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ABSTRACT: 
 

This research has defined an abstract execution model for establishing user-defined correctness 
and recovery in a service composition environment. The service composition model defines a 
hierarchical service composition structure, where a service is composed of atomic and/or 
composite groups. The model provides multi-level protection against service execution failure by 
using compensation and contingency at different composition granularity levels. The model is 
enhanced with the concept of assurance points (APS) and integration rules, where APs serve as 
logical and physical checkpoints for user-defined consistency checking, invoking integration 
rules that check pre and post conditions at different points in the execution process. The unique 
aspect of APs is that they provide intermediate rollback points when failures occur, thus allowing 
a process to be compensated to a specific AP for the purpose of rechecking pre-conditions before 
retry attempts. APs also support a dynamic backward recovery process, known as cascaded 
contingency, for hierarchically nested processes in an attempt to recover to a previous AP that can 
be used to invoke contingent procedures or alternate execution paths for failure of a nested 
process. As a result, the assurance point approach provides flexibility with respect to the 
combined use of backward and forward recovery options. Petri Nets have been used to define the 
semantics of the assurance point approach to service composition and recovery. A comparison to 
the BPEL fault handler is also provided. 
 
 
KEY WORDS: 
service composition, compensation, contingency, rollback, retry, backward recovery, forward 
recovery, user-defined correctness constraints, pre-conditions, post-conditions, Petri Net 
formalization 
 

INTRODUCTION  
 
In a service-based architecture, a process is composed of a series of calls to distributed Web 
services and Grid services that collectively provide some specific functionality of interest to an 
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application (Singh & Huhns, 2005). In a traditional, data-oriented, distributed computing 
environment, a distributed transaction is used to provide certain correctness guarantees about the 
execution of a transaction over distributed data sources. In particular, a traditional, distributed 
transaction provides all-or-nothing behavior by using the two-phase commit protocol to support 
atomicity, consistency, isolation, and durability (ACID) properties (Kifer, Bernstein, & Lewis, 
2006). A process in a service-oriented architecture, however, is not a traditional ACID transaction 
due to the loosely-coupled, autonomous, and heterogeneous nature of the execution environment. 
When a process invokes a service, the service performs its function and then terminates, without 
regard for the successful termination of the global process that invoked the service. If the process 
fails, reliable techniques are needed to either 1) restore the process to a consistent state or 2) 
correct critical data values and continue running. 

Techniques such as compensation and contingency have been used as a form of recovery in 
past work with transactional workflows (e.g., Worah & Sheth, 1997) and have also been 
introduced into recent languages for service composition (e.g., Lin & Chang, 2005). In the 
absence of a global log file, compensation provides a form of backward recovery, executing a 
procedure that will “logically undo” the affects of completed and/or partially executed operations. 
Contingency is a form of forward recovery, providing an alternate execution path that will allow a 
process to continue execution. Some form of compensation may be needed, however, before the 
execution of contingency plans. Furthermore, nested service composition specifications can 
complicate the use of compensating and contingent procedures. To provide a reliable service 
composition mechanism, it is important to fully understand the semantics and complementary 
usage of compensation and contingency, as well as how they can be used together with local and 
global database recovery techniques and nested service composition specifications. Service 
composition models also need to be enhanced with features that allow processes to assess their 
execution status to support more dynamic ways of responding to failures, while at the same time 
validating correctness conditions for process execution. 

This research has defined an abstract execution model for establishing user-defined 
correctness and recovery in a service composition environment. The research was originally 
conducted in the context of the DeltaGrid project, which focused on building a semantically-
robust execution environment for processes that execute over Grid Services (Xiao, 2006; Xiao, 
Urban, & Dietrich, 2006; Xiao, Urban, & Liao, 2006; Xiao & Urban, 2008). The service 
composition model defines a hierarchical service composition structure, where a service is 
composed of atomic and/or composite groups. An atomic group is a service execution with 
optional compensation and contingency procedures. A composite group is composed of two or 
more atomic and/or composite groups and can also have optional compensation and contingency 
procedures. A unique aspect of the model is the provision for multi-level protection against 
service execution failure by using compensation and contingency at different composition 
granularity levels, thus maximizing the potential for forward recovery of a process when failure 
occurs. The work in (Xiao and Urban, 2009) presents the full specification of the model using 
state diagrams and algorithms to define the semantics of compensation and contingency in the 
recovery process. 

Our more recent work has extended the DeltaGrid service composition and recovery model in 
(Xiao et al., 2009) with the concept of Assurance Points (APs) and integration rules to provide a 
more flexible way of checking constraints and responding to execution failures. An AP is a 
combined logical and physical checkpoint. As a physical checkpoint, an AP provides a way to 
store data at critical points in the execution of a process. Unlike past work with checkpointing, 
such as that of (Dialini, Miles, Moreau, Roure & Luck, 2002; Luo, 2000) where checkpoints are 
used to port an execution to a different platform as part of fault tolerant architectures, our work 
focuses on the use of APs for user-defined consistency checking and rollback points that can be 
used to maximize forward recovery options when failures occur. In particular, an AP provides an 
execution milestone that interacts with integration rules. The data stored at an AP is passed as 
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parameters to integration rules that are used to check pre-conditions, post-conditions, and other 
application conditions. Failure of a pre or post-condition or the failure of a service execution can 
invoke several different forms of recovery, including backward recovery of the entire process, 
retry attempts, or execution of contingent procedures. The unique aspect of APs is that they 
provide intermediate rollback points when failures occur that allow a process to be compensated 
to a specific AP for the purpose of rechecking pre-conditions before retry attempts. APs also 
support a dynamic backward recovery process, known as cascaded contingency, for hierarchically 
nested processes in an attempt to recover to a previous AP that can be used to invoke contingent 
procedures or alternate execution paths for failure of a nested process.  

After presenting related work, this chapter first reviews the basic features of the hierarchical 
service composition model presented in (Xiao et al., 2009), together with an on-line shopping 
case study and a summary of an evaluation framework that was developed to demonstrate the 
functionality of the recovery algorithms. An understanding of these basic features is a precursor 
to a description of the extended model. The AP and integration rule extensions to the model are 
then presented, with a focus on the different forms of recovery actions as defined in (Shrestha, 
2010). Petri Nets are then used to formalize the semantics of the extended model, including 
atomic and composite groups with shallow and deep compensation integrated with assurance 
points and rollback, retry, and cascaded contingency recovery activities. After discussing a 
prototype implementation of an execution engine for the model, a comparison of the approach to 
the fault handling and recovery procedures of BPEL is presented, demonstrating that the approach 
presented in this chapter provides a cleaner, hierarchical approach to compensation order rather 
than the “zigzag” behavior of BPEL as described in (Khalaf, Roller, & Leymann, 2009). The 
primary contribution of this research is found in the enhancements that assurance points and 
integration rules lend to the service composition and recovery process. In particular, the assurance 
point approach provides explicit support for user-defined constraints with rule-driven recovery 
actions for compensation, retry, and contingency procedures that support flexibility with respect 
to the combined use of backward and forward recovery options. 

The paper concludes with a summary and discussion of future research. 
 

RELATED WORK 
 
The traditional notion of transactions with ACID properties is too restrictive for the types of 
complex transactional activities that occur in distributed applications, primarily because locking 
resources during the entire execution period is not applicable for Long Running Transactions 
(LRTs) that require relaxed atomicity and isolation (Cichocki, 1998). Advanced transaction 
models (ATMs) have been proposed to better support LRTs in a distributed environment (deBy, 
Klas, & Veijalainen, 1998; Elmagarmid, 1992), including the Nested Transaction Model, the 
Open Nested Transaction Model, Sagas, the Multi-level Transaction Model and the Flexible 
Transaction Model. These advanced transaction models relax the ACID properties of traditional 
transaction models to better support LRTs and to provide a theoretical basis for further study of 
complex distributed transaction issues, such as failure atomicity, consistency, and concurrency 
control. These models have primarily been studied from a research perspective and have not 
adequately addressed recovery issues for transaction failure dependencies in loosely-coupled 
distributed applications. 

Transactional workflows contain the coordinated execution of multiple related tasks that 
support access to heterogeneous, autonomous, and distributed data through the use of selected 
transactional properties (Worah et al., 1997). Transactional workflows require externalizing 
intermediate results, while at the same time providing concurrency control, consistency 
guarantees, and a failure recovery mechanism for a multi-user, multi-workflow environment. 
Concepts such as rollback, compensation, forward recovery, and logging have been used to 
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achieve workflow failure recovery in projects such as the ConTract Model (Wachter & Reuter, 
1992), the Workflow Activity Model (Eder & Liebhart, 1995), the CREW Project (Kamath & 
Ramamritham, 1998), the METEOR Project (Worah et al., 1997), and Units of Work (Bennett et 
al., 2000). These projects expose the weaknesses of using ATM techniques alone to support 
reliable transactional workflow execution, mainly due to the complexity of workflows. Previous 
work also shows the weakness of ATMs in support of the isolation, failure atomicity, timed 
constraints, and liveness requirements of distributed transactional workflows (Kuo, Fekete,  
Greenfield & Jang, 2002). Similar concerns are voiced in papers addressing transactional issues 
for traditional workflow systems (Alonso, Hagen, Schek, & Tresh, 1997; Kamath and 
Ramamritham 1996; Kamath et al.,1998) as well as workflow for loosely-coupled distributed 
sources such as Web Services (Fekete, Greenfield, Kuo, & Jang, 2002; Kuo et al. 2002). More 
comprehensive solutions are needed to meet the requirements of transactional workflows (Worah 
et al. 1997). 

In the Web Services platform, WS-Coordination (2005) and WS-Transaction (2005) are two 
specifications that enable the transaction semantics and coordination of Web Service composition 
using Atomic Transactions for ACID transactions and Business Activity for long running 
business processes. The Web Services Transaction Framework (WSTx) (Mikalsen, Tai,  & 
Rouvellou, 2002) introduces Transactional Attitudes, where service providers and clients declare 
their individual transaction capabilities and semantics. Web Service Composition Action 
(WSCA) (Tartanoglu, 2003) allows a participant to specify actions to be performed when other 
Web Services in the WSCA signal an exception. An agent based transaction model (Jin & 
Goshnick, 2003) integrates agent technologies in coordinating Web Services to form a 
transaction. Tentative holding is used in (Limthanmaphon & Zhang, 2004) to achieve a tentative 
commit state for transactions over Web Services. Acceptable Termination States (Bhiri, Perrin, & 
Godart, 2005) are used to ensure user-defined failure atomicity of composite services, where 
application designers specify the global composition structure of a composite service and the 
acceptable termination states. 

More recently, events and rules have been used to dynamically specify control flow and data 
flow in a process by using Event Condition Action (ECA) rules (Paton & Diaz, 1999). ECA rules 
have also been successfully implemented for exception handling in work such as (Brambilla, 
Ceri, Comai, & Tziviskou, 2005; Liu, Li, Huang, & Xiao, 2007). The work in Liu et al. (2007) 
uses ECA rules to generate reliable and fault-tolerant BPEL processes to overcome the limited 
fault handling capability of BPEL. Our work with assurance points also supports the use of rules 
that separate fault handling from normal business logic. Combined with assurance points, 
integration rules are used to integrate user-defined consistency constraints with the recovery 
process. 

Several efforts have been made to enhance the BPEL fault and exception handling capabilities. 
BPEL4Job (Tan, Fong, & Bobroff, 2007) addresses fault-handling design for job flow 
management with the ability to migrate flow instances. The work in (Modafferi & Conforti, 2006) 
proposes mechanisms like external variable setting, future alternative behavior, rollback and 
conditional re-execution of the Flow, timeout, and redo mechanisms for enabling recovery actions 
using BPEL. The work in (Modafferi, Mussi, & Pernici, 2006) presents the architecture of the 
SH-BPEL engine, a Self-Healing plug-in for WS-BPEL engines that augments the fault recovery 
capabilities in WS-BPEL with mechanisms such as annotation, pre-processing, and extended 
recovery. The Dynamo (Baresi, Guiea, & Pasquale, 2007) framework for the dynamic monitoring 
of WS-BPEL processes weaves rules such as pre/post conditions and invariants into the BPEL 
process. Most of these projects do not fully integrate constraint checking with a variety of 
recovery actions as in our work to support more dynamic and flexible ways of reacting to failures. 
Our research demonstrates the viability of variegated recovery approaches within a BPEL-like 
execution environment. 
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In checkpointing systems, consistent execution states are saved during the process flow. 
During failures and exceptions, the activity can be rolled back to the closest consistent checkpoint 
to move the execution to an alternative platform (Dialini et al. 2002; Luo, 2000]. The AP concept 
presented in this paper also stores critical execution data, but uses the data as parameters to rules 
that perform constraint checking and invoke different types of recovery actions. 

Aspect-oriented programming (AOP) is another way of modularizing and adding flexibility to 
service composition through dynamic and autonomic composition and runtime recovery. In AOP, 
aspects are weaved into the execution of a program using join points to provide alternative 
execution paths (Charfi & Mezini, 2007). The work in (Charfi & Mezini, 2006) illustrates the 
application of aspect-oriented software development concepts to workflow languages to provide 
flexible and adaptable workflows. AO4BPEL (Charfi et al., 2007) is an aspect-oriented extension 
to BPEL that uses AspectJ to provide control flow adaptations (Kiczales et al., 2001). Business 
rules can also be used to provide more flexibility during service composition. APs as described in 
this paper are similar to join points, with a novel focus on using APs to access process history 
data in support of constraint checking as well as flexible and dynamic recovery techniques. 

Due to the distributed nature of services, service composition is often inflexible and highly 
vulnerable to errors. Even BPEL, the de-facto standard for composing Web services, still lacks 
sophistication with respect to handling faults and events. Our research is different than related 
work by providing a hierarchical composition structure with support for user-defined constraints 
with the use of rules for pre and post conditions. In addition, the AP model integrates the rules 
with different recovery actions as well as user-defined compensation and contingency.  Thus, our 
AP model attempts to provide more flexible recovery process semantics with a focus on user-
defined constraints, which is a combination of features that are not available in current or past 
research. 

 
OVERVIEW OF THE DELTAGRID SERVICE 
COMPOSITION AND RECOVERY MODEL 

 
Before describing the use of APs and integration rules, this section first outlines the basic features 
of the model in the context of the DeltaGrid project. This section first elaborates on atomic and 
composite group recovery issues and then presents a case study to illustrate the basic concepts of 
the model.  
 

Hierarchical Service Composition and Recovery   
 
In the DeltaGrid environment, a process is hierarchically composed of different types of 
execution entities. Table 1 shows seven execution entities defined in the service composition 
model. Figure 1 uses a UML class diagram to graphically illustrate the composition relationship 
among these execution entities. A process is a top-level execution entity that contains other 
execution entities. A process is denoted as pi, where p represents a process and the subscript i 
represents a unique identifier of the process. An Operation represents a service invocation, denoted 
as opi,j, such that op is an operation, i identifies the enclosing process pi, and j represents the unique 
identifier of the operation within pi. Compensation (denoted as copi,j) is an operation intended for 
backward recovery, while contingency (denoted as topi,j) is an operation used for forward recovery.  

An atomic group and a composite group are logical execution units that enable the specification 
of processes with complex control structure, facilitating service execution failure recovery by 
adding scopes within the context of a process execution. An atomic group contains an operation, an 
optional compensation, and an optional contingency. A composite group may contain multiple atomic 
groups, and/or multiple composite groups that execute sequentially or in parallel. A composite group 
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can have its own compensation and contingency as optional elements. A process is essentially a top 
level composite group. 

An atomic group is denoted as agi,j, while a composite group is denoted as cgi,k. The subscripts in 
the atomic group and composite group notation indicate the nesting levels of an atomic group or 
composite group within the context of a process. For example, a process pi is a top-level composite 
group denoted as cg1. Assume cg1 contains two composite groups and an atomic group. The 
enclosed composite groups are denoted as cg1,1 and cg1,2, and the atomic group is denoted as ag1,3. 
Assume cg1,1 contains two atomic groups. These atomic groups are denoted as ag1,1,1 and ag1,1,2, 
respectively. 
 
 

Table 1. Execution Entities 
Entity Name Definition 
Operation A service invocation, denoted as opi,j 
Compensation 
 

An operation that is used to undo the effect of a committed 
operation, denoted as copi,j 

Contingency An operation that is used as an alternative of a failed operation 
(opi,j), denoted as topi,j 

Atomic Group An execution entity that is composed of a primary operation (opi,j), 
an optional compensation (copi,j), and an optional contingency 
operation (topi,j), denoted as agi,j = <opi,j [,copi,j] [,topi,j]> 

Composite 
Group 

An execution entity that is composed of multiple atomic groups or 
other composite groups. A composite group can also have an 
optional compensation and an optional contingency, denoted as cgi,k 
= <(agi,k,m | cgi,k,n)

+ [,copi,k] [,topi,k])> 
Process A top level composite group, denoted as pi 
DE-rollback An action of undoing the effect of an operation by reversing the 

data values that have been changed by the operation to their before 
images, denoted as dopi,j 

 
 

 
Figure 1. Service Composition Structure 
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The only execution entity not shown in Figure 1 is the DE-rollback entity. DE-rollback is a 
system-initiated operation that is unique to the DeltaGrid environment. Services in the DeltaGrid 
environment, referred to as Delta-Enabled Grid Services (DEGS), are extended with the 
capability of recording incremental data changes, known as deltas (Blake, 2005; Urban, Xiao, 
Blake, & Dietrich, 2009). Deltas are extracted from service executions and externalized by 
streaming data changes out of the database to a Process History Capture System (PHCS) (Xiao et 
al., 2006). The PHCS merges deltas from distributed sources into a time-ordered schedule of the 
data changes associated with concurrently executing processes. Deltas can then be used to 
backward recover an operation through a process known as Delta-Enabled Rollback (DE-
Rollback) (Xiao, 2006). DE-rollback can only be used, however, if certain recoverability 
conditions are satisfied, with the PHCS. The merged schedule of deltas providing the basis for 
determining the applicability of DE-rollback based on data dependencies among concurrently 
executing processes. A recoverable schedule requires that, at the time when each transaction ti 
commits, every other transaction tj that wrote values read by ti has already committed (Kifer et al., 
2006). Thus a recoverable schedule does not allow dirty writes to occur. In a recoverable 
schedule, a transaction t1 cannot be rolled back if another transaction t2 reads or writes data items 
that have been written by t1, since this may cause lost updates. When interleaved access to the 
same data item disables the applicability of DE-rollback on an operation, compensation can be 
used to semantically undo the effect of the operation.  

Figure 2 shows an abstract view of a sample process definition based on the DeltaGrid service 
composition structure. A process p1 is the top level composite group cg1. The process p1 is 
composed of two composite groups cg1,1 and cg1,2, and an atomic group ag1,3. Similarly, cg1,1 and 
cg1,2 are composite groups that contain atomic groups. Each atomic/composite group can have an 
optional compensation plan and/or contingency plan. Operation execution failure can occur on an 
operation at any level of nesting.  The purpose of the DeltaGrid service composition model is to 
automatically resolve operation execution failure using compensation, contingency, and DE- 
rollback at different composition levels. 

 

 
 

Figure 2. An Abstract View of a Sample Process 
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Atomic Group Execution and Recovery 
 
When the execution of an atomic group fails, pre-commit recovery activities are applied locally to 
clean up the failed operation execution before the operation terminates and communicates its 
terminated status to the process execution environment. 
 
Definition 1 (Pre-commit Recoverability): Pre-commit recoverability specifies how an atomic 
group should be locally recovered when an execution failure occurs before the operation as an 
execution unit commits.   
 

Table 2 presents pre-commit recovery options for an atomic group. Ideally, an ag operation’s 
pre-commit recoverability is automatic rollback for an ACID operation, or pre-commit-
compensation for a non-ACID operation. With the delta capture capability of the DeltaGrid 
environment, an ag can also reverse the effect of the original operation through DE-rollback if the 
recoverability conditions are satisfied. If DE-rollback cannot be applied due to the violation of the 
semantic conditions for DE-rollback, the service composition model requires the use of a service 
reset function. The service reset function cleans up the effect of a failed operation and prepares 
the execution environment for the next service invocation. A service reset typically requires a 
special program or a human agent to resolve the failed operation execution.  

 
Table 2. Atomic Group Pre-commit Recoverability Options 

Option Meaning 
Automatic rollback The failed service execution can be automatically rolled 

back by a service provider 
Pre-Commit-
Compensation 

A pre-commit-compensation is invoked by a service 
provider to backward recover a failed operation. 

DE-rollback A failed operation can be reversed by executing DE-
rollback 

Service Reset The service provider offers a service reset function to 
clean up the service execution environment.  

 
     After an atomic group has been locally recovered, the failed execution transmits its terminated 
status to the process execution environment. In the context of the global process, an ag maximizes 
the success of an operation execution by providing an optional contingency plan that is executed 
as an alternative path if the original service execution of the ag fails.  
     In contrast to pre-commit recoverability, which defines how to locally clean up a failed 
operation execution, post-commit recoverability specifies how the process execution environment 
can semantically undo the effect of a successfully terminated atomic group due to another 
operation’s execution failure.  
 
Definition 2 (Post-commit Recoverability): Post-commit recoverability specifies how an 
operation’s effect can be semantically undone after the operation has successfully terminated.  
 
Post-commit recoverability is considered when a completed operation inside of a composite 
group needs to be undone due to runtime failure of another operation. Table 3 defines three post-
commit recoverability options: reversible (through DE-rollback), compensatable, or dismissible. 
Post-commit recovery is only applicable in the context of composite group execution. 
Furthermore, the dismissable option indicates that a process execution can be application-
dependent and might not require every operation to be successfully executed. The DeltaGrid 
service composition model offers the flexibility of marking execution entities with a criticality 
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decorator when failure does not affect the execution of the enclosing composite group. By default, 
an operation’s post-commit recoverability is compensatable. 

 
Table 3. DEGS Post-Commit Recoverability Options 

Option Meaning 
Reversible (DE-rollback) A completed operation can be undone by reversing the data 

values that have been modified by the operation execution. 
Compensatable A completed operation can be semantically undone by 

executing another operation, referred to as post-execution 
compensation. 

Dismissible A completed operation does not need any cleanup activities. 
 
Definition 3 (Criticality): An atomic group is critical if its successful execution is mandatory for 
the enclosing composite group. A non-critical group indicates that the failure of this group will 
not impact the state of the enclosing composite group, and the composite group can continue 
execution. When runtime execution failure occurs, contingency must be executed for critical 
groups, while contingency is not necessary for a non-critical group. By default, a group is critical. 
 

As an example, in Figure 2, if ag1,2,1 fails, cg1,2 will continue executing since ag1,2,1 is non-
critical. Thus in the specification, there is no need to define a compensation and contingency plan 
for ag1,2,1. 
 

Composite Group Execution and Recovery 
 
The recoverability of a composite group can be defined using the concepts of shallow 
compensation and deep compensation. The terms shallow and deep compensation were originally 
defined in (Leymann, 1995). Our research extends these concepts for use with nested service 
composition. 
 
Definition 4 (Shallow Compensation): Assume a composite group cgi,k is defined as cgi,k = 
<(agi,k,m | cgi,k,n)

+, copi,k [,topi,k])>. Shallow compensation of cgi,k is the invocation of the 
compensation operation defined for the composite group cgi,k, which is copi,k.  

 
Definition 5 (Deep Compensation): Assume a composite group cgi,k is defined as cgi,k = <(agi,k,m | 
cgi,k,n)

+, copi,k [,topi,k])>. Within the context of a composite group cgi,k, a subgroup is either an 
atomic group defined as agi,k,m = <opi,j, copi,j [,topi,j]>, or a composite group defined as cgi,k,n = 
<(agi,k,n,x | cgi,k,n,y)+, copi,k,n [,topi,k,n])>. Deep compensation of cgi,k is the invocation of post-commit 
recovery activity (compensation or DE-rollback) for each executed subgroup within the 
composite group, such as copi,j for an atomic group, and copi,k,n for a nested composite group.  

 
Shallow compensation is invoked when a composite group successfully terminates but needs a 

semantic undo due to the failure of another operation execution. A deep compensation is invoked 
if: 1) a composite group fails due to a subgroup execution failure, and needs to trigger the post-
commit recovery of executed subgroups, or 2) a composite group successfully terminates, but no 
shallow compensation is defined for the composite group.  

As a backward recovery mechanism for a successfully executed composite group, shallow 
compensation has higher priority than deep compensation. For example, in Figure 2, the failure of 
a critical subgroup ag1,3 (both op1,6 and top1,6 fail) within the enclosing composite group cg1 causes 
the two executed composite groups cg1,1 and cg1,2 to be compensated. Since cg1,1 has a pre-defined 
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shallow compensation, the shallow compensation cg1,1.cop will be executed. cg1,2’s deep 
compensation will be invoked since cg1,2 does not have shallow compensation. 

 

An Online Shopping Case Study 
 
This section introduces an online shopping case study to illustrate the use of the service 
composition and recovery model. The online shopping application contains typical business 
processes that describe the activities conducted by shoppers, the store and vendors. For example, 
the process placeClientOrder is responsible for invoking services that place client orders and 
decrease the inventory quantity. The process placeVendorOrder checks the inventory, calculates 
restocking need, and generates vendor orders. The process replenishInventory invokes services that 
increase the inventory quantity when vendor orders are received.  

Figure 3 presents a graphical view of the placeClientOrder process using the same notation as 
the abstract process example presented in Figure 2. As shown in Figure 3, the process 
placeClientOrder is hierarchically composed of composite groups and atomic groups. An atomic 
group has an operation, an optional post-commit compensation (cop) and contingency (top).  

 

receiveClientOrderag1,1

checkCreditag1,2

ag1,3

chargeCreditcard

ag1,4

Process placeClientOrder (p1 = cg1)

cg1,5

checkInventory

cop:creditBack

top:eCheckPay

ag1,5,1

good credit? rejectClientOrder

decInventory
cop:incInventory

chargeCreditcard
cop:creditBack

top:eCheckPay

addBackorder
cop:rmvBackorder

cg1,6

packOrder
cop:unpackOrderag1,7

upsShipOrder
cop:upsShipback

top:fedexShipOrder

ag1,8

cop:chgOrderStatus

yes

no

sufficient 

inventory items?

yes

no

ag1,5,2

ag1,6,1

ag1,6,2

 
 

Figure 3. placeClientOrder Process Definition 
 

The placeClientOrder process starts when a client submits a client order by invoking a DEGS 
operation receiveClientOrder. The next operation creditCheck verifies if the client has a good credit 
standing to pay for the order. If the client passes the creditCheck, the inventory will be checked to 
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see if there are sufficient inventory items to fill the order by executing checkInventory. If the client 
does not pass the credit check, the order will be rejected. If there are sufficient inventory items, 
the operation chargeCreditCard is to be executed to charge the client’s credit card, and the 
operation decInventory is executed to decrease inventory. These two operations are grouped into a 
composite group indicating that both operations should be successfully executed as a unit. Then 
the order will be packed through operation packorder and shipped through operation upsShipOrder. 
If the inventory is not sufficient to fill the order, the order will be marked as a backorder through 
operation addBackorder, and the client will be charged the full amount.  

When there is a service execution failure during process execution, the process will be 
recovered based on the recovery specification embedded in the process definition, such as 
compensation and contingency, as well as the recovery semantics of the service composition and 
recovery model. For example, if operation upsShipOrder fails, the contingency fedexShipOrder will 
be invoked, sending the order package through Fedex instead of UPS. If a client requests to 
cancel the order after the operation packOrder but before upsShipOrder, each executed operation 
will be backward recovered in the reverse execution order using the following list of recovery 
commands: [cop:unpackOrder, cop:incInventory, cop:creditBack, DE-rollback:checkInventory, DE-
rollback:checkcredit, cop:chgOrderStatus]. DE-rollback is to be performed on operations 
checkInventory and checkCredit since these two operations do not have pre-defined compensation 
and no other concurrently executing processes are write dependent on these two operations. 
Furthermore, since these two operations do not modify any data, no recovery actions will be 
performed for these two operations. Thus the final recovery commands for cancellation of an 
order is: [cop:unpackOrder, cop:incInventory, cop:creditBack, cop:chgOrderStatus]. 

Figure 4 gives a graphical view of the process placeVendorOrder. The process first invokes the 
operation getLowInventoryItems which goes through all the inventory items to create an entry for 
each inventory item whose quantity falls below a specified threshold. The operation 
getBackOrderItems goes through backorderList, adding items in the backorder list to the items to be 
ordered from the operation getLowInventoryItems. The process proceeds with the operation 
confirmPrice, which confirms the unit price of a product with each vendor. Then the operation 
genVendorOrder will generate vendor orders for different suppliers. After reviewVendorOrder which 
performs a final check on the vendor orders, these vendor orders are sent to suppliers by 
executing the operation sendVendorOrder. 

If the operation reviewVendorOrder fails, the process placeVendorOrder will be backward 
recovered by executing post-commit recovery activity for each executed operation in reverse 
execution order: [cop:chgVOStatus, DE-rollback:confirmPrice, DE-rollback:getBackOrderItems, DE-
rollback:getLowInventoryItems]. DE-rollback will be invoked on operations confirmPrice, 
getBackOrderItems and getLowInventoryItems since these operations do not have pre-defined 
compensation.  

Figure 5 presents the replenishInventory process which is invoked when a vendor order package 
is received from a supplier. The process first verifies if there is any missing item by performing 
operation verifyVOItem. If there is any missing item, the relevant vendor will be contacted through 
operation contactVendor. Otherwise, received items are entered into the inventory and the 
operation incInventory is executed to update quantity for each received inventory item. The 
operation packBackorder iterates through the backorder list and pack backorders for shipment. 
After packBackorder, inventory will be decreased through operation decInventory to deduct the 
backorder quantity from the inventory. At last, operation sendBackorder dispatches backorders to 
customers. 

As in the processes placeClientOrder and placeVendorOrder, the recovery procedure of process 
replenishInventory also conforms to the semantics defined in the service composition and recovery 
model. For example, if the vendor recalls deficient items when the process finishes the execution 
of the operation decInventory, the process replenishInventory needs a backward recovery followed 
by sending the deficient items back to the vendor for a replacement. The backward recovery of 
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the process will execute the compensation of every executed operation in reverse execution order: 
[cop:incInventory, cop:unpackBorder, cop:decInventory]. The operation verifyVOItems will not be 
recovered since verifyVOItems does not modify any data. 

 
  

 

Figure 4. placeVendorOrder Process Definition 
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Figure 5. replenishInventory Process Definition 
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Simulation and Evaluation Framework  
 
The original version of the DeltaGrid service composition and recovery model as described in this 
section has been formally presented in (Xiao et al., 2009; Xiao, 2006). The presentation includes 
state diagrams and algorithms that define the semantics of applying compensation and 
contingency when failure occurs. The work in (Xiao et al., 2009) also includes the description of 
a DeltaGrid simulation framework using the DEVSJAVA discrete event simulation tool (Zeigler 
& Sarjoughian 2004), as well as a performance evaluation of some of the implemented 
components of the simulation environment. Interested readers should refer to (Xiao et al., 2009) 
for further details on the formalization, simulation, and evaluation of the original model. In the 
remainder of this paper, we describe an extension of the model to more completely address data 
consistency issues during execution and to also provide a means for partial rollback together with 
increased options for forward recovery. The concepts presented in this section are formalized 
together with the extended features using Petri Nets in the following sections of this chapter. 
 

 

ASSURANCE POINTS AND INTEGRATION RULES FOR 
ENHANCING CONSISTENCY AND RECOVERY 
 
The model described in the previous section has been extended with the concept of Assurance 
Points (APs) (Shrestha, 2010; Urban, Gao, Shrestha, & Courter, 2010a; Urban, Gao, Shrestha, 
and Courter, 2010b). An AP is a process execution correctness guard as well as a potential 
rollback point during the recovery process. Given that concurrent processes do not execute as 
traditional transactions in a service-oriented environment, inserting APs at critical points in a 
process is important for checking consistency constraints and potentially reducing the risk of 
failure or inconsistent data. An AP also serves as a milestone for backward and forward recovery 
activities. When failures occur, APs can be used as rollback points for backward recovery, 
rechecking pre-conditions relevant to forward recovery. In the current version of the model, it is 
assumed that APs are placed at points in a process where they are only executed once, and not 
embedded in iterative control structures. The version described in this chapter also does not 
address the use of APs in parallel execution structures, such as the <flowgroup> activity of BPEL, 
although a prototype execution engine supports this capability. An elaboration of these issues is 
beyond the scope of the current paper and is addressed at the end of the chapter as part of future 
research. 

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?, IRcond*>, where: 
- apID is the unique identifier of the AP 
- apParameters is a list of critical data items to be stored as part of the AP, 
- IRpre is an integration rule defining a pre-condition, 
- IRpost is an integration rule defining a post-condition, 
- IRcond is an integration rule defining additional application rules. 
In the above notation, * indicates 0 or more occurrences, while ? indicates zero or one optional 
occurrences. 

IRpre, IRpost, and IRcond are expressed as Event-Condition-Action (ECA) rules using the format 
shown in Figure 6, which is based on previous work with using integration rules to interconnect 
software components (Jin, 2004; Urban, Dietrich, Na, Jin, Sundermier, & Saxena, 2001). An IR is 
triggered by a process that reaches a specific AP during execution. Upon reaching an AP, the 
condition of an IR is evaluated. The action specification is executed if the condition evaluates to 
true. For IRpre and IRpost, a constraint C is always expressed in a negative form (not(C)). The action 
(action 1) is invoked if the pre or post condition is not true, invoking a recovery action or an 
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alternative execution path.  If the specified action is a retry activity, then there is a possibility for 
the process to execute through the same pre or post condition a second time, where action 2 is 
invoked rather than action 1. In general, any number of actions can be specified. 

 
CREATE RULE       ruleName::{pre | post | cond} 
EVENT                    apId(apParameters) 
CONDITION            rule condition specification 
ACTION                  action 1 
[ON RETRY            action 2] 

Figure 6. Integration Rule Structure 
 
When pre and post conditions fail (not(C) = True), recovery actions are invoked. In its most 

basic form, a recovery action simply invokes an alternative process. Recovery actions can also be 
one of the following actions: 
- APRollback: APRollback is used when the entire process needs to compensate its way back 

to the start of the process according to the semantics of the service compensation model. 
- APRetry: APRetry is used when the running process needs to be backward recovered using 

compensation to a specific AP. By default, the backward recovery process will go to the first 
AP reached as part of the shallow or deep compensation process within the same scope. The 
pre-condition defined in the AP is re-checked. If the pre-condition is satisfied, the process 
execution is resumed from that AP by re-trying the recovered operations. Otherwise, the action 
of the pre-condition rule is executed. The APRetry command can optionally specify a 
parameter indicating the AP that is the target of the backward recovery process.  

- APCascadedContingency (APCC): APCC is a backward recovery process that searches 
backwards through the hierarchical nesting of composite groups to find a possible contingent 
procedure for a failed composite group. During the APCC backward recovery process, when 
an AP is reached, the pre-condition defined in the AP will be re-checked before invoking any 
contingent procedures for forward recovery.  

 
The most basic use of an AP together with integration rules is shown in Figure 7, which 

shows a process with three composite groups and an AP between each composite group. The 
shaded box shows the functionality of an AP using AP2 as an example.  Each AP serves as a 
checkpoint facility, storing execution status data in a checkpoint database (denoted as AP data in 
Figure 7). When the execution reaches AP2, IRs associated with the AP are invoked. The 
condition of an IRpost is evaluated first to validate the execution of cg2. If the post-condition is 
violated, the action invoked can be one of the pre-defined recovery actions as described above. If 
the post-condition is not violated, then an IRpre rule is evaluated to check the pre-condition for the 
next service execution. If the pre-condition is violated, one of the pre-defined recovery actions 
will be invoked. If the pre-condition is satisfied, the AP will check for any additional, conditional 
rules (IRcond) that may have been expressed. IRcond rules do not affect the normal flow of 
execution but provide a way to invoke additional parallel activity based on application 
requirements. Note that the expression of a pre-condition, post-condition or any additional 
condition is optional.  

Assurance Point and Integration Rule Example 

This section provides an example of assurance points, integration rules, and conditional rules in 
Figure 8 using a revised version of the online shopping application. All atomic and composite 
groups are shown in the solid line rectangles, while optional compensations and contingencies are 
shown in dashed line rectangles, denoted as cop and top, respectively. APs are shown as ovals 
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between composite and/or atomic groups, where the AP identifiers and parameters are 
OrderPlaced(orderId), CreditCardCharged(orderId, cardnumber, amount), UPSShipped(orderId, 
UPSShippingDate), USPSShipped (orderId), Delivered(orderId, shippingMethod, deliveryDate).  

Table 4 shows the integration rules and conditional rules associated with the APs in Figure 8. 
The components of an assurance point are explained below using the APs in Figure 8 and the 
rules in Table 4. 

 

 
Figure 7. Basic Use of AP and Integration Rules 

 
Component 1 (AP Identifiers and Parameters): An AP identifier defines the current execution 
status of a process instance. Each AP may optionally specify parameters that store data when the 
process execution reaches the AP. The data can then be examined in the conditions of rules 
associated with the AP. For example, the first AP is orderPlaced, which reflects that the customer 
has finished placing the shopping order. The parameter orderId is used in the rules associated with 
the AP. 
 
Component 2 (Integration Rules): An integration rule is optionally used as a transition between 
logical components of a process to check pre and post conditions. In Table 4, the orderPlaced AP 
has a pre-condition that guarantees that the store must have enough goods in stock. Otherwise, the 
process invokes the backOrderPurchase process. The CreditCardCharged AP has a post-condition 
that further guarantees the in-stock quantity must be in a reasonable status after the decInventory 
operation.  
 
Component 3 (Conditional Rule): In Table 4, the CreditCardCharged AP has a conditional rule 
that sends a message notification for large charges. Since no pre or post condition is specified for 
the Delivered AP, only the conditional rule shippingRefund is evaluated. Assume the delivery 
method was overnight through UPS with an extra shipping fee. If UPS has delivered the item on 
time, then the Delivered AP is complete and execution continues. Otherwise, 
refundUPSShippingCharge is invoked to refund the extra fee while the main process execution 
continues. If backward recovery with retry takes place, it is possible that the process will execute 
the same conditional rule a second time. The action of the rule will only be executed during the 
retry process if the action was not executed the first time through.   
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Figure 8. Online Shopping Process with APs 
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Table 4. AP Rules in the Online Shopping Process 

Integration Rule Conditional Rule 

create rule QuantityCheck::pre 
event: OrderPlaced (orderId) 
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId 
and L.quantity>I.quantity) 
action: backOrderPurchase(orderId) 

create rule Notice::cond 
event: CreditCardCharged (orderId, 
cardNumber , amount) 
condition: amount > $1000 
action: 
highExpenseNotice(cardNumber) 

create rule QuantityCheck::post 
event: CreditCardCharged (orderId, 
cardNumber, amount) 
condition: exists(select L.itemId from 
Inventory I, LineItem L where 
L.orderId=orderId and L.itemId=I.itemId 
and I.quantity<0) 
action1: APRetry 
action2: APRollback 

create rule ShippingRefund::cond 
event: Delivered (orderId, 
shippingMethod, deliveryDate) 
condition: shippingMethod = UPS && 
deliveryDate != 
UPSShipped.UPSShippingDate+1 
action: 
refundUPSShippingCharge(orderId) 

 
 
A Closer Look at Recovery Actions 
 
This section provides an informal illustration of the semantics of the APRollback, APRetry, and 
APCC recovery actions using the generic sample process in Figure 9 as well as the Online 
Shopping example in Figure 8. The remainder of this chapter does not elaborate on the use of 
conditional rules. Further details on conditional rules can be found in (Jin, 2004). 

The process (cg0) in Figure 9 is successively composed of composite groups cg01, cg02 and cg03, 
as well as atomic groups ag04 and ag05. The assurance points AP1, AP2 and AP4 are inserted in the 
cg0 scope following cg01, cg02 and ag04, respectively. AP3 is inserted in the cg03 scope after ag031. 
As a result, AP3 is at a more deeply nested level than the other assurance points. In the following, 
assume that each AP in Figure 9 has an IRpre and an IRpost rule. Recovery actions for failed pre and 
post conditions are considered first, followed by recovery actions for execution errors. 
 
APRollback. Recall that APRollback is used to logically reverse the current state of the entire 
process using shallow and deep compensation.  

Scenario 1 (APRollback): Assume that the post-condition fails at AP4 in Figure 9 and that the 
action of IRpost is APRollback. Since APRollback is invoked, the process compensates all 
completed atomic and/or composite groups. The APRollback execution sequence is numbered in 
Figure 9. First the process invokes ag04.cop to compensate ag04. Second, the APRollback process 
will deep compensate ag031 by invoking ag031.cop since 1) there is no shallow compensation for 
cg03 and 2) ag032 is non-critical and therefore has no compensating procedure. Finally, APRollback 
invokes shallow compensation cg02.cop and cg01.cop. 

The APRollback procedure is a standard way of using compensation in past work. The 
originality of the rollback process in this work is the way in which it is used together with APs in 
the retry and cascaded contingency process to support partial rollback together with forward 
recovery options.  

 
APRetry. APRetry is used to recover to a specific AP and then retry the recovered atomic and/or 
composite groups. If the AP has an IRpre, then the pre-condition will be re-examined. If the pre-
condition fails, the action of the rule is executed, which either invokes an alternate execution path 
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for forward recovery or a recovery procedure for backward recovery. By default APRetry will go 
to the most recent AP. APRetry can also include a parameter to indicate the AP that is the target 
of the recovery process. 
 

 
Figure 9. Generic Process: Scenario 1 (APRollback) 

 
Scenario 2 (APRetry-default): Assume that the post-condition fails at AP4 in Figure 10 and that 

the action of IRpost is APRetry. This action compensates to the most recent AP within the same 
scope by default. In Figure 10, APRetry first invokes ag04.cop to compensate ag04 at step 1. The 
process then deep compensates cg03 by executing ag031.cop at step 2. At this point, AP2 is reached 
and the pre-condition of IRpre is re-evaluated shown as step 3. If the pre-condition fails, the 
process executes the recovery action of IRpre. If the pre-condition is satisfied or if there is no IRpre, 
then execution will resume again from cg03. In this case, the process will reach AP4 a second time 
through steps 4, 5 and 6, where the post-condition is checked once more. If failure occurs for the 
second time, the second action defined on the rule is executed rather than the first action. If a 
second action is not specified, the default action will be APRollback as steps 7 through 10. 

Scenario 3 (APRetry-parameterized): As shown in Figure 11, now assume that the action of 
the pre-condition for AP4 is parameterized as APRetry(AP1), indicating that the retry activity 
should rollback to AP1. The process will first compensate the procedure back to the point of AP1 
through steps 1, 2, 3 and 4, ignoring all APs in between. The process then resumes execution 
from AP1 at step 5. 

 
APCascadedContingency (APCC). The APCC process provides a way of searching for 
contingent procedures in a nested composition structure, searching backwards through the 
hierarchical process structure. When a pre or post condition fails in a nested composite group, 
APCC will compensate its way to the next outer layer of the nested structure. If the compensated 
composite group has a contingent procedure, it will be executed. Furthermore, if there is an AP 
with a pre-condition before the composite group, the pre-condition will be evaluated before 
executing the contingency. If the pre-condition fails, the recovery action of IRpre will be executed 
instead of executing the contingency. If there is no contingency or if the contingency fails, APCC 
continues by compensating the current composite group back to the next outer layer of the nested 
structure and repeating the process described above. 
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Figure 10. Scenario 2 (APRetry-default) 

 
Scenario 4 (APCC): Assume that the post-condition fails at AP4 in Figure 9 and that the IRpost 

action is APCC. The process starts compensating until it reaches the parent layer. In this case, the 
process will reach the beginning of cg0 after compensating the entire process through deep or 
shallow compensation through the same steps as shown in Figure 9. Since there is no AP before 
cg0, cg0.top is invoked.  

Scenario 5 (APCC): Assume that the post-condition fails at AP3 in Figure 12 and that the IRpost 
action is APCC. Since AP3 is in cg03, which is nested in cg0, the APCC process will compensate 
back to the beginning of cg03, executing ag031.cop at step 1. The APCC process finds AP2 with an 
IRpre rule for cg03 at step 2. As a result, the pre-condition will be evaluated before trying the 
contingency for cg03. If there is no pre-condition or if the pre-condition is satisfied, then cg03.top is 
executed at step 3 and the process continues, shown as step 4. Otherwise, the recovery action of 
IRpre for AP2 will be executed and the process quits APCC mode. If cg03.top fails at step 3 then the 
process will still be under APCC mode, where the process will keep compensating through steps 
5 and 6 until it reaches the cg0 layer, where cg0.top is executed at step 7. 

 

 
Figure 11. Scenario 3 (APRetry-parameterized) 
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Figure 12. Scenario 5 (APCC) 

 
When process execution encounters an internal error, the running operation first tries the most 

immediate contingency. If the contingency succeeds, the recovery is complete and the execution 
continues. If the contingency fails or if there is no immediate contingency, then APCC mode is 
invoked.  

Scenario 6 (Online Shopping Example - Failure at ChargeCreditCard): Returning to the Online 
Shopping Example of Figure 8, assume the process fails while executing chargeCreditCard. The 
process then executes the contingency ag21.top (eCheckPay). If ag21.top fails, then APCC process 
begins, during which the process reaches the orderPlaced AP, where the pre-condition of the AP is 
re-checked (rule QuantityCheck in Table 1). If the pre-condition is violated, the action backOrder is 
invoked, which means there are not enough goods in stock.  

Scenario 7 (Online Shopping Example – Failure at UPShipping):  From Figure 8, assume the 
process fails on the operation UPSShipping. Since there is no immediate contingency, the process 
invokes the APCC process, rolling back to the CreditCardCharged AP at the outer level. Since 
there is no pre-condition defined at the CreditCardCharged AP, the contingency cg3.top 
(FedexShipping) will be executed. If cg3.top fails, the process will be still under APCC mode, 
compensating its way back to the beginning of the transaction. 
 
 

PETRI NET FORMALIZATION OF SERVICE 
COMPOSITION WITH ASSURANCE POINTS AND 
RECOVERY ACTIONS 
 
In this section, the formal execution semantics of the web service composition and recovery 
model with assurance points and integration rules is presented using Petri nets. Petri nets have 
been useful for modeling systems that demonstrate control flow behavior (Peterson, 1981). Van 
der Aalst (1998) was one of the first to use Petri nets to represent workflow management systems. 
Desel (2005) discusses process modeling with Petri nets. Stahl (2005) also gives the complete 
Petri net semantics for the Business Process Execution Language for Web Services (BPEL).  
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General Approach 
 
A Petri Net (Murata, 2002) is a directed, connected, and bipartite graph in which nodes represent 
places and transitions, and tokens occupy places. A directed arc in a Petri Net connects a place to 
a transition or a transition to a place. The places that have arcs running to a transition are called 
input places of the transition. The places that have arcs coming from a transition are called output 
places of the transition. A transition is enabled when each of its input places has at least one token. 
After firing a transition, exact one token at each of its input places has been consumed, while one 
token at each of its output places has been generated.  

In the Petri Net formalization of the service composition and recovery model presented in this 
chapter, a transition represents a basic task, such as invoking an operation of a process. A place 
represents an execution status, a condition, or a resource. A token at the place of an execution 
status corresponds to the thread of control in the flow. A token at the place of a condition 
indicates that some condition regarding the current status of a process instance is true. A token at 
the place of a resource indicates that the resource is (or in some cases is not) available. For 
example, in the service composition model, compensation is a resource associated with an atomic 
or composite group within a process, so resource places are used to indicate whether 
compensation is or is not available for a given group. 

Before discussing the details of the Petri Net formalization, the notation used in the Petri Net 
diagrams is introduced. All transitions are labeled as Tn inside a transition node. Each place in a 
Petri Net has a short phrase beside the place node. Short phrases are used to label places due to 
limited room in the Petri Net graph. The complete set of all places that appear in the graphs that 
follow for atomic and composite execution groups are shown in Table 5, while Table 6 indicates 
the places that are associated with graphs for APs. The left column of each table contains the 
short phrase of each place. The middle column contains the actual meaning of places. The right-
most column indicates the type of the place, which is specified as status, condition, or resource.  

 
Atomic Group 
 
An Atomic group is the most basic executable unit in the model. An atomic group contains an 
operation, an optional compensation, and an optional contingency. Figure 13 depicts the execution 
semantics for an atomic group as a Petri net. All places standing on the lines of the box around a 
Petri Net represent the execution status, conditions, and resources of the atomic group.  

An atomic group is activated when a token appears at place A. By firing transition T1, the 
operation of the atomic group is invoked, indicated by the place labeled Running. If the operation 
succeeds, the atomic group is finished successfully by marking place S through transition T2. 
Otherwise, the operation execution fails and must be aborted to place Aborted by transition T3. If 
an execution error occurs, the process will first try the immediate contingency if it is available. 
Places T and N_T are two resource places that represent the availability or non-availability, 
respectively, of an immediate contingency. If place T and aborted are marked, transition T4 is 
enabled, which means the immediate contingency is available. By firing T4, the immediate 
contingency is running. Note that place T is a resource place, therefore after firing T4, a token must 
be returned to place T. If the immediate contingency succeeds, transition T7 fires and then place S 
(successful) is marked. If the immediate contingency fails or does not exist, the APCC mode is 
triggered to cascade the search for contingencies to outer levels of the process. Transition T5 
depicts contingency failure by marking places AP_CC (cascaded contingency) and US 
(unsuccessful). Similarly, if places N_T and aborted are marked, transition T6 is enabled which 
represents the case that the immediate contingency does not exist.  
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Table 5. Places in an Execution Group Petri Net 
SHORT PHRASE MEANING TYPE 

A Activate Status 
S Group executes successfully Status 
US Group executes unsuccessfully Status 

AP_CC AP_Cascaded Contingency Status 
AP_RB AP_Rollback Status 
AP_RT AP_Retry Status 
C_A Compensation activates Status 

Running Operation executing Status 
Aborted Operation aborted Status 

T_Running Contingency executing Status 
C_Running Shallow compensation executing Status 
C_Error Shallow compensation failed Status 
C_S Compensation succeeds Status 
Critical Critical atomic group Resource 

N_ Critical Non-critical atomic group Resource 
T Contingency exists Resource 
N_T Contingency does not exist Resource 

Shallow_C Shallow compensation exists Resource 
N_ Shallow_C Shallow compensation does not exist Resource 

 
 

Table 6. Places in an AP Petri Net 
SHORT PHRASE MEANING TYPE 

A Activate Status 
P AP Passed Status 
ALT Alternative Process Status 

AP_CC AP_Cascaded Contingency Status 
AP_RB AP_Rollback Status 
AP_RT AP_Retry Status 

APCC_PRE Pre-condition re-check (AP-CC) Status 
APCC_P Pre-condition re-check passed (AP-CC) Status 
APRT_PRE Pre-condition re-check (AP-Retry) Status 
APRT_P Pre-condition re-check passed (AP-Retry) Status 

POST_VIO_F First time post-condition violation Condition 
PRE_VIO_F First time pre-condition violation Condition 
POST_VIO_S Second time post-condition violation Condition 
PRE_VIO_S Second time pre-condition violation Condition 

POST Post condition exists Resource 
N_POST Post condition does not exist Resource 
PRE Pre condition exists Resource 
N_PRE Pre condition does not exist Resource 

POST-Checking Checking post condition Status 
PRE-Checking Checking pre condition Status 
POST-Passed Post condition passed Status 
Pre-Passed Pre condition passed Status 

POST-Violated Post condition violated Status 
Pre-Violated Pre condition violated Status 
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Figure 13. Petri Net of Atomic Group 

 
 The discussion above represents the normal atomic group invocation semantics. The normal 

atomic group invocation starts from place A and ends at either place S or places US and AP_CC. 
Now consider the compensation semantics of an atomic group. In Figure 13, if place C_A 
(compensation activity) is marked, the atomic group needs to be compensated. Here, four 
resource places are introduced. Place Critical represents that the atomic group is critical, whereas 
place N-Critical indicates that the atomic group is not critical. Place Shallow-C represents that the 
pre-defined compensation procedure is available, whereas place N-Shallow-C indicates that 
compensation is not available. There are four different atomic compensation cases in Figure 13: 

• Compensation is available and the atomic group is critical: Transition T8 fires. After 
invoking compensation, two different situations may exist: 
• Compensation succeeds: Transition T9 fires and then place C_S is marked, 

indicating that compensation is successful. 
• Compensation fails: Transitions T10 fires marking the C_Error status, indicating that 

compensation has failed. Then transition T11 fires which represents invoking DE-
Rollback or service reset (involving human activity) to reset the error. Finally, place 
C_S is marked. 

• Compensation is unavailable and the atomic group is critical: Transition T12 fires, 
which represents invoking DE-Rollback or service reset. Then place C_S is marked. 

• The atomic group is non-critical: If the atomic group is non-critical, the process just 
ignores the compensation request by firing transition T13 and marking place C_S. 
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     To preserve the group condition consistency, if a token at a resource place is consumed after 
firing a transition, a new token must be returned to the resource place immediately after the 
transition. For example, in Figure 13, firing transition T8 consumes three tokens at places C_A, 
Shallow_C and Critical respectively. After T8, two new tokens are generated back to places 
Shallow_C and Critical, respectively, as they are resource places. One might question the situation 
that a token appears at place C_A before the atomic group finishes successfully. Such a situation 
will never happen, however, since the compensation of a completed group can only be caused by 
an error that occurs in the remainder of the process. Therefore, the place C_A can only be marked 
by transitions after the completion of the current group. The section below on Deep and Shallow 
Compensation will discuss compensation issues for multiple groups. 
 

 

Assurance Points 
 
Before describing the semantics of a composite group, this section first describes the semantics of 
APs. Figure 14 gives the Petri Net for AP execution semantics. There are four resource places. 
Places POST and N_POST represent the presence and absence of a post-condition respectively. 
Similarly, places PRE and N_PRE represent the presence and absence of a pre-condition, 
respectively. In addition, places POST_VIO_F and PRE_VIO_F are condition places indicating that 
the post and pre conditions have never been violated before. Thus, places POST_VIO_F and 
PRE_VIO_F each must have a default token before execution. In the same manner, places 
POST_VIO_S and PRE_VIO_S are the conditions indicating that the post and pre conditions have 
been violated once, respectively.  

A token at place A activates the AP. Depending on the status of the condition and resource 
places, different execution cases exist: 

• Post and pre conditions both exist:  
• Post and pre conditions are both satisfied: Firing transition T1 and T2 represents 

that the post-condition is satisfied. Firing transition T4 and T6 similarly indicates that 
the pre-condition is satisfied. Finally, transition T8 fires and place P is marked, 
indicating that the AP was successfully executed (passed) with all relevant 
conditions satisfied. 

• Post condition violated: Transition T1 fires to check the post-condition. If the post-
condition is violated, transition T3 is fired to mark the status place Post-Violated. If 
place POST_VIO_F is marked, indicating that this is the first time to execute the post 
condition, then either transition T11, T12, T13 or T14 will be fired to invoke the first 
action of the rule, depending on the rule action specification.  POST_VIO_S is then 
marked. If place POST_VIO_S is already marked, indicating that this is the second 
time to execute the post condition, then either transition T15 or T16 will be fired to 
execute the second action defined in the rule. 

• Post condition passed and pre condition violated: Firing transition T1 and T2 that 
the post-condition is satisfied. Then transition T4 fires to check the pre-condition. If 
the pre-condition is violated, transition T7 is fired to mark the status place Pre-
Violated. If place PRE_VIO_F is marked, indicating that this is the first violation of the 
pre-condition, then either transition T17, T18, T19 or T20 will be fired to invoke the 
first action of the rule and PRE_VIO_S is marked. If place PRE_VIO_S is already 
marked, indicating that this is the second violation of the pre-condition, then either 
transition T21 or T22 will be fired depending on the second action defined in the rule. 

• Only post condition exists: Firing transition T1 checks the post-condition. 
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• Post condition is satisfied: If the post-condition is satisfied, transition T2 fires and 
status place Post-Passed is marked. Because of the absence of a pre-condition, 
transition T9 fires and then place P is marked. 

• Post condition is violated: Transition T1 fires to check the post-condition. If the 
post-condition is violated, transition T3 is fired to mark the status place Post-Violated. 
If place POST_VIO_F is marked, indicating that this is the first time to execute the 
post condition, then either transition T11, T12, T13 or T14 will be fired to invoke the 
first action of the rule, depending on the rule action specification.  POST_VIO_S is 
then marked. If place POST_VIO_S is already marked, indicating that this is the 
second time to execute the post condition, then either transition T15 or T16 will be 
fired to execute the second action defined in the rule. 

• Only pre condition exists: Because of the absence of the post-condition, when the AP is 
activated, transition T5 will be fired to check the pre-condition directly. 
• Pre condition is satisfied: If the pre-condition is satisfied, transitions T6 and T8 will 

be fired successively. Finally, place P is marked. 
• Pre condition is violated: If the pre-condition is violated, transition T7 is fired to 

mark the status place Pre-Violated. If place PRE_VIO_F is marked, indicating that this 
is the first violation of the pre-condition, then either transition T17, T18, T19 or T20 
will be fired to invoke the first action of the rule and PRE_VIO_S is marked. If place 
PRE_VIO_S is already marked, indicating that this is the second violation of the pre-
condition, then either transition T21 or T22 will be fired depending on the second 
action defined in the rule. 

• Post and pre condition do not exist: After place A is marked, transition T10 fires and 
then place P is marked. 
 

     Note that there are four unlinked status places in Figure 14: APCC_PRE, APRT_PRE, APCC_P 
and APRT_P. These status places are relevant to the semantics of cascaded contingency and retry 
actions, which will be addressed in following sections. 
 

Hierarchical Process Composition 
 
In the service composition and recovery model, a composite group is composed of two or more 
atomic and/or composite groups and can also have optional compensation and contingency 
procedures. Clearly, a process under this model may contain multiple groups that are embedded at 
different levels. To represent the hierarchical model, a hierarchical approach is taken to the use of 
Petri Nets. Specifically, a dashed-line quadrilateral represents either an atomic or a composite 
group. A dashed-arc connecting a transition and a place represents repeating the same token 
movement pattern described at the current level. Furthermore, all dashed-line atomic and 
composite groups have the same places standing on the lines as introduced in Figure 13 and in 
Figure 15. However, to make the graphs concise, the unlinked places are omitted in hierarchical 
representations. APs that appear in hierarchical representations also omit unlinked places. Finally, 
to easily explain the semantics of the hierarchical organization of the diagrams, two group levels 
are defined. Ln is the outer level defined by a solid-line. Ln+1 is the level of the inner dashed-line 
groups. For example, in Figure 15, the outer solid-line group is at level Ln and all inner dashed-
line groups, as well as the inner AP, are at level Ln+1. 
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Figure 14. Petri Net of Assurance Point 

 

Composite Group with Assurance Points 
 
The Petri Net for normal execution semantics of a composite group with APs is shown in Figure 
15. A composite group may contain multiple groups and APs. All activities in a composite group 
are executed sequentially. Therefore, the normal execution semantics expressed in Figure 15 are 
straightforward. When a token appears at place A at level Ln, transition T1 fires to activate the first 
activity at the inner level Ln+1. Upon completion of the first inner activity, a transition T2 fires and 
the next activity is activated. In Figure 15, an AP is invoked after one of the atomic (or composite) 
groups. When place P at the AP at level Ln+1 is marked, the AP is passed and the inner execution 
continues. Finally, after the last inner activity finishes, a transition fires and then place S at level 
Ln is marked. It is important to emphasize that in Figure 15, the Petri Net only shows the token 
movement pattern of the normal execution semantics of a composite group. The first activity in a 
composite group can be either an AP, an atomic group, or a composite group. However, no matter 
what activities a composite group contains, the activities are executed sequentially. 
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 Figure 15. Petri Net of Composite Group with APs 

 
 

Shallow and Deep Compensation 
 
The semantics of deep and shallow compensation are shown in Figure 16 and Figure 17, 
respectively. The special place AP_ACTION is also introduced as a short hand notation for 
recovery actions. Because compensation is invoked under either AP-RB (rollback), AP-RT (retry), 
or AP-CC (cascaded contingency) mode, we introduce place AP_ACTION in Figures 16 and 17, 
representing either place AP_RB, AP_RT or AP_CC, since a process instance can only be under one 
of these recovery modes at any given time. So in Figures 16 and 17, places AP_ACTION at level Ln 
and Ln+1 must represent the same mode status. For example, if in one scenario, place AP_ACTION 
represents AP_RB in Figure 16 at level Ln, all places AP_ACTION at level Ln+1 must also represent 
AP_RB. 

First consider deep compensation. Deep compensation is invoked directly when a composite 
group has no shallow compensation. The invocation of deep compensation is indicated by firing 
transition T1 in Figure 16. After firing T1, the token at the resource place N_Shallow_C at level Ln 
is consumed but also immediately returned. Also, the token at place AP_ACTION at level Ln is 
consumed and the places AP_ACTION and C_A at last inner group at level Ln+1 are marked. 
Afterward, all groups at level Ln+1 are backward compensated one by one through transitions T2 
and T3. After place C_S at the first inner group at level Ln+1 is marked, transition T4 is enabled to 
finish the compensation of the current level. The deep compensation ends when places C_S and 
AP_ACTION at level Ln are marked. 
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 Figure 16. Petri Net of Deep Compensation 

 
In Figure 17, the semantics of shallow compensation is presented. Shallow compensation 

invokes a pre-defined procedure to compensate the entire composite group rather than executing 
compensation for each group within the composite group. However, if shallow compensation fails, 
deep compensation is initiated.  Firing transition T1 indicates the invocation of the shallow 
compensation procedure. If the execution of shallow compensation succeeds, place C_S at level Ln 
is marked by firing transition T2. Then the shallow compensation ends. Otherwise, transition T3 
fires and the status place Shallow_C_Error is marked. To complete the compensation, deep 
compensation takes place by firing transition T4. Through transitions T5, T6 and T7, the deep 
compensation semantics is performed. Finally, places C_S and AP_ACTION at level Ln are marked.  

Note that during either shallow or deep compensation, APs are ignored. Also, if the dashed-
line quadrilateral represents an atomic group, compensation semantics defined in Figure 13 takes 
effect. If the dashed-line quadrilateral represents a composite group, either shallow or deep 
compensation invokes depending on the availability of the shallow compensation procedure. 
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Figure 17 Petri Net of Shallow Compensation 

 

AP-Rollback 
 
AP-Rollback mode is triggered when a status place AP_RB at an AP is marked. As shown in 
Figure 18, transition T1 fires to begin the AP-Rollback mode at level Ln+1. The purpose of AP-
Rollback is to recover the overall process. Thus, all completed groups need to be compensated 
under AP-Rollback mode. Through transitions T2 and T3, all completed groups at level Ln+1 are 
compensated. When the first group at level Ln+1 is compensated, transition T4 fires and the AP-
Rollback mode is propagated to level Ln by marking the status places AP_RB and C_S at level Ln. 
Then, the same AP-Rollback semantics executed at level Ln+1 will take effect at level Ln to further 
rollback the overall process. Note that during the backward recovery, the status place AP_RB at a 
completed group is marked when the group is compensating.  
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Figure 18. Petri Net of AP-Rollback 

 

 
AP-Retry 
 
When a status place AP_RT at an AP is marked, AP-Retry mode is triggered. Figure 19 presents 
the semantics of the default AP-Retry mode, which recovers the process back to the most recent 
AP and checks the pre-condition before the re-execution. In Figure 19, transition T1 fires to start 
the recovery. Similar to AP-Rollback, the status place AP_RT at a completed group is marked 
when the group is compensating. When the group just after the most recent AP is compensated, 
transition T3 fires and the place APRT_PRE at the most recent AP is marked. Then the pre-
condition defined at the most recent AP is re-checked. If the pre-condition is satisfied, the status 
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place APRT_P is marked and transition T4 is enabled to start the retry process. If the pre-condition 
fails, another action will take place depending on the action specified in the rule.  
 

 
Figure 19. Petri Net of AP-Retry (default) 

 
Figure 20 presents the semantics of re-checking the pre-condition under AP-Retry mode. In 

Figure 20, if the pre-condition exists, transition T1 fires. If the pre-condition is satisfied, the 
APRT_P is marked through transitions T2 and T3. If pre-condition is violated, transition T4 fires to 
mark the status place Pre-Violated. At this point, two different situations can occur. If the place 
PRE_VIO_F is marked, either transition T5, T6, T7 or T8 is fired to invoke the first action and then 
PRE_VIO_S is marked. If the place PRE_VIO_S is already marked, either transition T9 or T10 will 
be fired depending on the second action defined in the rule. In both cases, the process quits AP-
Retry mode and enters a new mode that depends on the rule action.  
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Recall that the recovery process only allows AP-Retry to occur within one composite group. 
For example, AP-Retry only affects level Ln+1 in Figure 19 and does not extend to level Ln. For the 
Petri Net of the parameterized AP-Retry, refer to (Gao, L. & Urban, S., 2010). 

 
 

 
Figure 20. Petri Net of Re-Checking Pre-Condition (AP-Retry)  

 

AP-Cascaded Contingency 
 
Two situations will trigger the AP-CC mode. One is when the process encounters an execution 
error. The other is when a post or pre condition violation invokes the AP-CC action. Furthermore, 
if there is an AP just before the failed group, then the pre-condition will be checked before 
executing the contingency. As a result, there are several different execution scenarios for AP-CC 
mode. Only one case is shown in Figure 21. All other cases have similar Petri Nets, which can be 
found in  (Gao, L. et al., 2010). 
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Figure 21. Petri Net of AP-CC (AP Exists Before Group) 

 
Figure 21 presents the semantics of the AP-CC mode triggered by an execution error. An AP 

exists just before the failed group. If any error happens in a group at level Ln+1, the places US and 
AP_CC at the failed group are marked. This means the failed group has already tried the possible 
contingency at level Ln+1, but failed. To maximize forward recovery, the process attempts to 
execute the contingency at the outer level. First, transitions T1 and T2 fire to compensate all 
completed groups before the failed group at level Ln+1. After the first completed group at level Ln+1 
is finally compensated, transition T3 fires and the place C_S is marked. Since there is an AP 
before the compensated group at level Ln, the place APCC_PRE at the AP is marked as well after 
firing T3 so that the pre-condition is re-evaluated before trying the contingency at level Ln. If the 
pre-condition is satisfied, either transition T4 or T7 will fire depending on the availability of the 
contingency at level Ln.  

If the contingency exists, there are two possible cases to consider. If the contingent procedure 
is successful, transition T5 fires. The process quits AP-CC mode by marking the place S at level Ln. 
If the contingent procedure is unsuccessful, transition T6 fires. The process is still under AP-CC 
mode by marking the places US and AP_CC at level Ln.  

If the contingency at level Ln does not exist, transition T7 fires and the places US and AP_CC at 
level Ln are marked directly. The unsuccessful result will cause the process to search and execute 
other contingencies at the outer levels following the same semantics described in Figure 21.  

Figure 22 presents the semantics of re-checking the pre-condition under AP-CC mode. This is 
the same semantics as in Figure 20, except that the AP logic starts at the place APCC_PRE and 
ends at the place APCC_P if the pre-condition is satisfied. If the pre-condition is violated, the 
process quits AP-CC mode and enters a new recovery mode depending on the action of the pre-
condition rule. 
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Figure 22. Petri Net of Re-Checking Pre-Condition (AP-CC)  

 

PROTOTYPE IMPLEMENTATION 
 
A prototype execution environment has been developed to demonstrate the extended service 
composition and recovery model with APs and integration rules. The execution environment does 
not directly use BPEL since the broader scope of the research is addressing techniques for 
decentralized data dependency analysis among distributed Process Execution Agents (PEXAs) 
(Urban, Liu & Gao, 2009). Existing BPEL engines do not provide the flexibility needed to 
experiment with this form of decentralized communication among process execution engines. 
BPEL also has limitations with respect to demonstrating the functionality described in this paper 
as outlined in the following section that addresses a comparison of the assurance point concept to 
the BPEL fault handler. The process specification framework, however, is based on BPEL using 
previous work with the Process Modeling Language (PML) described in (Ma, Urban, Xiao, & 
Dietrich, 2005).  

 The process specification framework uses a minimal set of activities, such as assign, invoke, 
and switch to illustrate the functionality of APs and the different forms of recovery. Figure 23 
shows a sample process in XML to illustrate the syntax for defining atomic (<ag …>) and 
composite (<cg …> ) groups with compensating (<cop …>) and contingent (<top …>) procedures. 
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The syntax for APs and their parameters is also illustrated (<ap …>). Integration rules are also 
specified using an XML format as shown in Figure 24  
 

<cg name= “cg0”> 
     .      .      . 
     <ap name= “OrderPlacedAP”>    
          <apDataIn variable=“orderId” /> 
     </ap> 
     <cg name=”cg2”> 
        <ag name = “ag21” 
             <invoke name=“chargeCreditCard” serviceName=“chargeCreditCard”     
               portType=“cc:CreditCardPortType” operation=“chargeCreditCard”  
               inputVariable = “chargeCardInput”  
               outputVariable = “chargeCardtOutput” /> 

   <top name=“top21”> 
                  <invoke name=“eCheckPay” serviceName=“eCheckPay”     
                  portType=“cc:CreditCardPortType” operation=“eCheckPay”  
                  inputVariable = “makePaymentInput”  
                  outputVariable = “makePaymentOutput” /> 

   </top> 
   <cop name=“cop21”> 

                 <invoke name=“creditBack” serviceName=“creditBack”     
                  portType=“cc:CreditCardPortType” operation=“ creditBack”  
                  inputVariable = “makePaymentInput”  
                  outputVariable = “makeRefundOutput” /> 

   </cop> 
        </ag> 
       . 
       . 
       . 
     </cg> 
     <ap name= “creditCardChargedAP”>    
          <apDataIn variable=“orderId” /> 
          <apDataIn variable=“cardNumber” /> 
          <apDataIn variable=“amount” /> 
     </ap> 
     .      .      . 
</cg> 

Figure 23. PML Activity Syntax 
 

The parser for the XML Java binding process has been implemented in the execution engine 
using XMLBeans. For each activity defined in a process, a wrapper class has been developed that 
implements the semantics of the activity. AP data is stored in a db40 object-oriented database. 
The functionality described in this paper has been fully developed to test and demonstrate all 
algorithms associated with the creation and use of APs, rules, and recovery procedures. The 
execution engine has also integrated the use of APs and recovery procedures into the <flowgroup> 
activity of BPEL to demonstrate how APs are used in the context of parallel execution threads. 
Discussion of the use of APs with the <flowgroup> activity, howver, is beyond the scope of the 
current chapter. 
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<rules> 
     .      .      .   
<event ap="orderPlacedAP"> 
    <pre> 
        <ecaRule> 
            <condition name=“QuantityCheck” 
                 <invoke name="checkQuantity" serviceName="ruleConditions" 
                    portType=“rule:ruleConditionsPortType” operation="checkQuantity1"  
                    inputVariable="quantity" outputVariable="result" /> 
            </condition> 
 
            <actions> 

     <action name=“backOrderPurchase”> 
                    <invoke name="backOrderPurchase" serviceName="shopping" 
                    portType=“sho:ShoppingPortType” operation="BackOrderPurchase"  
                    inputVariable="orderId" outputVariable="result" /> 

     </action> 
            </actions> 
        </ecaRule> 
    </pre> 
</event> 
     .       .      . 
</rules> 

 
       Figure 24.  Integration Rule Syntax 

 
COMPARISON TO THE BPEL FAULT HANDLER 
 
This research has included a comparison of the AP model with the BPEL fault and compensation 
handlers. In BPEL, when a fault occurs, the fault handler attached to a scope catches the fault. 
The aim of the fault handler is to continue the process execution, which might require undoing 
certain actions already completed in the current scope. Since the compensation handler defines 
the semantics of undoing such changes, the fault handler may start the compensation handler 
(Khalaf et al., 2009). Similar to our approach of deep and shallow compensation, the 
<compensate> activity does the compensation of the completed activities in the nested scopes, 
whereas, the <compensateScope> activity causes compensation of one single completed scope. If 
any of the handlers are not specified, then the default handler is assigned to each scope. Default 
compensation invokes the installed compensation handlers for all the inner scopes.  When the 
default compensation is applied to a scope, the compensation handlers are executed in reverse 
order of completion of the scopes.  

The work in (Khalaf et al., 2009) highlights two main problems with the fault and 
compensation mechanism in the current BPEL standard. In particular, compensation order can 
violate control link dependencies if control links cross the scope boundaries. In addition, high 
complexity of default compensation order can result due to default handler behavior. Like BPEL, 
the AP model also honors control links between peer-scopes. Unlike BPEL, however, the order of 
compensation is clear since the AP approach does not support control links between non-peer 
scopes, making the semantics of compensation in the AP approach unambiguous. In addition, the 
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AP model supports a hierarchical structure during compensation as promoted in (Khalaf et al., 
2009).  

In general, the notion of compensation should also be capable of handling constraint violations 
(Coleman, 2005). Since BPEL’s compensation handling mechanism through the <compensate> 
activity can only be called inside a fault handler, this limits the ability to call compensation 
outside of a fault handler. Thus, a fault has to occur to invoke a compensation procedure. In the 
case of the AP model, compensation can be invoked during normal execution (no error has yet 
occurred) when integration rules are not satisfied. This allows a flexible way to recover the 
process through compensation in response to constraint violations. 

BPEL does not explicitly support a contingency feature other than fault, exception, and 
termination handlers. The designer is also responsible for complex fault handling logic, which, as 
pointed out in (Coleman, 2005; Khalaf et al., 2009), has the potential to increase complexity and 
create unexpected errors. The AP model provides explicit contingency activities so that forward 
recovery is possible. Compared to BPEL, the AP logic allows designers to have a clearer notion 
of how recovery actions take place and at the same time provide flexibility through different 
recovery actions depending upon the status of execution and user-defined integration rule 
conditions.  
 

 
SUMMARY AND FUTURE DIRECTIONS 
 
This research has defined a hierarchical service composition model that provides multi-level 
protection against service execution failure by using compensation and contingency at different 
composition granularity levels. The model has been enhanced with the concept of assurance 
points and integration rules to provide a flexible way of checking constraints and responding to 
execution failures. As a combined logical and physical checkpoint, an AP is used for user-defined 
consistency checking, invoking integration rules that check pre and post conditions at different 
points in the execution process. The unique aspect of APs is that they provide intermediate 
rollback points when failures occur that allow a process to be compensated to a specific AP for 
the purpose of rechecking pre-conditions before retry attempts. APs also support a dynamic 
backward recovery process, known as cascaded contingency, for hierarchically nested processes 
in an attempt to recover to a previous AP that can be used to invoke contingent procedures or 
alternate execution paths for failure of a nested process. As a result, the assurance point approach 
provides flexibility with respect to the combined use of backward and forward recovery options. 
Petri Nets have been used to define the semantics of the assurance point approach to service 
composition and recovery. 

There are several directions for future research. As described in the implementation section, 
assurance points and the recovery actions described in this chapter have already been extended to 
support parallel execution threads within a process. We are currently in the process of extending 
the Petri Net formalization to describe the behavior of APs and recovery actions for parallel 
execution groups. We are also evaluating other high-level Petri Net theories, such as colored Petri 
Nets (Jensen, 1987), timed Petri Nets (Ramchandani, 1973), and the Workflow Net approach of 
Van Del Aalst (2005) to provide a more concise approach to description of the model. 

Our research is also extending the concept of integration rules in several ways. One extension 
involves the use of invariant rules. Invariants provide a way to monitor the status of a condition in 
between two different APs to provide a more optimistic way for concurrent processes to access 
the same data. When a condition is violated, a process can be interrupted to invoke recovery 
procedures. Our initial results with the use of invariants are described in (Courter, 2010). We are 
also extending integration rules to the concept of application exception rules (AERs). AERs allow 
a process to be interrupted by an external event and to respond to the event depending on the 
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execution status of the process as determined by the most recent AP that has been executed. We 
are also integrating the use of AERs with the data dependency analysis algorithms in (Urban, Liu, 
and Gao, 2009) so that the recovery process can identify data dependencies among concurrently 
executing processes and use AERs as a means to communicate with the dependent processes of a 
recovered process about the need to check consistency constraints and possibly invoke recovery 
procedures. 
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