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Abstract:

This paper presents a survey of relevant transactional and recovery
issues for the development of processes that are composed of web
services in a service-oriented architecture (SOA). A process in an
SOA is not a traditional ACID transaction due to the loosely-coupled,
autonomous, and heterogeneous nature of the execution environment.
As a result, processes that are composed of web services can pose
challenges for data consistency in the context of concurrent processes
that are accessing shared data. This paper first outlines past research
on advanced transaction models and transactional workflows that has
established the framework for coordination and recovery techniques
associated with web service composition. The standards that have
evolved to support web service composition and a coordinated commit
process among web services are then presented. The paper then
elaborates on research projects that address data consistency issues
for web service composition, outlining relaxed locking techniques, data
dependency analysis techniques, and other modularization techniques
for addressing user-defined correctness, flexible recovery actions, and
cross-cutting concerns. Failure recovery strategies for Web Services
are also addressed, describing how current research builds on the
foundation provided by advanced transaction models to perform
recovery for processes composed of Web Services. The overview of
failure recovery strategies also includes self-healing mechanisms and
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checkpointing systems for service execution. The paper concludes by
outlining challenges for future research on web service composition and
recovery.
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1 Introduction

With the development of the Internet, Web Services and service-oriented
computing are becoming more widely used to support processes and data exchange
in business-to-business integration as well as business and scientific-oriented
workflows. In a traditional, data-oriented, distributed computing environment, a
distributed transaction is used to provide certain correctness guarantees about
the execution of a transaction over distributed data. In particular, a traditional,
distributed transaction provides all-or-nothing behavior by using the two-phase
(2PC) commit protocol to support atomicity, consistency, isolation, and durability
(ACID) properties (Elmasri and Navathe, 2011). A process in a service-oriented
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architecture (SOA) (Singh and Huhns, 2005), however, is not a traditional ACID
transaction due to the loosely-coupled, autonomous, and heterogeneous nature of
the execution environment.

In an SOA, a service is highly independent of the context and the state of
other services invoked by a process. Since a service is autonomous and platform-
independent, the commit of a service execution is controlled by the host execution
environment of the service instead of the global process. Therefore, processes
composed of web services do not generally execute as transactions that conform
to the concept of serializability. Concurrently running processes may access or
modify the same data through independent services without the isolation property
in between service executions. As a result, dirty reads or dirty writes may occur
from the global process perspective. If a process fails, the recovery of the process
may affect the data consistency in other concurrent processes that have accessed
the same data. Therefore, the recovery of a failed process is not enough to maintain
data consistency from a global perspective due to potential dirty reads or writes.

As an example, consider the scenario shown in Figure 1, where three processes
are running concurrently in an SOA. Process; is initiated by agent;, while
processy and processs are both controlled by agent,. In Figure 1, operationss
and operationss each invoke services. If processs fails at operationsgs and recovers
operationss, then processy might be affected due to the potential dirty read/write
problem. The dirty read/write issue might also happen between processes that
are controlled by different agents. For example, the recovery of processs controlled
by agente might affect the correctness of process; controlled by agent;, since
operationy; and operation;s both execute at service; and potentially access the
same data. In an SOA, it is first of all a challenge to provide flexible recovery
techniques that can respond to service errors, exceptions, and interruptions in a
manner that preserves the data constraints of a single process and attempts to keep
the process running. It is also a challenge to analyze data dependencies between
concurrently running processes to determine how the data changes caused by the
recovery of one process can possibly affect other processes that have either read or
written data modified by the services of the failed process.

This paper presents a survey of relevant transactional and recovery issues
for the development of processes that are composed of web services, with a
focus on data consistency in the context of concurrent processes. The survey
begins in Section 2 with an overview of foundational research in the area
of advanced transaction models and transactional workflows. Current work
with service composition shares many of the same characteristics as that of
seminal research on advanced transaction models and workflows. Much of this
original research was conducted in the context of long-running transactions,
where consistency techniques such as serializability and the isolation property
were generally unattainable. As a result, many of the recovery techniques for
service composition have been derived from this earlier work with long-running
transactions.

Section 3 then provides an overview of the most relevant standards that have
evolved to provide some form of coordinated commit process among the services
involved in a process. In particular, we outline WS-Coordination as a framework
for a coordination service, as well as WS-Transactions for achieving 2PC and WS-
Business Activity for achieving a more relaxed execution of long-running business
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activities that cross vendor boundaries. We also provide an overview of WS-BPEL
2.0 as a standard for web service composition, summarizing fault, compensation,
and termination handlers for dealing with recovery issues.

Section 4 presents research projects that address data consistency issues for
web service composition, outlining relaxed locking techniques, data dependency
analysis techniques, and other modularization techniques for addressing user-
defined correctness, flexible recovery actions, and cross-cutting concerns. Section 5
then elaborates on failure recovery strategies for Web Services, describing current
research that builds on the foundation provided by advanced transaction models
to perform recovery for processes composed of Web Services. We also outline
current work with self-healing mechanisms and checkpointing systems for service
execution. The paper concludes in Section 6 with a summary and discussion of
future research directions.

2 A Historical Perspective of Advanced Transaction and
Workflow Models

Current techniques for handling the transactional aspects of web service
composition and recovery have been influenced by past research with advanced
transaction and workflow models. To establish the context for current research
on service composition and recovery, this section presents relevant background on
advanced transaction models and transactional workflows.

2.1 Advanced Transaction Models

The traditional notion of transactions with ACID properties is too restrictive for
the types of complex transactional activities that occur in distributed applications,
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primarily because locking resources during the entire execution period is not
applicable for Long Running Transactions (LRTS) that require relaxed atomicity
and isolation (Cichocki, 1998). Advanced transaction models (ATMs), such as
Sagas, the Nested Transaction Model, the Multi-level Transaction Model and
the Flexible Transaction Model, have been defined to better support LRTs in a
distributed environment (Rolf et al., 1997; Elmagarmid, 1992).

The notion of a Saga (Garcia-Molina and Salem, 1987) was proposed in 1987
as a base model for long-running activities. A Saga consists of many ordered
smaller tasks that conform to ACID properties, where these tasks execute in a
sequence. The Saga relaxes the requirement of the entire transaction as an atomic
action by releasing resources before the transaction completes without sacrificing
the consistency of the database. A compensator is created with each task in a
Saga. The compensator is an execution that can logically undo the results of the
task. When a Saga needs to be aborted, the system aborts the current active
task and executes the compensators for each task in reverse order to backward
recover the entire Saga process. As shown in Figure 2, when the saga fails at tasks,
compensationy and compensation; will be executed to logically undo tasks and
task;. Compensation as a recovery technique is an important contribution of the
Saga model that has had a significant influence over current recovery techniques
for web service composition.

Saga

‘ Taski H Task, H Tasks H Tasks

Compensations iff{ Compensation ' ‘ Compensations ‘ ‘Compensatiom‘

Figure 2 Recovery of a Failed Saga Process

Nested transactions provide another foundational, introducing hierarchical
transaction structure together with the concepts of contingency and non-vital
sub-transactions (Moss, 1985, 1987). In the nested transaction model, a parent
transaction can be decomposed into sub-transactions (or child transactions),
where sub-transactions can be further decomposed in a similar manner. Top-level
transactions of a transaction hierarchy support ACID properties. A transaction
cannot commit until all of its child transactions have committed. Locks at the child
level are also inherited at the parent level. If a child transaction fails, the parent
transaction can ignore the failure and thus treat the child as non-vital. The parent
can also decide to execute a contingent sub-transaction as an alternative action.

A more relaxed concurrent execution model that provides an extension of
the nested model is the multi-level transaction model introduced in (Weikum,
1991), where a transaction is decomposed into a nested set of sub-transactions
at different levels and then each sub-transaction can commit on its own before
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the whole transaction commits. A sub-transaction can create its sub-transactions
at the next level as child sub-transactions. The commit of a parent transaction
must wait until the child sub-transactions commit. In case of abort at the parent
level, the committed sub-transactions will run their own compensators to perform
“undo” actions.

A flexible transaction model which is suitable for a multidatabase environment
was presented in (Elmagarmid et al., 1990). A flexible transaction defines a set
of equivalent alternative sub-transactions. The flexible transaction model relaxes
global atomicity by allowing the transaction designer to define a set of acceptable
termination states. Therefore the successful execution of a transaction will be the
successful execution of a set of sub-transactions or its alternatives. In the flexible
transaction model, an acceptable state is also used to decide whether to commit,
abort, or compensate a sub-transaction. The flexible transaction model, therefore,
introduces the concept of user-defined correctness for transaction execution in
multidatabase environments.

These advanced transaction models, as well as other models outlined in
(Elmagarmid, 1992), relax the ACID properties of traditional transaction models
to better support LRTs and to provide a theoretical basis for further study
of complex distributed transaction issues, such as failure atomicity, isolation,
consistency, and concurrency control. These models have also defined important
concepts, such as compensation, contingency, non-vital transactions, and user-
defined correcteness, that are important to current approaches for web service
composition and recovery.

2.2 Transactional Workflow

The term transactional workflow was introduced to recognize the relevance of
transactions to workflow activity that does not fully support ACID properties.
Transactional workflows contain the coordinated execution of multiple related
tasks that support access to heterogeneous, autonomous, and distributed data
through the use of selected transactional properties for individual tasks or entire
workflows (Worah and Sheth, 1997). Transactional workflows are usually non-
atomic and long-lived processes, containing a set of tasks executed at different
sites. Transactional workflows require externalizing intermediate results, while at
the same time providing concurrency control, consistency guarantees, and a failure
recovery mechanism for a multi-user, multi-workflow environment. Concepts such
as rollback, compensation, forward recovery, and logging have been used to achieve
workflow failure recovery in several projects.

The ConTract Model provides a classic example of work with transactional
workflows (Wéchter and Reuter, 1991). The model was originally proposed for use
in applications such as office automation and manufacturing control. A ConTract
model consists of a set of predefined actions that conform to ACID properties
called steps and an explicitly specified execution plan called a script. The ConTract
Model provides compensation for backward recovery, and basic constraint checking
through the specification of pre-conditions or post-conditions for steps. After the
execution of each step, the ConTract Model will release locks and, if failure
occurs, the ConTract Model will logically recover completed steps. A unique
contribution of the ConTract Model is forward recoverability, defining the ability of
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an execution to do a partial recovery when failure occurs and to continue forward
execution from the point of failure. The ConTract model also emphasizes user-
defined comnsistency through the use of invariants, or consistency constraints, on
the database for the purpose of concurrency control.

Eder and Liebhart (1995) introduced the workflow activity model (WAMO).
WAMO supports modeling complex business processes in a simple and reliable
way. In WAMO, a complex business process is composed of a set of smaller work
units, known as activities. In this model, a workflow consists of three basic units:
activity, form and agent. An activity represents the abstract description of a work
unit in the business process. A data repository or container to store relevant data is
called a form. An agent is a processing entity to perform the execution of activities.
An activity may consist of multiple other activities as its steps. Furthermore,
activities are reusable by other activities so that new processes can be composed
of existing activities. In WAMO, the state after each execution is used to control
activities of the workflow.

The Units of Work (UOW) model was proposed in (Bennett et al., 2000),
supporting long running business processes in a distributed environment. The
UOW model is an advanced nested transaction model that enables concurrent
access to shared data without locking resources. In this model, a nested LRT is
represented by the UOW object and the non-UOW-aware base object provides
business functionalities. The model takes the base objects, creates versions that
are associated with UOWSs, and maps method invocation under a given UOW
context onto the set of objects associated with the UOW. In this model, an LRT is
represented as a tree structure whose nodes are UOWSs, each of which is a nestable
LRT. The isolation property is guaranteed by three visibility rules: 1) the state of
all the objects in a parent UOW is visible to all child UOWSs of that parent UOW,
2) the state change of a child UOW is visible to the parent after the child commits,
and 3) a child state change is not visible to its sibling before it commits.

The Correct and Reliable Execution of Workflows (CREW) project (Karnath
and Ramamritham, 1998) introduced correctness requirements and other defined
constraints into transactional workflows. A workflow in CREW includes multiple
steps. The completion of previous steps will trigger the execution of the next
steps. The occurrence of specific events can also trigger the execution of specified
steps. The rules, events or conditions are used to manage the execution of
workflows. Handling of failures to eliminate unnecessary compensations and re-
execution of steps are also supported in CREW. If the execution of a step fails,
complete compensation and re-execution, or partial compensation and incremental
re-execution is invoked to recover the error. Therefore, CREW provides a more
dynamic workflow by the use of rules and the mechanisms for handling failures
and exceptions.

The METEOR model (Wodtke et al., 1996) combines many features such
as two-phase commit (2PC) coordination, error handling, and failure recovery
from other transactional workflows models. A METEOR model includes four
components: processing entities and their interfaces, tasks, task managers and
workflow schedulers. A processing entity is responsible for executing a task. A
task is a basic execution agent that performs operations. The task manager takes
control of each task. The workflow scheduler is responsible for coordinating the
execution of tasks. METEOR uses a three-layer error model to handle workflow
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errors, categorizing runtime errors as task errors, task manager errors, or workflow
engine errors. These errors can be handled automatically or by human agents by
different methods introduced in METEOR.

Although the above advanced transaction and workflow models have provided
techniques that support access to heterogeneous, autonomous, and distributed
data among multiple related tasks, these models do not fully support the
isolation, failure atomicity, timed constraints, and liveness requirements of
distributed transactional workflows (Kuo et al., 2002). Many of these models make
assumptions about the transaction semantics of sub-transactions. Furthermore,
workflow activities, as well as web service composition, often cross organizational
boundaries and involve human intervention, complex programming control
structures, and diverse service environments. As in the work with transactional
workflows, more comprehensive and suitable recovery techniques are needed to
support the transactional needs of web service compositions. The following sections
examine some of the standards and research projects that have addressed these
issues in the context of web service composition.

3 Standards for Web Service Transactions and Composition

In an SOA, standard business functionality is provided by well-defined,
self-contained software modules, known as services. In (Papazoglou and
Georgakopoulos, 2003), a service is defined to be an exposed piece of functionality
that: 1) is self-contained and maintains its own state, 2) is platform-independent,
and 3) can be dynamically located, invoked and (re-)combined. The main purpose
of a service in an SOA is to represent a reusable unit of work. Services must be
used, however, in a manner that maintains application constraints and consistency
with respect to concurrent data access. Section 3.1 first summarizes standards
associated with transactional issues for web services. A brief summary of the
Business Process Execution Language and the features provided for service
composition and recovery is then presented in Section 3.2.

3.1 Web Service Specifications

WS-Coordination (Cabrera et al., 2002a) describes an extensible framework for
providing protocols that coordinate the actions of distributed applications. Such
coordination protocols are used to support a number of applications, including
those that need to reach consistent agreement on the outcome of distributed
activities. WS-Coordination describes a framework for a coordination service (or
coordinator) which consists of these component services. The first component is
an activation service with an operation that enables an application to create
a coordination instance or context. The second component is a registration
service with an operation that enables an application to register for coordination
protocols. The third component is a coordination type-specific set of coordination
protocols. The coordination protocols that can be defined in this framework can
accommodate a wide variety of activities, including protocols for simple short-lived
operations and protocols for complex long-lived business activities.
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Atomic Transactions defined in WS-Transaction (Cabrera et al., 2002b) build
on WS-Coordination, which defines an activation and a registration service. WS-
Transaction has two characteristics. One is the all or nothing property, where
the actions taken prior to commit are only tentative. The other is atomic
transactions that require a high level of trust between participants and are short
in duration. WS-Transaction usually uses Two-Phase commit (2PC) to guarantee
ACID properties. The 2PC protocol coordinates registered participants to reach
a commit or abort decision, and ensures that all participants are informed of the
final result. Volatile 2PC involves participants managing volatile resources such as
a cache. Durable 2PC involves participants managing durable resources such as a
database. Based on each protocol’s registered participants, the coordinator begins
with Volatile 2PC, then proceeds through Durable 2PC.

The WS-Business Activity (Cabrera et al., 2005) specification defines protocols
that enable existing business processes and workflow systems to wrap their
proprietary mechanisms and interoperate across trust boundaries and different
vendor implementations. Usually WS-Business Activity provides long-running,
compensation-based transaction protocols, where a business activity may consume
many resources over a long duration. There may be a significant number of atomic
transactions involved. Individual tasks within a business activity can be seen
prior to the completion of the business activity since their results may have an
impact outside of the computer system. Responding to a request may take a very
long time. Human approval, assembly, manufacturing, or delivery may have to
take place before a response can be sent. In the case where a business exception
requires an activity to be logically undone, abort is typically not sufficient.
Exception handling mechanisms may require business logic, for example in the
form of a compensation task, to reverse the effects of a previously completed task.
Participants in a business activity may be in different domains of trust, where all
trust relationships are established explicitly.

In contrast to WS-Transaction, the model of WS-Business activity has several
distinct differences. The participant list is dynamic and a participant may exit
the protocol at any time without waiting for the outcome of the protocol. WS-
Business activity allows a participant task within a business activity to specify
its outcome directly without waiting for solicitation. Participants in a coordinated
business activity can also perform tentative operations as a normal part of the
activity. There are two coordination protocols for business activities. One is
BusinessAgreement WithParticipantCompletion protocol. A participant registers
for this protocol with its coordinator, so that its coordinator can manage it. A
participant must know when it has completed all work for a business activity. The
other is BusinessAgreementWithCoordinatorCompletion protocol, which means a
participant registers for this protocol with its coordinator, so that its coordinator
can manage it. A participant relies on its coordinator to tell it when it has received
all requests to perform work within the business activity. The main difference
between the two protocols is that one executes by itself and the other one executes
by a coordinator. The work in (Riegen et al., 2010) provides an example of using
WS-Business Activity to provide transactional support for distributed processes in
service-oriented environments.
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3.2 Web Services Business Process Fxecution Language

The Web Services Business Process Execution Language (WS-BPEL 2.0) (Jordan
et al., 2007) provides a standard language to specify business processes that are
composed of Web services and to expose the process as a Web Service. The main
concepts in WS-BPEL include processes, partner links, properties, and correlation,
as well as basic and structured activities scopes. WS-BPEL defines a model and
grammar for the description of the behavior of business processes on the basis
of interactions between the processes and their partners. A WS-BPEL process
defines the state and business logic required for the coordination of multiple service
interactions with these partners to achieve business goals. A BPEL process by
itself is a web service representing the business process in XML, building on WS-
Standards such as WSDL, SOAP and UDDI.

BPEL defines two classes of activities: basic and structured. These activities
are defined to perform the business process logic. Basic activities describe the
fundamental steps of the process logic, including constructs such as < invoke >
to call web services, < receive > to receive messages, < reply > to respond to
requests, < assign > for operate on values of variables, < throw > to indicate
internal faults, < wait > to specify a delay, < empty > to do nothing, < exit >
to end the instance of business process immediately, and < rethrow > to rethrow
the faults caught by fault handlers. These basic activities can be used together
to describe more complex tasks using structured activities. Structured activities
represent the control-flow logic of the process and can consist of other basic
or structured activities. Some of the structured activities are: < sequence >
to perform the activities contained sequentially, < if > to perform conditional
behavior, < while > and < repeatUntil > for repeated execution of contained
activity, < pick > to execute the activity of a particular chosen event after its
occurrence, and < flow > for parallelism and synchronization of activities.

BPEL provides fault, compensation and termination handlers to handle
execution exceptions. All three handlers are associated with scopes. A fault
handler aims to correct the error in a scope such that a process can continue
running or invoke an alternative process. A compensation handler is used to
compensate a completed scope. A termination handler aborts a running scope.
When an error occurs, all running activities in the scope in which the error
occurs will be first terminated. If the activity is a non-scope activity, it is simply
aborted. If the activity is a scope, the associated termination handler is activated.
When all running activities have been terminated, the fault handler associated
with the scope in which the error occurs takes place. The fault handler will
invoke compensation handlers to compensate all its nested completed scopes.
In BPEL, the compensation procedure in a scope follows the reverse order of
enclosed scope completion. However, the dependency between enclosed scopes
will potentially complicate the compensation order. Because the default exception
handling mechanism in WS-BPEL may activate handlers at different levels when
scopes at different levels are being recovered, the recovery procedure in WS-BPEL
can be difficult to understand (Khalaf et al., 2009).
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4 Data Consistency Approaches for Web Service Composition

Whereas the standards described in Section 3 provide protocols that allow Web
Services to participate in more traditional, coordinated completion frameworks,
current research is investigating more advanced techniques for maintaining
data consistency among concurrent processes that execute in an SOA. This
section reviews some of the relevant techniques that have been investigated for
maintaining data consistency in service execution. Section 4.1 address techniques
that support variations in transaction semantics capabilities as well as relaxed
locking techniques. Section 4.2 then outlines techniques for data dependency
analysis among concurrently executing processes. The assurance point approach for
nested, hierarchical service composition together logical and physical checkpoints
with user-defined correctness conditions and rule-driven recovery actions is
described in Section 4.3. Section 4.4 describes functional modularity for service
composition using aspect-oriented concepts.

4.1 Relaxzed Semantics and Locking Techniques

Mikalsen et al. (2002) introduced a new Web Service Transaction (WSTx)
framework, called transactional attitudes, to support the issue of transactional
reliability in web service composition. In the WSTx framework, transactional
attitudes are used to allow web service providers to declare their individual
transactional capabilities and semantics and to allow web service clients to declare
their transactional requirements. There are two types of attitudes defined in WSTx
framework: Provider Transactional Attitudes (PTAs) and Client Transactional
Attitudes (CTAs). PTAs are used for web service providers to explicitly describe
their specific transactional behavior, while CTAs allow the clients to describe
their expectations and outcome acceptance criteria explicitly. Each client executes
one or more actions within the scope of a web transaction, where each action
represents a provider transaction that executes within the context of the larger web
transaction. The WSTx framework provides reliability during execution by using
both PTAs and CTAs to define attitudes for web services transaction compositions.
Also, middleware which acts as an intermediary between a client and multiple web
service providers has been developed.

The Tentative Hold technique (Limthanmaphon and Zhang, 2004) provides an
approach to avoid traditional locking of data to support isolation. This approach
allows tentative, non-blocking holds on required resources. The resource owners, on
receiving requests, grant non-blocking reservations on their resources. At the same
time, they maintain control over their resources and allow several clients to place
their requests for resources. This technique minimizes the need for cancellation of
transactions by providing the clients with the correct and up-to-date data. This
is done by maintaining track of the hold through several states. The states of
a hold are Responding (initial state when an application sends a request for a
hold), In Process (intermediate state which indicates that a hold request has been
received), Active (state reached when the requested hold has been granted), and
Inactive (state that indicates that the tentative hold is no longer valid). There
are tentative hold coordinators at both the client (client coordinator) and resource
owner sides (resource coordinator). The client coordinator determines the status
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of previously granted tentative holds and allows a client to request holds from
resource owners for specific resources, query the status of existing holds owned
by it, cancel existing holds owned, query logged activities, and request to modify
existing holds. The resource coordinator first checks the status of previously
granted holds and verifies their expiration times, allowing a resource owner to
query existing holds, cancel existing holds, and query activities. The resource
coordinator is also respomnsible for notifying affected client coordinators when a
relevant resource becomes unavailable. Thus this approach provides a non-blocking
mechanism of temporarily holding resources.

Another similar method to temporarily lock data in a concurrent environment,
is the reservation-based approach (Zhao et al., 2005). This approach reserves
resources that meet the criteria of what the web service has requested. In this
protocol, each task within a business activity is divided into two steps. The first
step is to reserve resources based on business logic. Basically, the reservation
is a contract between the client and the resource provider. To maximize the
execution concurrency in the system, a ‘fee’ is associated with each reservation
proportional to the duration of the reservation, which discourages the application
to reserve the same resources for an extended period of time. In the second
step, the reservation is either confirmed or cancelled according to the business
rules. Because the resource that the application requests is reserved in the first
step, the application has the choice and freedom to decide about either continued
execution or backtracking. A two-phase protocol is used to coordinate the different
tasks within a business activity. In the first phase, the client coordinator sends
reservation requests to all the participants. The confirmation or cancellation of
the reservations is decided by the coordinator at the end of the first phase.
In the second phase, the confirmation or cancellation requests are sent to the
corresponding participants. If a participant has accepted a reservation, it must be
committed to the reserved resource unless the coordinator cancels the reservation.
In traditional transactions, any of the participants have the right to rollback
or abort the entire transaction. In the reservation-based coordination protocol,
however, only the coordinator can determine this.

The Promises approach was proposed in (Jang et al., 2007) to support the
isolation property in web service composition. The goal of the Promises approach
is to ensure that certain values are not overwritten or changed by concurrently
executing web services. A promise is an agreement between a client application
and a service or promise maker. A promise assures the client that some set of
conditions (predicates) will be maintained over a set of resources for a specific
duration of time, as requested by the client. Instead of locking data, the approach
defines the promise maker to be a promise manager that records promises. The
main functionality of the promise manager is to address promise making, check
on resource availability, and also ensure that promises are not violated during the
specific time period. Client applications send the promise manager information
in the form of predicates about the resources they want in order to complete
successfully. These predicates are Boolean expressions over the resources. The
request for a promise will be examined by the promise manager, which will
either grant or reject the request. Once a promise request is granted, the client
application is isolated from the effects of concurrent execution and can complete
successfully. One method that has been used to implement promises is the concept
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of soft locks. This method uses a field in the database record to indicate whether an
item has been allocated already for a client or not. When an application requests
the same resource, this field is read to determine availability of the resources.
Promises are a weaker form of locking, but do allow other web services to access
the data so that any wait is avoided.

4.2 Data Dependency Analysis

An alternative to relaxed locking techniques is the concept of data dependency
analysis. The work of (Xiao, 2006; Xiao and Urban, 2008a) provides a formal
definition of a process dependency model, defining read and write dependencies
at the operation and process level. As illustrated in Figure 1, a failed process
may affect the correctness of all other processes that are dependent on the failed
process. By using the process dependency model, a set of processes that are data
dependent on the failed process can be formed. In (Xiao, 2006; Xiao and Urban,
2008b,a, 2012), process interference rules (PIRs) are used to test user-defined
conditions that determine if a dependent process should continue running or invoke
its own recovery procedures. Xiao’s process dependency model therefore provides
a more optimistic approach to data access, also relying on user-defined conditions
to determine whether a dependent process needs to invoke recovery actions. The
work in (Xiao and Urban, 2012) elaborates on the algorithms for constructing
process dependency graphs and the coordination of the recovery procedures of
the service composition model with the execution of process interference rules.
A simulation and evaluation of process dependency graph construction and the
concurrent process recovery algorithm is also presented.

Xiao’s process dependency model is based on a data dependency analysis
technique that makes use of a concept known as Delta-Enabled Grid Services
(DEGS) (Blake, 2005; Urban et al., 2009b). A DEGS is a Grid Service that has
been enhanced with an interface that provides access to the incremental data
changes, or deltas, that are associated with service execution in the context of
globally executing processes. Deltas captured over the source database are stored
in a delta repository that is local to the service. Deltas are then generated as a
stream of XML data from the delta repository and communicated to the delta
event processor of the DeltaGrid environment. A centralized Process History
Capture System (PHCS) (Xiao et al., 2006; Urban et al., 2009b) has been
developed to receive deltas from different DEGSs. A complete global delta object
schedule can be formed according to the timestamps of the deltas. Therefore, the
global delta object schedule can be used to form the process dependent set for the
purpose of triggering PIRs. Other techniques to deal with heterogeneity, autonomy,
distribution and high volume of data in Grid services can be found in (Taniar and
Goel, 2007; Taniar et al., 2008).

One of the disadvantages of the data dependency analysis technique is that
the analysis is performed by forwarding all deltas to a centralized location,
thus creating a bottleneck for the analysis process. The work in (Liu, 2009;
Urban et al., 2011a) has developed an approach that performs decentralized
data dependency analysis among concurrently executing processes through Process
Execution Agents (PEXAs). PEXAs are responsible for controlling the execution
of processes that are composed of web services. PEXAs are associated with
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specific distributed sites and are also responsible for capturing and exchanging
information with other PEXAs about the data changes that occur at those sites in
the context of service executions through the construction of distributed process
dependency graphs (Liu, 2009; Urban et al., 2009a, 2011a). The challenge with
building distributed process dependency graphs is discovering the global, hidden
dependencies that are created by having each PEXA maintain its own local delta
object schedule. Link objects and other runtime control information is used to
discover hidden dependencies as well as global cycles in the construction of the
graphs. Distributed graphs are also used to propagate recovery procedures among
distributed PEXAs.

The decentralized data dependency analysis approach represents a new way of
integrating existing transaction processing theories with execution platforms that
can be used to address data consistency issues for concurrent process execution
in service-oriented environments, providing more dynamic and intelligent ways
of monitoring failures, detecting dependencies, and responding to failures and
exceptional conditions.

4.8 The Assurance Point System

In addition to decentralized data dependency analysis, the work in (Xiao, 2006;
Xiao and Urban, 2008a; Urban et al., 2009b; Xiao and Urban, 2012) has also
led to the development of the Assurance Point System for service composition
and recovery, with a specific focus on user-defined data consistency and recovery
techniques for processes composed of web services. An abstract service composition
model was defined as a hierarchical service composition structure, where a process
is composed of atomic and/or composite groups (Xiao and Urban, 2009). An
atomic group is a service execution with optional compensation and contingency
procedures. A composite group is composed of two or more atomic and/or
composite groups and can also have optional compensation and contingency
procedures. The work in (Xiao, 2006; Xiao and Urban, 2009) presents the full
specification of the model using state diagrams and algorithms to define the
semantics of compensation and contingency in the recovery process.

The service composition and recovery model in (Xiao and Urban, 2009) was
extended with the concept of Assurance Points (APs) and integration rules to
provide a more flexible way of checking constraints and responding to execution
failures (Shrestha, 2010; Urban et al., 2010, 2011d). An AP is a combined logical
and physical checkpoint. As a physical checkpoint, an AP provides a way to
store data at critical points in the execution of a process. Unlike past work with
checkpointing, such as that of (Luo, 2000; Dialani et al., 2002) where checkpoints
are used to port an execution to a different platform as part of fault tolerant
architectures, APs support user-defined consistency checking and rollback points
that can be used to maximize forward recovery options when failures occur. In
particular, an AP provides an execution milestone that interacts with integration
rules. Failure of a pre or post-condition or the failure of a service execution
can invoke several different forms of recovery, including backward recovery of the
entire process, retry attempts, or execution of contingent procedures. The unique
aspect of APs is that they provide intermediate rollback points when failures
occur that allow a process to be compensated to a specific AP for the purpose
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of rechecking pre-conditions before retry attempts. APs also support a dynamic
backward recovery process, known as cascaded contingency, for hierarchically
nested processes in an attempt to recover to a previous AP that can be used to
invoke contingent procedures or alternate execution paths for failure of a nested
process. A Petri Net formalization of the AP model and recovery techniques
appears in (Urban et al., 2011d).

Invariant rules and application exception rules are additional rule forms that
have been defined for use with the AP approach (Urban et al., 2011b). Whereas
integration rules can be used to check data conditions at certain points in process
execution, invariant rules are activated with a starting AP, deactivated with an
ending AP, and monitor the data of the invariant condition in between APs using
DEGS (Urban et al., 2011c). An invariant therefore allows a process to declare data
conditions that are critical to the execution of the process, but to allow multiple
processes to access the same data in an optimistic fashion. When critical data
conditions are violated, as detected by the DEGS capability, recovery conditions
can be invoked. Application exception rules provide a case-based rule structure
that can be used to interrupt the execution of a process in response to exceptional
conditions and to respond to exceptions in different ways depending on the state of
the executing process (Urban et al., 2011b; Ramachandran, 2011). The conditions
and actions that are executed in response to an external application event provide
a way to check different user-defined data conditions and to take different recovery
actions depending on the most recent AP that has been executed in a process.

4.4 Functional Modularization With Aspect-Oriented Techniques

Current workflow languages do not support modularization of concerns, such as
data constraints and security, that span across process boundaries. The code
of such crosscutting concerns is often spread across several workflows and is
thus tangled with the code addressing other concerns. This has led to complex
workflow process specifications that are difficult to comprehend, maintain, modify,
and reuse. To address these issues, (Charfi and Mezini, 2006) proposed the use
of aspect-orientation concepts in workflow languages. Aspect-oriented workflow
languages provide crosscutting modularity by the use of concepts such as aspects,
join points, pointcuts, and advice. These workflow languages therefore support
a concern-based decomposition: the business logic which is the main concern in
workflows can be specified in a modular way as a workflow process module and
crosscutting concerns can be specified in a modularized manner using workflow
aspects. Through such an approach, aspects can be used to obtain a cross-process
view on how a concern is handled in various workflows. Thus if a programmer
needs to understand or change a concern, he/she has to be concerned only about
the relevant aspect.

In aspect-oriented progamming, aspects are weaved into the execution of a
program using join points to provide alternative execution paths (Charfi and
Mezini, 2007). For example, join points are well-defined points in the execution
of the program. The behavioral code specified in the join point is known as
advice. The advice code can be executed before, after, or instead of the join
points. The work in (Charfi and Mezini, 2006) illustrates the application of aspect-
oriented software development concepts to workflow languages to provide flexible
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and adaptable workflows. AO4BPEL (Charfi and Mezini, 2007) is an aspect-
oriented extension to BPEL that uses AspectJ to provide control flow adaptations
(Kiczales et al., 2001). Business rules can also be used to provide more flexibility
during service composition. AO4BPEL enhances the limited capabilities of BPEL
in terms of modularity and dynamic adaptability. XML files are used to provide
functionality in AO4BPEL to avoid changing the service composition during
runtime. In contrast with the standard WS-BPEL, AO4BPEL provides better
support for functional modularization.

5 Failure Recovery Strategies for Web Services

In a service-oriented architecture, a business process can terminate successfully
if all activities in it complete successfully or if the process is in a consistent
state and the failed activities have been substituted by alternative execution
paths. In practice, the great majority of business processes may encounter
numerous and diverse failures. Failures can occur anywhere at any time due to the
loosely-coupled, autonomous, and heterogeneous characteristics of the execution
environment. An activity can fail in many ways, such as an undesirable return
value, an unavailable resource, or even hardware failures. As a result, failure
recovery for web services is an important issue.

As investigated in (Peltz, 2003), nearly 80% of process execution time is spent
on handling exceptions. Considering parallel process execution, failure recovery
and exception handling become considerably more difficult. One important reason
is that a failed activity may have already affected another activity before recovery,
as illustrated in Figure 1. In (Greenfield et al., 2003), the authors use an e-
procurement example to show that in many situations, compensation is not
enough, pointing out that even if some aspects of an activity can be undone, it is
not always the case that a process can return to its original state. Compensation of
the failed activity therefore does not address the affect of the failure and recovery
on dependent processes.

This section summarizes research on failure recovery techniques in web
service composition. Most of these techniques build on strategies from advanced
transaction models for compensation, retry, and contingency actions, but have
been adapted for use in a service-oriented environment. Techniques for self-healing
execution environments and checkpointing systems are also presented.

5.1 Re-do Strategy

One approach to keep a process running is to re-do (re-try) the failed activity.
Re-do is the easiest way to handle a fault and keep running. However, sometimes
re-do procedures are difficult to define in a business process.

Some fault-handling methods for job flow management were presented in (Tan
et al., 2010). The authors proposed a new business process execution model called
BPEL4JOB. In this model, three fault-handling policies are designed. The cleanup
policy gets the failure report and deletes the failed flow instance (assuming no
side effect). The re-try policy uses a signal to indicate the job execution state
and adds a while loop to each scope. The job will be executed repeatedly if the
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signal indicates false. The third policy is the re-submission and instance migration
method. This policy supports exporting job flow instance data in one flow engine,
and importing it into another one so that the flow instance can resume. The
challenge for this policy is to collect sufficient data from the source flow engine.

Another method for handling a re-do mechanism in BPEL was described by
(Modafferi and Conforti, 2006). In this method, a re-do procedure is achieved
by the event-handler and the compensation-handler. In the compensation-handler,
both re-do and compensation procedures are defined following a select structure
since only one compensation-handler can be defined for an activity. The aim of
the event-handler is to set the variable that will drive the choice between redo and
compensation.

In (Vaculin et al., 2008), based on OWL-S, a recovery mechanism using
semantic web services was introduced. In this recovery mechanism, a retry is used
as a form of recovery action. A retry action can be defined in a fault-handler, or
a constraint violation handler. The AP-Retry action defined in (Shrestha, 2010;
Urban et al., 2011d) also performs a re-execution of a portion of a process if
a critical condition is violated in a process. The retry action in the assurance
point model supports compensation back to a specified, logical recovery point in
a process with the ability to recheck user-defined constraint conditions before the
retry action.

5.2 Un-do Strategy

Once a crucial error occurs, it is important to clean all of the incorrect data
that were generated by the failed activity. Typically, a process is recovered to a
previous consistent state. The recovery procedure is usually done through the use
of compensation.

In (Lakhal et al., 2006), the authors used definition rules, composability rules
and ordering rules to build a flexible web service composition model. In this model,
for each compensatable activity, the users define a compensating procedure that
will be invoked in case of a failure in the execution of an activity. The concept
of vitality degree is also defined in this model. The vitality degree indicates that
some activities are identified as optional, while others are tailored as crucial for
the overall process.

A concept of automatic compensation was presented in (Wiesner et al., 2008).
Since the information of the effect about a service is defined as a process definition
in OWL-S, it is possible to discover an automatic compensation based on the effect
information. This technique is achieved by searching a service with effect ¢! to
undo the failed service which has the effect e.

In a loosely-coupled execution environment which allows concurrent activity
execution without isolation guarantee, the un-do strategy becomes more difficult
to implement, because a failed activity may cause cascaded compensations. Dialani
et al. (2002) proposed a transparent fault tolerance architecture for web services.
The authors define a two layered model which consists of an application layer
and a service layer. For failure recovery, the application layer implements two
key components which are the global fault manager and the fault detector. The
service layer includes a local fault manager which is a set of libraries that can be
bound dynamically to the service code. In case of a failure, the local fault manager
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tries to recover the fault first. In case a full recovery is not possible, the local
fault manager recovers to a maximal state and escalates the fault notification to
the global fault manager. Then the global fault manager initiates a roll back by
notifying the affected services. The functionalities of the fault detector are sending
the fault notification to the global fault manager and providing a dependency set
for the current fault.

A fault handling method in decentralized web service composition was
proposed by Chafle et al. (2005). The authors use a partition technique to
decentralize web services. The decentralization algorithm partitions a scope in
such a manner that the start and end of each scope reside in the same partition,
which is referred to as the root partition of that scope. The fault handlers and
compensation handlers are in the end of scope. In addition, each partition except
the root has an inserted scope start and an inserted scope end which includes
an inserted fault handler. When a fault occurs, the fault needs to be propagated
to the root partition since the corresponding fault handler only resides in the
root partition. Then the fault handler of the root partition of the scope in which
the fault occurred, sends a DataCollection control message to its next partition(s)
according to the control flow. The message flows along the path traversed by the
fault (as per the fault propagation scheme). Each root partition except the top
level scope for the composite service, enters a wait state. The fault handler and
compensation handler in the top level root partition will then address the fault
and compensate completed inner scopes respectively.

In the AP approach (Shrestha, 2010; Urban et al., 2011d), if an error occurs or
a critical condition is violated, the process will first be recovered back to a previous
consistency point before invoking additional actions. The undo procedure supports
shallow compensation and deep compensation. Shallow compensation provides
the capability to execute one compensation action that reverses the affect of a
composite group that has invoked multiple services. Deep compensation provides
the capability to enter a completed composite group and execute individual
compensating procedures for each service invoked by the composite group.

5.8 Alternative Strategy

Another approach used in failure recovery is to execute an alternative process,
which was first introduced as a contingency in advanced transaction models.
In many situations, alternative execution paths can totally substitute the failed
activity so that the whole business can continue running.

5.8.1 Alternative with Un-do

An alternative method is a form of contingency. After failure recovery, the whole
process backs up to a consistent state. However, in many cases, the re-do of the
failed activity is still unsuccessful. Hence, an alternative execution path can be
used to provide a means for maximizing forward recovery.

A replace operation was provided in (Vaculin et al., 2008). A
ReplaceBy(otherProcess) tries to use another process as a substitute for a
failed process. In (Wiesner et al., 2008), a more flexible operation named
ReplaceByEquivalent was introduced. Because the OWL-S process model defines
inputs, outputs, preconditions, and effects by using existing algorithms for
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automatic web service discovery (matchmaking) (Sycara et al., 2003), the
information is used to dynamically find an alternative service. Based on
ReplaceByEquivalent, the authors also give a definition of advanced backward and
forward recovery. After a failure, a rollback is performed first for all processes
that have finished at the same level. Then, if ReplaceByEquivalent can find an
alternative service, it is executed. Otherwise, the backward recovery is repeated
at one higher level in the hierarchy.

The AP-Cascaded Contingency action of the Assurance Point System
(Shrestha, 2010; Urban et al., 2011d) is a backward recovery process that searches
backwards through the hierarchical nesting of composite groups to find a possible
contingent procedure for a failed composite group. Once the contingent procedure
is found, the process will perform forward recovery through execution of the
contingent procedure.

5.8.2 Alternative without Un-do

In some failure recovery approaches, the failed activity is not crucial and
alternative execution can be used to keep the business process running. Generally,
each activity has several back-up activities in these approaches.

The Primary-Backup method (Zhang et al., 2004) uses a backup service to
substitute the failed primary service in grid services. In this model, each primary
service has one or more backup services. Before replying to the client, the primary
service needs to send the execution state to every backup service. If these backup
services receive a failure notification, or do not receive a heartbeat message after
a certain period of time, these backups need to cooperate to elect a new primary
service. The newly elected primary service then sends a failover notification to the
client so it can obtain a new server instance handle.

The merit of this approach is that it saves the expensive rollback or
compensation of the failed activities. However, because the failed activity is just
abandoned, the alternative strategy does not support the atomicity point of the
ACID properties of the traditional transaction. Traditional transaction concepts
require either all operations to complete or none to complete. Furthermore,
an alternative without un-do method usually does not consider concurrent
process execution errors. For example, if other concurrent activities have data
dependencies on the failed activity, the results of these concurrent activities
become questionable.

5.4  Other Techniques for Failure Recovery

As indicated in a previous section, the WS-BPEL standard provides a fault-
handler, a compensation-handler, and a termination-handler attached to a scope
to handle execution exception. To continue the process execution in case an
exception occurs, the fault-handler might invoke the compensation-handler first
to un-do the completed portion in the scope. If the corresponding compensation-
handlers are not specified, then the default compensation-handler is assigned to
the scope. However, in some cases, the default compensation-handler may cause
complications and return unexpected results. Khalaf et al. (2009) highlight the
two main problems with the fault and compensation mechanism in the current
BPEL standard: 1) compensation order can violate control link dependencies
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if control links cross the scope boundaries, and 2) high complexity of the
default compensation order results due to the default handler behavior. Instead
of the standard fault and compensation mechanism in BPEL, Khalaf et al.
(2009) proposed a new and deterministic mechanism to better handle default
compensation for scopes. In the new mechanism, the relationships between scopes
include both structured nesting and graph-based links. Therefore, in case of an
execution exception, the model can calculate the default compensation order before
starting the compensation procedure.

Techniques are being devised to advance BPELs standard behavior in fault
and exception handling and failure recovery. BPEL4Job (Tan et al., 2010) is
a BPEL-based advanced fault handling design for job flow management in a
distributed environment. BPEL4JOB supports job flow modeling integrated with
fault handling policies - cleanup, task level re-try and flow instance re-submit
and, a set of fault handling schemes including a method for instance migration
between flow engines in the distributed environment. A solution for automated
and dynamic exception handling has been developed in (Christos et al., 2007).
The proposed framework, Service Relevance and Replacement Framework (SRRF),
uses a pre-processor that enhances BPEL scenarios with code that detects failures,
discovers alternate web services that can be used and invokes them, thereby
resolving the exception.

Facilitating the automation of web service discovery, execution, composition
and interoperation is becoming increasingly necessary (Yahyaoui et al., 2010;
Ukey et al., 2010; Di Martino, 2009). Self-healing mechanisms are therefore being
developed to monitor service compositions and, detect as well as recover from
failures automatically (Chan et al., 2009). Baresi et al. (2004) have presented
Defensive Process Design and Service Run-time Monitoring as mechanisms for
dynamic discovery of errors. The first approach designs a process such that it can
recover from common faults that occur at run-time. Service run-time monitoring
verifies if services are providing the functionalities they are meant to provide.

Ouyang et al. (2005) introduced WofBPEL, as a tool for automated analysis
of BPEL processes. WofBPEL is an approach for static or off-line fault detection.
This tool can analyze composite services after they are translated into the
Petri Net Markup Language (PNML). The authors of Ouyang et al. (2005) also
presented a companion tool, BPEL2PNML to translate BPEL process definitions
into PNML. WofBPEL is then used to perform static analysis such as detection
of unreachable actions and conflicting activities, on the output produced by
BPEL2PNML.

An approach to specify monitoring directives and weave them dynamically
into their corresponding process was presented in (Baresi and Guinea, 2005).
BPELCheck (Fischer et al., 2008) is a tool that has been developed to check
BPEL processes for consistency violations by checking pre-defined conditions.
Some examples of tools developed for monitoring and verification of web service
compositions are ASTRO (Trainotti et al., 2005), WSAT (Fu et al., 2004) and
LTSA-WS (Foster et al., 2006). More such BPEL process verification techniques
and tools have been discussed in (Van Breugel and Koshkina, 2006). A self-healing
plug-in that has been proposed for use with WS-BPEL engines to enhance the
ability of standard engines to provide process-based recovery actions is SH-BPEL
(Modafferi et al., 2006). The authors discuss the addition of some annotations
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for enabling recovery actions, pre-processing based recovery mechanisms and,
extended recovery mechanisms. The authors of (Modafferi and Conforti, 2006)
proposed five mechanisms for enabling recovery actions in BPEL: external variable
setting, timeout, redo, future alternative behavior, and rollback and conditional
re-execution of the flow. They argue that enhancing BPELs capability for failure
recovery through these mechanisms is a necessity to support emerging self-healing
systems. In (Baresi et al., 2007), Dynamo has been presented as a solution to self-
healing BPEL compositions. Dynamo is an assertion-based framework that uses
two special purpose languages: Web Service Constraint Language (WSCoL) to
specify constraints such as pre- and post- conditions, and, Web Service Recovery
Language (WSReL) to specify the recovery strategies.

Techniques for formalizing BPEL such as petri-net (Hamadi and Benatallah,
2003), pi-calculus (Sangiorgi and Walker, 2003), and model checking (Kovécs et al.,
2007) guarantee consistency and monitor the execution to detect failures.

In checkpointing systems, consistent execution states are saved during the
process flow. During failures and exceptions, the activity can be rolled back to
the closest consistent checkpoint to move the execution to an alternative platform
(Luo, 2000). The work in (Dialani et al., 2002) uses the means of checkpointing
and rollback to detect and recover the faults. The rule-based technique can be
also used with checkpointing systems. Marzouk et al. (2009) introduced a periodic
checkpointing based approach for strong mobility of orchestration processes. With
a set of rules, WS-BPEL processes can be transformed to equivalent mobile ones.
This approach can be used as a self-healing mechanism that supports resuming the
execution of a failed process instance starting from the last checkpoint.

6 Conclusion and Future Work

This paper has presented current research that addresses transactional issues for
data consistency and dynamic recovery in web service composition, illustrating
the foundation that has been provided for this work through past research
with advanced transaction models and transactional workflows. Standards provide
coordination techniques that support the traditional 2PC approach as well as
more relaxed techniques for managing long-running activities. From a research
perspective, however, relaxed locking techniques and data dependency analysis are
being investigated as a means to provide a more optimistic approach to supporting
shared data access among concurrently executing processes. Furthermore, by
adding modularization techniques, such as that of the assurance point system and
concepts form aspect-oriented programming, user-defined correctness conditions,
recovery techniques that combine backward and forward recovery actions, and
support for addressing cross-cutting concerns have been investigated to provide
more flexibility in execution and recovery options for service composition.
Checkpointing and self-healing execution environments complement service
composition and recovery techniques, providing autonomic ways to keep processes
executing through mobility among different service platforms.

Due to the distributed nature of services, effective ways to deal with the
transactional aspects of service composition and recovery is a challenging research
topic. Even BPEL, the de-facto standard for composing web services, still lacks
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sophistication with respect to handling faults, exceptions, and failure recovery.
Future research will focus on more intelligent event and rule-driven techniques
that support modularization in the specification of service composition, data
constraints, and flexible recovery actions. More intelligent, de-centralized execution
environments are also needed that understand the semantics of service composition
and recovery techniques and apply self-healing approaches to monitor failures,
detect data dependencies, and respond to failures and exceptional events. Such
environments are needed to support the mobility of process execution when failures
occur and to also address the impact that the failure and recovery of one process
can have on other data dependent processes.

Acknowledgments

*This research has been supported by the National Science Foundation
under Grant No. CCF-0820152. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References

Baresi, L. and Guinea, S. (2005). Towards dynamic monitoring of ws-bpel processes.
Service-Oriented Computing-ICSOC 2005, pp. 269-282.

Baresi, L., Ghezzi, C., and Guinea, S. (2004). Towards self-healing service compositions.
In Proceedings of First Conference on the Principles of Software Engineering,
volume 42, pp. 27-46.

Baresi, L., Guinea, S., and Pasquale, L. (2007). Self-healing bpel processes with dynamo
and the jboss rule engine. In International Workshop on Engineering of software
services for pervasive environments, the 6th ESEC/FSE Joint Meeting, pp. 11-20.

Bennett, B., Hahm, B., Leff, A., Mikalsen, T., Rasmus, K., Rayfield, J., and Rouvellou,
I. (2000). A distributed object oriented framework to offer transactional support for
long running business processes. In Middleware 2000, pp. 331-348.

Blake, L. (2005). Design and implementation of delta-enabled grid services. Master’s
thesis, Deptment of Computer Science and Engineering, Arizona State University.

Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D.,
Shewchuk, J., and Storey, T. (2002a). Web services coordination (WS-Coordination).
BEA, IBM, and Microsoft Web Service Specifications.

Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., and Thatte, S.
(2002b). Web services transaction (WS-transaction). BEA, IBM, and Microsoft Web
Service Specifications.

Cabrera, L., Copeland, G., Feingold, M., Freund, R., Freund, T., Joyce, S., Klein, J.,
Langworthy, D., Little, M., Leymann, F., et al. (2005). Web services business
activity framework (ws-businessactivity). BEA, IBM, and Microsoft Web Service
Specifications.

Chafle, G., Chandra, S., Kankar, P., and Mann, V. (2005). Handling faults
in decentralized orchestration of composite web services. In Service-Oriented
Computing-ICSOC 2005, pp. 410-423.



A Survey of Transactional Issues for Web Service Composition and Recovery23

Chan, K., Bishop, J., Steyn, J., Baresi, L., and Guinea, S. (2009). A fault taxonomy for

web service composition. In Service-Oriented Computing-I1CSOC 2007 Workshops,
pp. 363-375.

Charfi, A. and Mezini, M. (2006). Aspect-oriented workflow languages. In On the Move

to Meaningful Internet Systems 2006: CooplS, DOA, GADA, and ODBASE, pp.
183-200.

Charfi, A. and Mezini, M. (2007). Aodbpel: An aspect-oriented extension to bpel. World

Wide Web, 10(3), 309-344.

Christos, K., Costas, V., and Panayiotis, G. (2007). Enhancing bpel scenarios with

dynamic relevance-based exception handling. In Web Services, 2007. ICWS 2007.
IEEE International Conference on, pp. 751-758. IEEE.

Cichocki, A. (1998). Workflow and process automation: concepts and technology. Kluwer

Academic Pub.

Di Martino, B. (2009). Semantic web services discovery based on structural ontology

matching. International Journal of Web and Grid Services, 5(1), 46-65.

Dialani, V., Miles, S., Moreau, L., De Roure, D., and Luck, M. (2002). Transparent fault

tolerance for web services based architectures. Euro-Par 2002 Parallel Processing,
pp. 107-201.

Eder, J. and Liebhart, W. (1995). The workflow activity model WAMO. In Proceedings

of 3rd International Conference on Cooperative Information Systems,Vienna, pp.
87-98.

Elmagarmid, A. (1992). Database transaction models for advanced applications. Morgan

Kaufmann.

Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M. (1990). A multidatabase

transaction model for interbase. In Proceedings of the 16th International Conference
on Very Large Data Bases, pp. 507-518.

Elmasri, R. and Navathe, S. (2011). Fundamentals of database systems (6th Edition).

Addison Wesley.

Fischer, J., Majumdar, R., and Sorrentino, F. (2008). The consistency of web

conversations. In Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, pp. 415-418.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2006). Ltsa-ws: a tool for model-

based verification of web service compositions and choreography. In Proceedings of
the 28th international conference on Software engineering, pp. 771-774.

Fu, X., Bultan, T., and Su, J. (2004). Wsat: A tool for formal analysis of web services.

In Computer Aided Verification, pp. 394-395.

Garcia-Molina, H. and Salem, K. (1987). Sagas. ACM SIGMOD Record, 16(3), 249-259.
Greenfield, P., Fekete, A., Jang, J., and Kuo, D. (2003). Compensation is not enough

[fault-handling and compensation mechanism]. In Enterprise Distributed Object
Computing Conference, 2003. Proceedings. Seventh IEEE International, pp. 232-239.

Hamadi, R. and Benatallah, B. (2003). A petri net-based model for web service

composition. In Proceedings of the 14th Australasian database conference-Volume 17,
pp- 191-200.

Jang, J., Fekete, A., and Greenfield, P. (2007). Delivering Promises for Web Services

Applications. In IEEE International Conference on Web Services, Salt Lake City,
Utah, USA, pp. 599-606.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,

Curbera, F., Ford, M., Goland, Y., et al. (2007). Web services business process
ezecution language version 2.0. OASIS Standard.



24 Le Gao and Susan D. Urban

Karnath, M. and Ramamritham, K. (1998). Failure handling and coordinated execution
of concurrent workflows. In Proceedings of 14th International Conference on Data
Engineering, pp. 334-341.

Khalaf, R., Roller, D., and Leymann, F. (2009). Revisiting the behavior of Fault and
Compensation handlers in WS-BPEL. In On the Move to Meaningful Internet
Systems: OTM 2009, pp. 286-303.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. (2001).
An overview of AspectJ. In Object-Oriented Programming, ECOOP 2001, pp. 327—
354.

Kovécs, M., Varré, D., and Gonezy, L. (2007). Formal modeling of bpel workflows
including fault and compensation handling. In Proceedings of the Workshop on
Engineering Fault Tolerant Systems, pp. 1—es.

Kuo, D., Fekete, A., Greenfield, P., and Jang, J. (2002). Towards a framework for
capturing transactional requirements of real workflows. In Second International
Workshop on Cooperative Internet Computing 2002, pp. 113-122.

Lakhal, N., Kobayashi, T., and Yokota, H. (2006). Dependability and flexibility centered
approach for composite web services modeling. On the Move to Meaningful Internet
Systems 2006: CooplS, DOA, GADA, and ODBASE, pp. 163-182.

Limthanmaphon, B. and Zhang, Y. (2004). Web service composition transaction
management. In Proceedings of the 15th Australasian Database Conference-Volume
27, pp. 171-179. Australian Computer Society, Inc.

Liu, Z. (2009). Decentralized data dependency analysis for concurrent process execution.
Master’s thesis, Texas Tech University.

Luo, Z. (2000). Checkpointing for workflow recovery. In Proceedings of the 38th Annual
on Southeast Regional Conference, pp. 79-80.

Marzouk, S., Maalej, A., Rodriguez, 1., and Jmaiel, M. (2009). Periodic checkpointing
for strong mobility of orchestrated web services. In 2009 Congress on Services-I,
pp- 203-210. IEEE.

Mikalsen, T., Tai, S., and Rouvellou, I. (2002). Transactional attitudes: Reliable
composition of autonomous Web services. In Workshop on Dependable Middleware-
based Systems, the International Conference on Dependable Systems and Networks
(DSN 2002).

Modafferi, S. and Conforti, E. (2006). Methods for enabling recovery actions in ws-
bpel. On the Move to Meaningful Internet Systems 2006: CooplS, DOA, GADA, and
ODBASE, pp. 219-236.

Modafferi, S., Mussi, E., and Pernici, B. (2006). Sh-bpel: a self-healing plug-in for ws-
bpel engines. In Proceedings of the 1st Workshop on Middleware for Service Oriented
Computing (MW4S0C 2006), pp. 48-53.

Moss, J. (1985). Nested transactions: an approach to reliable distributed computing. MIT.
Press.

Moss, J. (1987). Log-based recovery for nested transactions. In In Proceeding of 13th
International Conference on Very Large Data Bases, pp. 427-432.

Ouyang, C., Verbeek, E., van der Aalst, W., Breutel, S., Dumas, M., and ter Hofstede, A.
(2005). Wofbpel: A tool for automated analysis of bpel processes. Service-Oriented
Computing-1CSOC 2005, pp. 484-489.

Papazoglou, M. and Georgakopoulos, D. (2003). Service-oriented computing.
Communications of the ACM, 46(10), 25-28.

Peltz, C. (2003). Web services orchestration and choreography. Computer, pp. 46-52.



A Survey of Transactional Issues for Web Service Composition and Recovery25

Ramachandran, J. (2011). Integrating exception handling and data dependency analysis
through application exception rules. Master’s thesis, Texas Tech University.

Riegen, M., Husemann, M., Fink, S., and Ritter, N. (2010). Rule-based coordination
of distributed web service transactions. IEEE Transactions on Services Computing
(January-March 2010), 3(1), 60-71.

Rolf, A., Klas, W., and Veijalainen, J. (1997). Transaction management support for
cooperative applications. Kluwer Academic Pub.

Sangiorgi, D. and Walker, D. (2003). The pi-calculus: a Theory of Mobile Processes.
Cambridge University Press.

Shrestha, R. (2010). Using assurance points and integration rules for recovery in service
composition. Master’s thesis, Texas Tech University.

Singh, M. and Huhns, M. (2005). Service-oriented computing: semantics, processes,
agents. John Wiley & Sons Inc.

Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. (2003). Automated discovery,
interaction and composition of semantic web services. Journal of Web Semantics,
1(1), 27-46.

Tan, W., Fong, L., and Bobroff, N. (2010). Bpeldjob: a fault-handling design for job flow
management. Service-Oriented Computing—ICSOC 2007, pp. 27-42.

Taniar, D. and Goel, S. (2007). Concurrency control issues in grid databases. Future
Generation Computer Systems, 23(1), 154-162.

Taniar, D., Leung, C., Rahayu, W., and Goel, S. (2008). High performance parallel
database processing and grid databases, volume 67. Wiley.

Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli,
P., and Traverso, P. (2005). Astro: Supporting composition and execution of web
services. Service-Oriented Computing-1CSOC 2005, pp. 495-501.

Ukey, N., Niyogi, R., Milani, A., and Singh, K. (2010). A bidirectional heuristic
search technique for web service composition. In Computational Science and Its
Applications—-ICCSA 2010, LNCS 6019, pp. 309-320.

Urban, S., Liu, Z., and Gao, L. (2009a). Decentralized data dependency analysis
for concurrent process execution. In FEnterprise Distributed Object Computing
Conference Workshops, 2009. EDOCW 2009. 13th, pp. 74-83.

Urban, S., Xiao, Y., Blake, L., and Dietrich, S. (2009b). Monitoring data dependencies
in concurrent process execution through delta-enabled grid services. International
Journal of Web and Grid Services, 5(1), 85-106.

Urban, S., Gao, L., Shrestha, R., and Courter, A. (2010). Achieving Recovery in
Service Composition with Assurance Points and Integration Rules. On the Mowve to
Meaningful Internet Systems: OTM 2010, pp. 428-437.

Urban, S., Liu, Z., and Gao, L. (2011a). Decentralized communication for data
dependency analysis among process execution agents and integration rules. to
appear in Volume 8, Issue 4 (October-December 2011) of the International Journal
of Web Services Research.

Urban, S., Gao, L., Shrestha, R., and Courter, A. (2011b). The dynamics of process
modeling: new directions for the use of events and rules in service-oriented
computing. In The FEvolution of Conceptual Modeling, LNCS 6520, pp. 205-224.
Springer.

Urban, S., Courter, A., Gao, L., and Shuman, M. (2011c). Supporting Data Consistency
in Concurrent Process Execution With Assurance Points and Invariants. In Rule-
Based Modeling and Computing on the Semantic Web, RuleML 2011, America,
LNCS 7018.



26 Le Gao and Susan D. Urban

Urban, S., Gao, L., Shrestha, R., Xiao, Y., Friedman, Z., and Rodriguez, J. (2011d).
The Assurance Point Model for Consistency and Recovery in Service Composition.
In Innovations, Standards and Practices of Web Services: Emerging Research Topics,
IGI Global publication, pp. 250-287.

Vaculin, R., Wiesner, K., and Sycara, K. (2008). Exception handling and recovery
of semantic web services. In Fourth International Conference on Networking and
Services, ICNS 2008, pp. 217-222.

Van Breugel, F. and Koshkina, M. (2006). Models and verification of bpel. Unpublished

Draft.
Wachter, H. and Reuter, A. (1991). The contract model. Universitit, Fakultét
Informatik.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems (TODS), 16(1), 132-180.
Wiesner, K., Vaculin, R., Kollingbaum, M., and Sycara, K. (2008). Recovery mechanisms
for semantic web services. In Distributed Applications and Interoperable Systems,

pp- 100-105. Springer.

Wodtke, D., Weilenfels, J., Weikum, G., and Dittrich, A. (1996). The Mentor project:
Steps towards enterprise-wide workflow management. In Proceedings of the Twelfth
International Conference on Data Engineering, pp. 556-565.

Worah, D. and Sheth, A. (1997). Transactions in transactional workflows. In
Transactions in Transactional Workflows, pp. 3-34.

Xiao, Y. (2006). Using deltas to analyze data dependencies and semantic correctness
in the recovery of concurrent process execution. Ph.D. dissertation, Arizona State
University.

Xiao, Y. and Urban, S. (2008a). Process dependencies and process interference rules for
analyzing the impact of failure in a service composition environment. Journal of
Information Science and Technology, 5(2), 21-45.

Xiao, Y. and Urban, S. (2008b). Using Data Dependencies to Support the Recovery
of Concurrent Processes in a Service Composition Environment. In Proceedings of
the Cooperative Information Systems Conference (COOPIS), Monterrey, Mexico, pp.
139-156.

Xiao, Y. and Urban, S. (2009). The DeltaGrid Service Composition and Recovery Model.
International Journal of Web Services Research, 6(3), 35-66.

Xiao, Y. and Urban, S. (2012). Using rules and data dependencies for the recovery
of concurrent process in a service-oriented environment. to appear in IFEE
Transactions on Service Computing.

Xiao, Y., Urban, S., and Dietrich, S. (2006). A process history capture system for
analysis of data dependencies in concurrent process execution. Data Engineering
Issues in E-Commerce and Services, pp. 152-166.

Yahyaoui, H., Maamar, Z., and Boukadi, K. (2010). A framework to coordinate web
services in composition scenarios. International Journal of Web and Grid Services,
6(2), 95-123.

Zhang, X., Zagorodnov, D., Hiltunen, M., Marzullo, K., and Schlichting, R. (2004).
Fault-tolerant grid services using primary-backup: feasibility and performance. In
IEEFE International Conference on Cluster Computing, 2004, pp. 105-114.

Zhao, W., Moser, L., and Melliar-Smith, P. (2005). A reservation-based coordination
protocol for Web Services. In IFEE International Conference on Web Services,
Orlando, Florida , USA, pp. 49-56.



