional reliability issue in Web Services. 
Transactional Attitudes establish a separation of 
transactional properties from other aspects of a service 
description. In [13], the WSTx framework uses transactional 
attitudes that make Web Service providers declare their 
individual transactional capabilities and semantics, and Web 
Service clients declare their transactional requirements. 

 The work in [1] uses monitoring rules woven inside of a 
WS-BPEL process to dynamically control the execution 
during runtime. The monitoring rules are annotated in the 
source code using assertion languages, such as Anna 
(Annotated Ada) [11] and JML (Java Modeling Language) 
[10] . User-defined constraints are blended with the WS-
BPEL process at deployment time and are defined 
externally to allow separation of the different functionalities.  

The work presented in [3] uses aspect-oriented concepts 
to address the modularity issues in workflow languages. A 
prototype extension to BPEL using aspect-oriented 
workflow concepts (AO4BPEL) [4] was developed to 
validate their work. A well known aspect-oriented 
programming language, AspectJ [9], uses three key concepts: 
join points, pointcuts, and advice, to support the aspect 
portion of the aspect-oriented workflows and AO4BPEL 
described in [3]. 

Using the techniques describes in this section, constraint 
conditions cannot be monitored during a specific execution 
duration.  The focus of the research presented in this paper 
is to present a system to extend the Assurance Point 
architecture to allow monitoring of critical data conditions 
during specific execution periods in a process.  Providing 
this capability allows a more optimistic approach to 
concurrent process execution but also allows data 
inconsistencies to be more quickly recognized. 

 

III. BACKGROUND FOR THE USE OF INVARIANTS 

Before presenting the Invariant Monitoring System, it is 
first necessary to provide background on Delta-Enabled 
Grid Services (DEGS) and Assurance Points. DEGS support 
the ability to invoke constraint checking actions after a 
change in the source database. Assurance Points provide the 
framework inside of a business process to activate invariant 
conditions and to define the time frame for condition 
monitoring. 

A. Delta-Enabled Grid Services 

A DEGS is a Grid Service that has been enhanced with an 
interface that stores the incremental data changes, or deltas, 
that are associated with service execution in the context of 
globally executing processes. A DEGS uses the OGSA-DAI 
Grid Data Service for database interaction. The DEGS 
functionality was originally defined in [2] and has been used 
to determine data dependencies among concurrently 
executing processes to support process recovery actions [18].   



Using the DEGS approach, a database captures deltas 
using capabilities provided by most commercial database 
systems. The work in [2, 18] experimented with triggers and 
with the use of Oracle Streams as a way to capture data 
changes. Oracle Streams is a feature that monitors database 
redo logs for changes and publishes these changes to a 
queue to be used for data sharing [16].  

Using the DEGS approach, when a change to the source 
database is made by a Grid service, the delta is captured and 
inserted into a delta repository. The delta repository has a 
separate table for inserts, deletes, and updates to each source 
database table, allowing information about each type of 
change to be kept separate. Additionally, a table mapping 
each delta to information about the Grid service that made 
the change is kept.  

A Java stored procedure deployed in the source 
database is automatically called to notify a listening Grid 
service that there are new deltas in the table that was just 
modified. The listening Grid service then looks for new 
deltas in delta repository tables. These deltas are compiled 
into an XML format and then relayed to any other system 
that has registered to receive the delta information, such as 
the Invariant Monitoring System described in this paper. 

B. Service Composition and Recovery with APs 

As described in [19], an Assurance Point (AP) is a logical 
and physical checkpoint for storing data and using rules, 
known as integration rules (IRs), to check pre and post 
conditions at critical points in the execution of a process. 
Given that concurrent processes do not execute as 
traditional transactions in service-oriented environments, 
inserting APs at critical points in a process is important for 
checking consistency constraints and potentially reducing 
the risk of failure or inconsistent data.  

An AP can also be used as a rollback point for 
backward recovery. Three different forms of backward 
recovery are described in [19], with the different forms 
supporting either full backward recovery or a combination 
of backward and forward recovery. APRetry is used when 
the running process needs to be backward recovered to a 
previously-executed AP. APRollback is used when the 
overall process has more severe errors and must be 
recovered back to the beginning of the process. 
APCascadedContingency is a hierarchical backward 
recovery that continues to compensate nested processes, 
checking each AP that is encountered for a possible 
contingent procedure that can be used to correct an 
execution error. 

The most basic use of an AP together with integration 
rules is shown in Figure 1, which illustrates three composite 
groups (i.e., code segments that invoke services) and an AP 
between each composite group. The shaded box on the right 
shows the functionality of an AP using AP2 as an example. 
When AP2 is reached, the post-condition rule, the pre-
condition rule, and any conditional rules are checked 
sequentially. If the post-condition or the pre-condition is 

violated, then a recovery action is invoked. If the pre and 
post conditions are not violated, then the AP will invoke any 
conditional rules to check additional, application-oriented 
conditions. 

 

 
Figure 1 Assurance Points and Integration Rules [14] 

 
The Invariant Monitoring System extends the 

functionality of Assurance Points by adding an additional 
invariant rule, where an invariant rule allows the 
specification of a condition that can be monitored in 
between two AP occurrences. IRs for pre and post 
conditions can check conditions at certain points in the 
business process but cannot make sure that a condition 
holds for a specified period of time. The Invariant 
Monitoring System provides the capability to monitor 
critical data conditions in between APs, supporting 
concurrent activity but allowing a process to be notified if a 
critical data condition is violated. 

IV. INVARIANT MONITORING SYSTEM 

This section presents an overview of the functionality of 
the Invariant Monitoring System. The format for invariant 
rule specification is then presented using two examples that 
will be used throughout the remainder of the paper.   

A. Overview 

Using the invariant technique, a process declares an 
invariant condition when it reaches a specific AP in the 
process execution, also declaring an ending AP for 
monitoring of the invariant condition. When a concurrent 
process modifies a data item of interest in an invariant 
condition, the process that activated the invariant is notified 
by a monitoring system built on top of Delta-Enabled Grid 
Services. If the invariant condition is violated during the 
specified execution period, the process can invoke the 
recovery procedures defined in the previous section.  

An invariant definition has an identifier, two AP 
specifications (APs as a starting AP and and APe as an 



ending AP), and optional parameters that are necessary in 
the condition specification. Once APs is reached, the 
invariant rule condition becomes active. The condition is 
specified as an SQL query.  The condition is initially 
checked and the action is executed if the invariant condition 
is violated. If the invariant condition holds, the rule 
condition goes into monitoring mode using the DEGS 
capability. The condition monitoring continues until APe is 
reached or until the invariant condition is violated.    

As shown in Figure 2, when an invariant condition goes 
into monitoring mode, the data items of interest in the 
invariant condition are registered with a monitoring service. 
The monitoring service subscribes to the DEGSs that 
contain the relevant data items referenced in an invariant. 
For example, if the condition to be monitored is a + b > 10, 
then the relevant DEGS will notify the service of any 
changes to a or to b by concurrent processes. Any deltas that 
are forwarded to the monitoring service will cause the 
invariant condition to be rechecked. As long as the 
condition still holds, then there is no interference among the 
concurrent process executions. If the condition is violated, 
then the recovery action of the invariant rule will be 
executed.  
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Figure 2 Invariant System 

B. Invariant Specification 

Assurance Points uses integration rules in the Event-
Condition-Action (ECA) format to define the different types 
of integration rules. These ECA rules are based on previous 
work with using integration rules to interconnect software 
components [8, 17].  

Each invariant begins with a create rule statement that 
defines an invariant identifier. The event component of the 
rule identifies the starting AP as well as the ending AP and 
any parameters needed for the rule condition specification. 
In the condition section of the ECA rule structure, the 
condition is expressed as not exists (select * from …), where 
the select statement returns the tuples that satisfy the 
invariant condition. If the select statement returns tuples that 
satisfy the condition, then not exists evaluates to false and no 
recovery action is triggered. However, if the SQL condition 

returns no tuples, then not exists will return true, indicating 
that the invariant condition is not satisfied. In this case, the 
process is notified and the recovery procedure in the action is 
invoked. 
 
Hotel Room Reservation Monitoring Example 
Figure 3 provides an example of an invariant for a travel 
planning process, where the process is scoping out available 
hotel and airline options before finalizing the plans. The full 
details of the process are not presented here, but the 
invariant is triggered when the process reaches the 
BeginTravelPlanning AP as specified in the EVENT 
component of the invariant rule. The first parameter of the 
event specifies that the invariant is deactivated when the 
process reaches the ReadyToBook AP. The invariant 
condition checks a specific hotel for the availability of a 
seaside room that is less than a specified price, where the 
hotelID and price are passed as additional parameters from 
the BeginTravelPlanning AP. Expression of the invariant 
allows the process to continue checking the availability of 
other travel options, such as airline reservations, but to be 
notified if the room availability changes. If the process 
reaches the ReadyToBook AP and the desired room type and 
price are still available, then the process continues past the 
ReadyToBook AP, making the appropriate reservations after 
deactivating the HotelRoomMonitoring invariant. If at anytime 
between the BeginTravelPlanning AP and the ReadyToBook AP 
the room is no longer available, the invariant monitoring 
system will notify the process instance that owns the 
invariant condition. 

 

 
Figure 3 Invariant for a Hotel Room Reservation Request   

Bank Loan Application Monitoring Example  
As another example, consider the invariant in Figure 4, 
where the LoanAmountMonitoring invariant is to be monitored 
between the LoanAppCreation AP (i.e., the starting AP for the 
monitoring process) and the LoanCompletion AP (i.e., the 
ending AP for the monitoring process).  The process 
represents a loan approval process, where the process is 
creating a loan application for a customer at a bank that 
already has an account at that bank. Figure 4 shows an 
invariant that is activated when the LoanAppCreation AP is 
reached and checks to make sure the loan applicant has a 
tenth of the requested loan amount in the account, where the 
customerId is passed as a parameter from the LoanAppCreation 
AP. The monitoring process is started if the condition is 
satisfied. If the process reaches the LoanCompletion AP and 



the applicant’s account balance  still meets the necessary 
criteria, then the process continues past the LoanCompletion 
AP, completing the loan application after deactivating the 
LoanAmountMonitoring invariant. If at anytime between the 
LoanAppCreation AP and the LoanCompletion AP, the 
applicant’s account balance falls below the necessary 
criteria, the invariant monitoring system will notify the 
process, which will execute the recovery action.  

 

 
Figure 4 Invariant for a Bank Loan Approval Process   

V. PROTOTYPE OF THE INVARIANT MONITORING 

SYSTEM 

As part of our research, we have prototyped an execution 
environment to model the capability of monitoring 
invariants in between the APs of an executing process. This 
section outlines the relevant components of the invariant 
monitoring system. 

A. Registration of Invariants and Monitored Objects 

Invariant rules are parsed and processed to extract the SQL 
condition and the monitored objects from the invariant rule 
definition. Monitored objects are acquired from the SQL 
condition of an invariant by extracting the table names 
together with the attributes and relevant conditions. Changes 
to these extracted objects can affect the result of the query. 
The Invariant Monitoring System may need to re-evaluate 
the SQL condition when it detects a change in monitored 
objects. 

As an example, consider the SQL query from Figure 4. 
The two tables in this query are the Loan table and the 
Account table. There are three conditions in the where clause 
of the outer SQL query associated with the Loan table. As a 
result, there are three monitored objects from this table: 
“applicantId = +customerId+”, “status = ‘pre-qualified’”, and 
“amount < (select …)”. To simplify the monitored object 
related to the amount attribute, the object is converted into 
“amount < calc” since multiple tables cannot be analyzed 
during the delta filtering. The calc keyword is used to 
signify that this is a calculated value that must be re-
evaluated. In the first condition, customerId is a 
parameterized value that is acquired from the parameters of 
the AP.  

The Account table of the inner query has one condition in 
the where clause, “customerId = +customerId+”, where 
customerId is a parameterized value. This query also 
illustrates a relevant monitored object in the select clause for 
the balance attribute of the Account table. Balance is 

identified as a calculated value since, if this attribute 
changes, it will change the output of the inner query and 
could potentially violate the invariant condition.  

After parsing an invariant rule, an object structure is 
used to forward information about the invariant to an 
Invariant Agent, which validates the condition and registers 
the invariant and its list of monitored objects with the 
system if the condition is satisfied. Figure 5 shows a high 
level view of the relationship between the MonitoredObject 
table and the Invariants table in the Invariant Agent. As 
shown in Figure 5, there is a many-to-many relationship 
between MonitoredObjects and Invariants. If an invariant no 
longer needs to be monitored, then it is deactivated and 
deleted from the Invariants table. If the objects related to 
that invariant are not related to another invariant, they will 
also be removed.  

 

 
Figure 5  Invariants and Monitored Objects Table 

B. The Invariant Evaluation Web Service 

An important component of the Invariant Monitoring 
System is the Invariant Evaluation Web Service (Shuman, 
2010). The Web Service is used to initially evaluate the 
SQL query of an invariant to determine if the condition is 
satisfied. Since the invariant may need to be re-evaluated 
several times between the starting and ending APs, the Web 
Service was designed to make use of materialized views to 
provide an efficient way of checking the invariant.  

A materialized view is a database object that contains the 
results of a query. After populating a materialized view 
when an invariant is initially evaluated, the view is 
automatically updated after any table that is associated with 
the query is changed. In Oracle, this is referred to as the 
FAST refresh option.  As a result, simply counting the 
number of tuples from the materialized view is faster and 
more efficient than re-executing the SQL query when an 
invariant must be re-evaluated. As long as the count is 
greater than zero, the constraint is still satisfied. An empty 
view indicates that the constraint is not satisfied. 

Figure 6 illustrates the functionality of the Invariant 
Evaluation Web Service.  After creating any necessary log 
files needed for the FAST refresh option, the Invariant 
Evaluation Web Service determines if the materialized view 
exists. If the view does not exist, the materialized view is 
populated by executing the query of the invariant. If the 
materialized view already exists, then the number of tuples 
is queried from the view instead of re-executing the query. 



 

 
Figure 6 Evaluation Web Service Functionality 

C. The Delta Analysis and Filtering Process 

The Delta Analysis agent of the Invariant Monitoring 
System invokes the filtering of delta information received 
from DEGS against the monitored objects. To support the 
delta filtering process, a storage container for the monitored 
objects is required. Figure 7 shows the Delta Analysis Agent 
(DAA) Invariant Storage Container, which consists of two 
hashtables. The first hash table is the table/attribute 
hashtable containing a vector of invariant identifiers that 
have monitored objects containing the same table/attribute 
combination as the key. For example, if an invariant is 
monitoring the price attribute in the orders table, then the 
key would be orders/price and the invariant identifier of that 
invariant would be inserted into the container of that key in 
the table/attribute hashtable. The second hashtable, or 
invariant hashtable, uses the invariant identifier as the key 
and relates that key to a container of monitored objects of 
that invariant. The first entry in the container contains 
information about the number of tuples that the last 
evaluation of the invariant found, the current number of 
violations found against that invariant identifier, and the 
invariant identifier. The rest of the container holds the 
monitored objects that are related to that invariant so that all 
conditions related to that invariant can be checked at the 
same time.  

To process delta notifications, a delta filtering process 
was developed using two different algorithms, where one 
algorithm handles insert and delete operations and the other 
algorithm handles updates. In addition, each algorithm 
distinguishes between invariants that involve a single table 
and invariants that involve multiple tables. 

To allow a more efficient method of determining when 
to re-evaluate an invariant that applies to a single table, a 
variable containing the number of tuples returned from the 
SQL query was introduced.  Since all of the monitored 

objects are evaluated over a single table, the filtering 
process can use tuple counts to determine when an invariant 
is violated. If the number of tuples equals the number of 
violations found, then there are no more tuples left that 
satisfy the invariant condition and the Delta Analysis Agent 
can deduce that the condition has been violated without re-
evaluating the condition.  

 

 
Figure 7 Delta Analysis Agent Storage Structure 

 
Example 1: Single table insert 
Invariant: “select r.price from room r where r.price < ‘30’ 
and r.roomType = ‘seaview’ and r.hotelid = ‘234’“ 
Monitored Objects: [(room, price, <, ‘30’), (room, 
roomType, =, ‘seaview’), (room, hotelid, =, ‘234’)] 
Number of Satisfying Tuples: 1 
Discussion: If a tuple satisfying all of the monitored object 
conditions is inserted into the room table, then the number 
of tuples is incremented by one.  If one of the monitored 
object conditions is not satisfied by the inserted tuple, then 
the number of tuples is not incremented (i.e., the inserted 
data has not affected the contents of the view). If the  tuple 
that satisfies the invariant is deleted by an external process, 
then the number of violations will be incremented. Since the 
number of tuples will equal the number of violations, 
notification will be sent to the process monitoring the 
invariant condition. The invariant will be removed from the 
monitoring process, and the process will be informed of the 
violation. 

When monitoring multiple tables, a threshold value is 
used instead of comparing the number of tuples and the 
number of violations found.  Invariants that involve join 
conditions and, therefore multiple tables, require rechecking 
the invariant condition.  A tuple from one table can join 
with multiple tuples from another table. As a result, an 
insert, delete, or update can cause multiple tuples to enter or 
leave the result of the invariant. Furthermore, depending on 



the number of tuples in the invariant result, these changes do 
not necessarily violate the invariant condition.  It is not 
desirable, therefore, to check the invariant after each change 
to a relevant table.  A threshold value is used as a way to 
periodically initiate a re-evaluation, where the threshold 
value is a percentage of the number of tuples that 
determines when to re-evaluate the invariant condition.  
This research has used a threshold value of 25% of the 
invariant tuples.  

 
Example 2: Multiple table insert 
Invariant: “select r.price from room r, hotel h where r.price 
< ‘30’ and r.roomType = ‘seaview’ and r.hotelid = h.hotelid 
and h.state = ‘Texas’“ 
Monitored Objects: [(room, price, <, ‘30’), (room, 
roomType, =, ‘seaview’), (hotel, state, =, ‘Texas’)] 
Number of Satisfying Tuples: 25 
Threshold: 25% 
Discussion:  All inserts into multiple table invariants are 
ignored.  Inserting tuples can potentially increase the size of 
the number of tuples that satisfy the invariant condition, but 
will not cause a violation. If seven tuples from the room 
table satisfying the invariant condition are deleted, then the 
number of violations will be incremented after each 
deletion. After the seventh deletion, the number of 
violations will be greater than the threshold (7 > .25*25).  
The invariant condition will then be re-evaluated. If  tuples 
are found that satisfy the invariant condition,  the invariant 
will update the number of tuples found in the view, reset the 
number of violations to zero, and continue monitoring.  If 
the process continues and after another re-evaluation no 
more tuples are found, a notification will be sent to the 
process monitoring the invariant condition and the invariant 
will be removed.   
 

VI. TESTING AND EVALUATION 
To evaluate the prototype of the Invariant Monitoring 
System, a testing environment and test cases were created 
and initialized.  The primary focus of the evaluation was on 
the performance of the Invariant Evaluation Web Service to 
determine if the use of materialized views improves the 
performance of the re-evaluation process. The testing 
example used was the Hotel monitoring example, which 
involves the Hotel and Room tables, with DEGS created to 
monitor changes to all columns of each table.  A process 
with Assurance Points was created for activating and 
deactivating different test invariants.  Another concurrent 
process was also created to modify the monitored data in the 
source database.   

Since re-evaluation occurs primarily in the context of 
multiple table invariants, the focus of the evaluation was on 
invariants that involve join conditions.  The first test case 
involved changes ranging from satisfying the invariant 
condition to not satisfying the invariant condition.  These 
updates triggered the invariant condition to be re-evaluated, 
but the test was design so that the invariant condition was 

still satisfied and, as a result, the invariant was not removed.  
The second test case updated all of the tuples with the 
changes ranging from satisfying the invariant condition to 
not satisfying the invariant condition.  This test group was 
designed so that the invariant was violated and, as a result, 
monitoring of the invariant was removed (the evaluate the 
time associated with removal of the monitored invariant).   

Table 1 describes different measurements that were 
taken and the times associated with each measurement. The 
measurements taken include: 
- The time for creating the materialized view, where the 

time includes creating the view and extracting the 
number of tuples from the newly created view. 

- The total time of the Invariant Evaluation Web Service, 
which includes checking and creating any logs, and 
either creating and querying from the materialized view 
or just querying tuple counts from the materialized view 
if it already exists. 

- The time to evaluate the invariant from the Invariant 
Agent, which includes the time to call and receive 
feedback from the re-evaluation function in the 
Invariant Agent for evaluating the invariant condition 
the first time, 

- The time to evaluate the invariant from the Delta 
Analysis Agent, which is the time is takes to call and 
receive feedback from the re-evaluation function in the 
Invariant Agent. The time taken can also include the 
time it takes to remove the invariant condition if there 
are no more tuples in the view. 

- The time to select tuple counts from the materialized 
view. 

- The time to directly execute the SQL query of an 
invariant instead of creating a materialized view.   
An average time in microseconds was recorded for all 

measurements. During testing, the Oracle database used had 
at least 100 tuples that satisfied the invariant condition on 
the initial evaluation.  The machine used for testing was a 
Dell Precision T3400 with 2.99GHz Intel Core 2 Extreme 
processor and 4Gb of RAM, running Microsoft Windows 
XP Professional x64 Edition.   

Creating the materialized view and the total evaluation 
time was about the same in both multiple table test cases.  
The values that are significantly different in the test cases 
are the times for evaluating from the Delta Analysis Agent.  
This time difference is because the invariant condition is 
completely removed in the case with invariant removal 
before returning back from the Delta Analysis Agent 
evaluation, indicating the time required for deactivation of 
the invariant.  

A key observation from Table 1 is that the time 
difference between creating the materialized view and 
selecting tuple counts from an existing materialized view is 
significantly different.  The time it takes to query tuple 
counts from an existing materialized view is also much less 
than the time required to repeatedly re-execute the invariant 
query.  If a process is long running between the starting and 



ending APs of an invariant and might potentially re-execute 
the SQL query of the invariant often, then creating the 
materialized view is beneficial. Otherwise, directly re-
evaluating the query is a better choice for shorter process to 
avoid the overhead of establishing the materialized view. 
  

Table 1 Performance of Multiple Test Cases 

 
 

VII.  SUMMARY AND FUTURE WORK 
This paper has introduced the design of an Invariant 
Monitoring System that is capable of monitoring data 
constraint conditions in a process, using the AP concept 
from [19] as a way to define the monitoring period. A web 
service was developed that makes use of materialized views, 
an invoked by delta filtering algorithms, as a way to 
improve the efficiency of the invariant re-evaluation process. 
The strength of the invariant technique is that it provides a 
way to monitor data consistency in an environment where 
the coordinated locking of data items across multiple service 
executions is not possible, thus providing better support for 
the reliability user-defined correctness conditions among 
concurrent processes.  
   Future research is needed to more accurately define the 
threshold that is used to determine when to invoke the 
invariant evaluation web service. The web service could 
also be enhanced to make dynamic decisions regarding the 
use of materialized views vs. direct re-execution of the 
invariant query. More efficient methods of checking 
invariant conditions should also be investigated. For 
example, using DEGS to directly monitor the materialized 
views instead of the delta repository tables could provide a 
more immediate solution to monitoring multiple tables. 
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