
Supporting Data Consistency in Concurrent Process Execution With
Assurance Points and Invariants

Susan D. Urban1, Andrew Courter2, Le Gao2
1Department of Industrial Engineering

2Department of Computer Science
Texas Tech University

Lubbock, TX
{susan.urban | s.courter | le.gao}@ttu.edu

Mary Shuman
Department of Computer Science

University of North Carolina, Charlotte
Charlotte, NC

mary.shuman@gmail.com

Abstract—This research has developed the concept of
invariants for monitoring data in a service-oriented
environment that allows concurrent data accessibility with
relaxed isolation. The invariant approach is an extension of the
assurance point concept, where an assurance point is a logical
and physical checkpoint that is used to store critical data
values and to check pre and post conditions related to service
execution. Invariants provide a stronger way of monitoring
constraints and guaranteeing that a condition holds for a
specific duration of execution as defined by starting and ending
assurance points, using the change notification capabilities of
Delta-Enabled Grid Services. This paper outlines the
specification of invariants as well as the invariant monitoring
system for activating invariants, evaluating and re-evaluating
invariant conditions, and deactivating invariants. The system is
supported by an invariant evaluation web service that uses
materialized views for more efficient re-evaluation of invariant
conditions. The research includes a performance analysis of
the invariant evaluation Web Service. The strength of the
invariant technique is that it provides a way to monitor data
consistency in an environment where the coordinated locking
of data items across multiple service executions is not possible.

Keywords: web services, invariants, data consistency, data
monitoring, concurrent data access

I. INTRODUCTION

 In service-oriented computing, business processes are
composed by executing Web Services [12]. Although each
Web Service is autonomous and self-contained, composing
business processes and achieving a correct global solution is
a difficult and sometimes error-prone task, especially in the
context of concurrently executing processes that access
shared data.

In traditional distributed transaction systems, the two-
phase commit (2PC) protocol [5] has been used to support
the ACID properties of atomicity, consistency, isolation,
and durability. In service-oriented computing, however, it is
generally not feasible to support ACID properties by
coordinating the commit time of all services that are part of
a global process because of the loosely-coupled,
autonomous, and heterogeneous nature of services.
Moreover, in traditional transaction processing, the concept
of serializability is supported by using locking protocols [5].

In service-oriented computing, however, it is not practical to
require constituent services to lock data for the entire
duration of a global process. This is especially true for long-
running processes, causing processes to execute using a
relaxed form of isolation in between service executions. As
a result, the correctness of a process might be affected by
another concurrently running process if both processes are
accessing shared data. Insuring the consistency of data in a
service-oriented environment with relaxed isolation is a
challenging task.

This paper presents the concept of invariants for
monitoring data in a service-oriented environment that
allows concurrent data accessibility with relaxed isolation.
The invariant technique is an extension to the concept of an
assurance point (AP) as defined in [14, 19]. An AP is a
logical checkpoint created in between the service calls of a
process, defining a named point that can be used to store
critical data values, to express a post-condition for
completed services, and to express a precondition for the
next service to execute. APs are also used as intermediate
rollback points to assist with backward and forward
recovery actions when process failure occurs.

An invariant is a condition that must remain true during
process execution in between two different APs. An
invariant is specifically designed for use in processes where
1) isolation of data changes in between service executions
cannot be guaranteed (i.e., critical data items cannot be
locked across multiple service executions), and 2) it is
critical to monitor constraints for the data items that cannot
be locked. The data monitoring functionality provided by
the work with Delta-Enabled Grid Services (DEGS) [2, 18]
makes it possible to declare and monitor invariant
conditions.

This research has involved the specification of invariant
conditions as well as the design and development of a
prototype invariant monitoring system. When a process
declares an invariant condition, if a concurrent process
modifies a data item of interest in an invariant condition, the
process that activated the invariant is notified by the
monitoring system built on top of Delta-Enabled Grid
Services. If the invariant condition is violated during the
specified execution period, the process can invoke recovery

procedures as defined in [19]. The monitoring system
includes the design of a Web Service for evaluating
invariants. Since an invariant may need to be evaluated
several times between the starting and ending APs of an
invariant, the invariant evaluation Web Service was
designed to make use of materialized views for more
efficient re-evaluation of invariant conditions [15]. The
research includes a performance analysis of the invariant
evaluation Web Service, illustrating the benefits of using
materialized views.

Whereas the original work with APs allows data
consistency conditions to be checked at specific points in
the execution, invariants provide a stronger way of
monitoring constraints to determine if a condition holds for
a specific duration of execution without the use of locking.

The remainder of this paper is organized as follow. After
outlining related work in Section II, Section III provides an
overview of the Delta-Enabled Grid Services and Assurance
Point concepts that provide the basis for supporting the
invariant approach. Section IV presents an overview of the
design and functionality of the Invariant Monitoring System.
A prototype of the Invariant Monitoring System is described
in Section V, followed by a discussion of the testing and
evaluation results in Section VI. The paper concludes in
Section VII with a summary and discussion of future
research.

II. RELATED WORK

Past research with transactional workflows has investigated
the need to relax ACID properties for long running
workflow activities [21]. The Saga transaction model was
proposed as a base model for long-running activities and
defines a chain of transactions as a unit of control [6]. The
Saga model relaxes the requirement of the entire transaction
as an atomic action by releasing a resource before it
completes without sacrificing the consistency of the
database. Models similar to the Saga model are called
Advanced Transaction Models (ATMs). A model that has
been used to define and study transactional workflow is the
ConTracts model [20].

Several new approaches for addressing transactional
issues have been defined in the context of web services. A
goal of the Promises project [7] is to make sure that certain
values are not overwritten or changed by concurrently
executing Web Services. A promise is an agreement
between a client application and a service or promise maker.
The promise maker guarantees that some set of conditions
will be maintained over a set of resources for a specified
period of time. Another similar method to temporarily
perform physical and logical locks over data in a concurrent
environment is the reservation-based approach [22]. The
reservation-based approach reserves resources that meet the
criteria of what the Web Service has requested. Only the
required amount of a resource is reserved, rather than
locking the database record or the entire resource for an
extended period of time.

Transactional Attitudes are used as a framework to
handle the transactional reliability issue in Web Services.
Transactional Attitudes establish a separation of
transactional properties from other aspects of a service
description. In [13], the WSTx framework uses transactional
attitudes that make Web Service providers declare their
individual transactional capabilities and semantics, and Web
Service clients declare their transactional requirements.

 The work in [1] uses monitoring rules woven inside of a
WS-BPEL process to dynamically control the execution
during runtime. The monitoring rules are annotated in the
source code using assertion languages, such as Anna
(Annotated Ada) [11] and JML (Java Modeling Language)
[10] . User-defined constraints are blended with the WS-
BPEL process at deployment time and are defined
externally to allow separation of the different functionalities.

The work presented in [3] uses aspect-oriented concepts
to address the modularity issues in workflow languages. A
prototype extension to BPEL using aspect-oriented
workflow concepts (AO4BPEL) [4] was developed to
validate their work. A well known aspect-oriented
programming language, AspectJ [9], uses three key concepts:
join points, pointcuts, and advice, to support the aspect
portion of the aspect-oriented workflows and AO4BPEL
described in [3].

Using the techniques describes in this section, constraint
conditions cannot be monitored during a specific execution
duration. The focus of the research presented in this paper
is to present a system to extend the Assurance Point
architecture to allow monitoring of critical data conditions
during specific execution periods in a process. Providing
this capability allows a more optimistic approach to
concurrent process execution but also allows data
inconsistencies to be more quickly recognized.

III. BACKGROUND FOR THE USE OF INVARIANTS

Before presenting the Invariant Monitoring System, it is
first necessary to provide background on Delta-Enabled
Grid Services (DEGS) and Assurance Points. DEGS support
the ability to invoke constraint checking actions after a
change in the source database. Assurance Points provide the
framework inside of a business process to activate invariant
conditions and to define the time frame for condition
monitoring.

A. Delta-Enabled Grid Services

A DEGS is a Grid Service that has been enhanced with an
interface that stores the incremental data changes, or deltas,
that are associated with service execution in the context of
globally executing processes. A DEGS uses the OGSA-DAI
Grid Data Service for database interaction. The DEGS
functionality was originally defined in [2] and has been used
to determine data dependencies among concurrently
executing processes to support process recovery actions [18].

Using the DEGS approach, a database captures deltas
using capabilities provided by most commercial database
systems. The work in [2, 18] experimented with triggers and
with the use of Oracle Streams as a way to capture data
changes. Oracle Streams is a feature that monitors database
redo logs for changes and publishes these changes to a
queue to be used for data sharing [16].

Using the DEGS approach, when a change to the source
database is made by a Grid service, the delta is captured and
inserted into a delta repository. The delta repository has a
separate table for inserts, deletes, and updates to each source
database table, allowing information about each type of
change to be kept separate. Additionally, a table mapping
each delta to information about the Grid service that made
the change is kept.

A Java stored procedure deployed in the source
database is automatically called to notify a listening Grid
service that there are new deltas in the table that was just
modified. The listening Grid service then looks for new
deltas in delta repository tables. These deltas are compiled
into an XML format and then relayed to any other system
that has registered to receive the delta information, such as
the Invariant Monitoring System described in this paper.

B. Service Composition and Recovery with APs

As described in [19], an Assurance Point (AP) is a logical
and physical checkpoint for storing data and using rules,
known as integration rules (IRs), to check pre and post
conditions at critical points in the execution of a process.
Given that concurrent processes do not execute as
traditional transactions in service-oriented environments,
inserting APs at critical points in a process is important for
checking consistency constraints and potentially reducing
the risk of failure or inconsistent data.

An AP can also be used as a rollback point for
backward recovery. Three different forms of backward
recovery are described in [19], with the different forms
supporting either full backward recovery or a combination
of backward and forward recovery. APRetry is used when
the running process needs to be backward recovered to a
previously-executed AP. APRollback is used when the
overall process has more severe errors and must be
recovered back to the beginning of the process.
APCascadedContingency is a hierarchical backward
recovery that continues to compensate nested processes,
checking each AP that is encountered for a possible
contingent procedure that can be used to correct an
execution error.

The most basic use of an AP together with integration
rules is shown in Figure 1, which illustrates three composite
groups (i.e., code segments that invoke services) and an AP
between each composite group. The shaded box on the right
shows the functionality of an AP using AP2 as an example.
When AP2 is reached, the post-condition rule, the pre-
condition rule, and any conditional rules are checked
sequentially. If the post-condition or the pre-condition is

violated, then a recovery action is invoked. If the pre and
post conditions are not violated, then the AP will invoke any
conditional rules to check additional, application-oriented
conditions.

Figure 1 Assurance Points and Integration Rules [14]

The Invariant Monitoring System extends the

functionality of Assurance Points by adding an additional
invariant rule, where an invariant rule allows the
specification of a condition that can be monitored in
between two AP occurrences. IRs for pre and post
conditions can check conditions at certain points in the
business process but cannot make sure that a condition
holds for a specified period of time. The Invariant
Monitoring System provides the capability to monitor
critical data conditions in between APs, supporting
concurrent activity but allowing a process to be notified if a
critical data condition is violated.

IV. INVARIANT MONITORING SYSTEM

This section presents an overview of the functionality of
the Invariant Monitoring System. The format for invariant
rule specification is then presented using two examples that
will be used throughout the remainder of the paper.

A. Overview

Using the invariant technique, a process declares an
invariant condition when it reaches a specific AP in the
process execution, also declaring an ending AP for
monitoring of the invariant condition. When a concurrent
process modifies a data item of interest in an invariant
condition, the process that activated the invariant is notified
by a monitoring system built on top of Delta-Enabled Grid
Services. If the invariant condition is violated during the
specified execution period, the process can invoke the
recovery procedures defined in the previous section.

An invariant definition has an identifier, two AP
specifications (APs as a starting AP and and APe as an

ending AP), and optional parameters that are necessary in
the condition specification. Once APs is reached, the
invariant rule condition becomes active. The condition is
specified as an SQL query. The condition is initially
checked and the action is executed if the invariant condition
is violated. If the invariant condition holds, the rule
condition goes into monitoring mode using the DEGS
capability. The condition monitoring continues until APe is
reached or until the invariant condition is violated.

As shown in Figure 2, when an invariant condition goes
into monitoring mode, the data items of interest in the
invariant condition are registered with a monitoring service.
The monitoring service subscribes to the DEGSs that
contain the relevant data items referenced in an invariant.
For example, if the condition to be monitored is a + b > 10,
then the relevant DEGS will notify the service of any
changes to a or to b by concurrent processes. Any deltas that
are forwarded to the monitoring service will cause the
invariant condition to be rechecked. As long as the
condition still holds, then there is no interference among the
concurrent process executions. If the condition is violated,
then the recovery action of the invariant rule will be
executed.

Process
Specification

Process A
.
.
.

AP1
.
.
.

AP2
.
.
.

Invariant
data

changed

condition
checked

violated
?

invoke
recoveryAction

data
monitoring

YN

DEGS
interface

Process B
.
.
.

Update
operations

.

.

.

Process
Specification

Figure 2 Invariant System

B. Invariant Specification

Assurance Points uses integration rules in the Event-
Condition-Action (ECA) format to define the different types
of integration rules. These ECA rules are based on previous
work with using integration rules to interconnect software
components [8, 17].

Each invariant begins with a create rule statement that
defines an invariant identifier. The event component of the
rule identifies the starting AP as well as the ending AP and
any parameters needed for the rule condition specification.
In the condition section of the ECA rule structure, the
condition is expressed as not exists (select * from …), where
the select statement returns the tuples that satisfy the
invariant condition. If the select statement returns tuples that
satisfy the condition, then not exists evaluates to false and no
recovery action is triggered. However, if the SQL condition

returns no tuples, then not exists will return true, indicating
that the invariant condition is not satisfied. In this case, the
process is notified and the recovery procedure in the action is
invoked.

Hotel Room Reservation Monitoring Example
Figure 3 provides an example of an invariant for a travel
planning process, where the process is scoping out available
hotel and airline options before finalizing the plans. The full
details of the process are not presented here, but the
invariant is triggered when the process reaches the
BeginTravelPlanning AP as specified in the EVENT
component of the invariant rule. The first parameter of the
event specifies that the invariant is deactivated when the
process reaches the ReadyToBook AP. The invariant
condition checks a specific hotel for the availability of a
seaside room that is less than a specified price, where the
hotelID and price are passed as additional parameters from
the BeginTravelPlanning AP. Expression of the invariant
allows the process to continue checking the availability of
other travel options, such as airline reservations, but to be
notified if the room availability changes. If the process
reaches the ReadyToBook AP and the desired room type and
price are still available, then the process continues past the
ReadyToBook AP, making the appropriate reservations after
deactivating the HotelRoomMonitoring invariant. If at anytime
between the BeginTravelPlanning AP and the ReadyToBook AP
the room is no longer available, the invariant monitoring
system will notify the process instance that owns the
invariant condition.

Figure 3 Invariant for a Hotel Room Reservation Request

Bank Loan Application Monitoring Example
As another example, consider the invariant in Figure 4,
where the LoanAmountMonitoring invariant is to be monitored
between the LoanAppCreation AP (i.e., the starting AP for the
monitoring process) and the LoanCompletion AP (i.e., the
ending AP for the monitoring process). The process
represents a loan approval process, where the process is
creating a loan application for a customer at a bank that
already has an account at that bank. Figure 4 shows an
invariant that is activated when the LoanAppCreation AP is
reached and checks to make sure the loan applicant has a
tenth of the requested loan amount in the account, where the
customerId is passed as a parameter from the LoanAppCreation
AP. The monitoring process is started if the condition is
satisfied. If the process reaches the LoanCompletion AP and

the applicant’s account balance still meets the necessary
criteria, then the process continues past the LoanCompletion
AP, completing the loan application after deactivating the
LoanAmountMonitoring invariant. If at anytime between the
LoanAppCreation AP and the LoanCompletion AP, the
applicant’s account balance falls below the necessary
criteria, the invariant monitoring system will notify the
process, which will execute the recovery action.

Figure 4 Invariant for a Bank Loan Approval Process

V. PROTOTYPE OF THE INVARIANT MONITORING

SYSTEM

As part of our research, we have prototyped an execution
environment to model the capability of monitoring
invariants in between the APs of an executing process. This
section outlines the relevant components of the invariant
monitoring system.

A. Registration of Invariants and Monitored Objects

Invariant rules are parsed and processed to extract the SQL
condition and the monitored objects from the invariant rule
definition. Monitored objects are acquired from the SQL
condition of an invariant by extracting the table names
together with the attributes and relevant conditions. Changes
to these extracted objects can affect the result of the query.
The Invariant Monitoring System may need to re-evaluate
the SQL condition when it detects a change in monitored
objects.

As an example, consider the SQL query from Figure 4.
The two tables in this query are the Loan table and the
Account table. There are three conditions in the where clause
of the outer SQL query associated with the Loan table. As a
result, there are three monitored objects from this table:
“applicantId = +customerId+”, “status = ‘pre-qualified’”, and
“amount < (select …)”. To simplify the monitored object
related to the amount attribute, the object is converted into
“amount < calc” since multiple tables cannot be analyzed
during the delta filtering. The calc keyword is used to
signify that this is a calculated value that must be re-
evaluated. In the first condition, customerId is a
parameterized value that is acquired from the parameters of
the AP.

The Account table of the inner query has one condition in
the where clause, “customerId = +customerId+”, where
customerId is a parameterized value. This query also
illustrates a relevant monitored object in the select clause for
the balance attribute of the Account table. Balance is

identified as a calculated value since, if this attribute
changes, it will change the output of the inner query and
could potentially violate the invariant condition.

After parsing an invariant rule, an object structure is
used to forward information about the invariant to an
Invariant Agent, which validates the condition and registers
the invariant and its list of monitored objects with the
system if the condition is satisfied. Figure 5 shows a high
level view of the relationship between the MonitoredObject
table and the Invariants table in the Invariant Agent. As
shown in Figure 5, there is a many-to-many relationship
between MonitoredObjects and Invariants. If an invariant no
longer needs to be monitored, then it is deactivated and
deleted from the Invariants table. If the objects related to
that invariant are not related to another invariant, they will
also be removed.

Figure 5 Invariants and Monitored Objects Table

B. The Invariant Evaluation Web Service

An important component of the Invariant Monitoring
System is the Invariant Evaluation Web Service (Shuman,
2010). The Web Service is used to initially evaluate the
SQL query of an invariant to determine if the condition is
satisfied. Since the invariant may need to be re-evaluated
several times between the starting and ending APs, the Web
Service was designed to make use of materialized views to
provide an efficient way of checking the invariant.

A materialized view is a database object that contains the
results of a query. After populating a materialized view
when an invariant is initially evaluated, the view is
automatically updated after any table that is associated with
the query is changed. In Oracle, this is referred to as the
FAST refresh option. As a result, simply counting the
number of tuples from the materialized view is faster and
more efficient than re-executing the SQL query when an
invariant must be re-evaluated. As long as the count is
greater than zero, the constraint is still satisfied. An empty
view indicates that the constraint is not satisfied.

Figure 6 illustrates the functionality of the Invariant
Evaluation Web Service. After creating any necessary log
files needed for the FAST refresh option, the Invariant
Evaluation Web Service determines if the materialized view
exists. If the view does not exist, the materialized view is
populated by executing the query of the invariant. If the
materialized view already exists, then the number of tuples
is queried from the view instead of re-executing the query.

Figure 6 Evaluation Web Service Functionality

C. The Delta Analysis and Filtering Process

The Delta Analysis agent of the Invariant Monitoring
System invokes the filtering of delta information received
from DEGS against the monitored objects. To support the
delta filtering process, a storage container for the monitored
objects is required. Figure 7 shows the Delta Analysis Agent
(DAA) Invariant Storage Container, which consists of two
hashtables. The first hash table is the table/attribute
hashtable containing a vector of invariant identifiers that
have monitored objects containing the same table/attribute
combination as the key. For example, if an invariant is
monitoring the price attribute in the orders table, then the
key would be orders/price and the invariant identifier of that
invariant would be inserted into the container of that key in
the table/attribute hashtable. The second hashtable, or
invariant hashtable, uses the invariant identifier as the key
and relates that key to a container of monitored objects of
that invariant. The first entry in the container contains
information about the number of tuples that the last
evaluation of the invariant found, the current number of
violations found against that invariant identifier, and the
invariant identifier. The rest of the container holds the
monitored objects that are related to that invariant so that all
conditions related to that invariant can be checked at the
same time.

To process delta notifications, a delta filtering process
was developed using two different algorithms, where one
algorithm handles insert and delete operations and the other
algorithm handles updates. In addition, each algorithm
distinguishes between invariants that involve a single table
and invariants that involve multiple tables.

To allow a more efficient method of determining when
to re-evaluate an invariant that applies to a single table, a
variable containing the number of tuples returned from the
SQL query was introduced. Since all of the monitored

objects are evaluated over a single table, the filtering
process can use tuple counts to determine when an invariant
is violated. If the number of tuples equals the number of
violations found, then there are no more tuples left that
satisfy the invariant condition and the Delta Analysis Agent
can deduce that the condition has been violated without re-
evaluating the condition.

Figure 7 Delta Analysis Agent Storage Structure

Example 1: Single table insert
Invariant: “select r.price from room r where r.price < ‘30’
and r.roomType = ‘seaview’ and r.hotelid = ‘234’“
Monitored Objects: [(room, price, <, ‘30’), (room,
roomType, =, ‘seaview’), (room, hotelid, =, ‘234’)]
Number of Satisfying Tuples: 1
Discussion: If a tuple satisfying all of the monitored object
conditions is inserted into the room table, then the number
of tuples is incremented by one. If one of the monitored
object conditions is not satisfied by the inserted tuple, then
the number of tuples is not incremented (i.e., the inserted
data has not affected the contents of the view). If the tuple
that satisfies the invariant is deleted by an external process,
then the number of violations will be incremented. Since the
number of tuples will equal the number of violations,
notification will be sent to the process monitoring the
invariant condition. The invariant will be removed from the
monitoring process, and the process will be informed of the
violation.

When monitoring multiple tables, a threshold value is
used instead of comparing the number of tuples and the
number of violations found. Invariants that involve join
conditions and, therefore multiple tables, require rechecking
the invariant condition. A tuple from one table can join
with multiple tuples from another table. As a result, an
insert, delete, or update can cause multiple tuples to enter or
leave the result of the invariant. Furthermore, depending on

the number of tuples in the invariant result, these changes do
not necessarily violate the invariant condition. It is not
desirable, therefore, to check the invariant after each change
to a relevant table. A threshold value is used as a way to
periodically initiate a re-evaluation, where the threshold
value is a percentage of the number of tuples that
determines when to re-evaluate the invariant condition.
This research has used a threshold value of 25% of the
invariant tuples.

Example 2: Multiple table insert
Invariant: “select r.price from room r, hotel h where r.price
< ‘30’ and r.roomType = ‘seaview’ and r.hotelid = h.hotelid
and h.state = ‘Texas’“
Monitored Objects: [(room, price, <, ‘30’), (room,
roomType, =, ‘seaview’), (hotel, state, =, ‘Texas’)]
Number of Satisfying Tuples: 25
Threshold: 25%
Discussion: All inserts into multiple table invariants are
ignored. Inserting tuples can potentially increase the size of
the number of tuples that satisfy the invariant condition, but
will not cause a violation. If seven tuples from the room
table satisfying the invariant condition are deleted, then the
number of violations will be incremented after each
deletion. After the seventh deletion, the number of
violations will be greater than the threshold (7 > .25*25).
The invariant condition will then be re-evaluated. If tuples
are found that satisfy the invariant condition, the invariant
will update the number of tuples found in the view, reset the
number of violations to zero, and continue monitoring. If
the process continues and after another re-evaluation no
more tuples are found, a notification will be sent to the
process monitoring the invariant condition and the invariant
will be removed.

VI. TESTING AND EVALUATION
To evaluate the prototype of the Invariant Monitoring
System, a testing environment and test cases were created
and initialized. The primary focus of the evaluation was on
the performance of the Invariant Evaluation Web Service to
determine if the use of materialized views improves the
performance of the re-evaluation process. The testing
example used was the Hotel monitoring example, which
involves the Hotel and Room tables, with DEGS created to
monitor changes to all columns of each table. A process
with Assurance Points was created for activating and
deactivating different test invariants. Another concurrent
process was also created to modify the monitored data in the
source database.

Since re-evaluation occurs primarily in the context of
multiple table invariants, the focus of the evaluation was on
invariants that involve join conditions. The first test case
involved changes ranging from satisfying the invariant
condition to not satisfying the invariant condition. These
updates triggered the invariant condition to be re-evaluated,
but the test was design so that the invariant condition was

still satisfied and, as a result, the invariant was not removed.
The second test case updated all of the tuples with the
changes ranging from satisfying the invariant condition to
not satisfying the invariant condition. This test group was
designed so that the invariant was violated and, as a result,
monitoring of the invariant was removed (the evaluate the
time associated with removal of the monitored invariant).

Table 1 describes different measurements that were
taken and the times associated with each measurement. The
measurements taken include:
- The time for creating the materialized view, where the

time includes creating the view and extracting the
number of tuples from the newly created view.

- The total time of the Invariant Evaluation Web Service,
which includes checking and creating any logs, and
either creating and querying from the materialized view
or just querying tuple counts from the materialized view
if it already exists.

- The time to evaluate the invariant from the Invariant
Agent, which includes the time to call and receive
feedback from the re-evaluation function in the
Invariant Agent for evaluating the invariant condition
the first time,

- The time to evaluate the invariant from the Delta
Analysis Agent, which is the time is takes to call and
receive feedback from the re-evaluation function in the
Invariant Agent. The time taken can also include the
time it takes to remove the invariant condition if there
are no more tuples in the view.

- The time to select tuple counts from the materialized
view.

- The time to directly execute the SQL query of an
invariant instead of creating a materialized view.
An average time in microseconds was recorded for all

measurements. During testing, the Oracle database used had
at least 100 tuples that satisfied the invariant condition on
the initial evaluation. The machine used for testing was a
Dell Precision T3400 with 2.99GHz Intel Core 2 Extreme
processor and 4Gb of RAM, running Microsoft Windows
XP Professional x64 Edition.

Creating the materialized view and the total evaluation
time was about the same in both multiple table test cases.
The values that are significantly different in the test cases
are the times for evaluating from the Delta Analysis Agent.
This time difference is because the invariant condition is
completely removed in the case with invariant removal
before returning back from the Delta Analysis Agent
evaluation, indicating the time required for deactivation of
the invariant.

A key observation from Table 1 is that the time
difference between creating the materialized view and
selecting tuple counts from an existing materialized view is
significantly different. The time it takes to query tuple
counts from an existing materialized view is also much less
than the time required to repeatedly re-execute the invariant
query. If a process is long running between the starting and

ending APs of an invariant and might potentially re-execute
the SQL query of the invariant often, then creating the
materialized view is beneficial. Otherwise, directly re-
evaluating the query is a better choice for shorter process to
avoid the overhead of establishing the materialized view.

Table 1 Performance of Multiple Test Cases

VII. SUMMARY AND FUTURE WORK
This paper has introduced the design of an Invariant
Monitoring System that is capable of monitoring data
constraint conditions in a process, using the AP concept
from [19] as a way to define the monitoring period. A web
service was developed that makes use of materialized views,
an invoked by delta filtering algorithms, as a way to
improve the efficiency of the invariant re-evaluation process.
The strength of the invariant technique is that it provides a
way to monitor data consistency in an environment where
the coordinated locking of data items across multiple service
executions is not possible, thus providing better support for
the reliability user-defined correctness conditions among
concurrent processes.
 Future research is needed to more accurately define the
threshold that is used to determine when to invoke the
invariant evaluation web service. The web service could
also be enhanced to make dynamic decisions regarding the
use of materialized views vs. direct re-execution of the
invariant query. More efficient methods of checking
invariant conditions should also be investigated. For
example, using DEGS to directly monitor the materialized
views instead of the delta repository tables could provide a
more immediate solution to monitoring multiple tables.

ACKNOWLEDGMENT

This research has been supported by NSF Grants CCF-
0820152 and CNS-1005212. Opinions, findings,
conclusions or recommendations expressed in this paper are
those of the author(s) and do not necessarily reflect the
views of NSF.

REFERENCES
[1] L. Baresi, and S. Guinea, “Towards dynamic monitoring of WS-

BPEL processes,” Service-Oriented Computing-ICSOC 2005, pp.
269-282, 2005.

[2] L. Blake, The Design and Implementation of Delta-enabled Grid
Services: MS Thesis, Arizona State University, 2006.

[3] A. Charfi, and M. Mezini, “Aspect-oriented workflow languages,”
On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, pp. 183-200, 2006.

[4] A. Charfi, and M. Mezini, “Ao4bpel: An aspect-oriented extension
to bpel,” World Wide Web, vol. 10, no. 3, pp. 309-344, 2007.

[5] R. Elmasri, and S. B. Navathe, Fundamentals of database systems
(6th ed.): Addison-Wesley Longman Publishing Co., Inc., 2010.

[6] H. Garcia-Molina, and K. Salem, “Sagas,” ACM SIGMOD Record,
vol. 16, no. 3, pp. 249-259, 1987.

[7] J. Jang, A. Fekete, and P. Greenfield, “Delivering Promises for Web
Services Applications,” IEEE International Conference on Web
Services, Salt Lake City, Utah, USA, 2007.

[8] Y. Jin, “An architecture and execution environment for component
integration rules,” PhD Dissertation, Arizona State University, 2004.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W.
Griswold, “An overview of AspectJ,” ECOOP 2001—Object-
Oriented Programming, pp. 327-354, 2001.

[10] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of
JML: A behavioral interface specification language for Java,” ACM
SIGSOFT Software Engineering Notes, vol. 31, no. 3, pp. 1-38,
2006.

[11] D. Luckham, Programming with Specifications: An Introduction to
ANNA, A Language for Specifying Ada Programs: Springer New
York, 1990.

[12] A. Martens, “Analyzing web service based business processes,”
Fundamental Approaches to Software Engineering, pp. 19-33, 2005.

[13] T. Mikalsen, S. Tai, and I. Rouvellou, "Transactional attitudes:
Reliable composition of autonomous Web services." Workshop on
Dependable Middleware Based Systems, 2002

[14] R. Shrestha, “Using Assurance Points and Integration Rules for
Recovery in Service Composition,” MS Thesis, Texas Tech
University, 2010.

[15] M. Shuman, A Database Service for Checking Invariants. Technical
Report, Department of Computer Science, Texas Tech University,
2010.

[16] M. Tumma, Oracle Streams: High Speed Replication and Data
Sharing: Rampant TechPress, 2004.

[17] S. D. Urban, S. W. Dietrich, Y. Na, Y. Jin, A. Sundermier, and A.
Saxena, "The IRules Project: Using Active Rules for the Integration
of Distributed Software Components." 9th IFIP Working
Conference on Database Semantics: Semantic Issues in E-
Commerce Systems, pp. 265-286, 2001.

[18] S. D. Urban, Y. Xiao, L. Blake and S. W. Dietrich, “Monitoring data
dependencies in concurrent process execution through delta-enabled
grid services,” International Journal of Web and Grid Services, vol.
5, no. 1, pp. 85-106, 2009.

[19] S. Urban, L. Gao, R. Shrestha and A. Courter, “Achieving Recovery
in Service Composition with Assurance Points and Integration
Rules,” On the Move to Meaningful Internet Systems: OTM 2010,
pp. 428-437, 2010.

[20] H. Wächter, and A. Reuter, The contract model: Advanced
Transaction Models for New Applications, Morgan Kaufmann
Publishers, 1991.

[21] D. Worah, and A. Sheth, "Transactions in transactional workflows,"
Advanced Transaction Models and Architectures, S. J. a. L.
Kershberg, ed., pp. 3-34., 1997.

[22] W. Zhao, L. E. Moser, and P. M. Melliar-Smith, “A reservation-
based coordination protocol for Web Services,” in IEEE
International Conference on Web Services, Orlando, Florida, 2005.

