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ABSTRACT:

This research has defined an abstract executiorelnfod establishing user-defined correctness
and recovery in a service composition environm&he service composition model defines a
hierarchical service composition structure, whereseavice is composed of atomic and/or
composite groups. The model provides multi-leveltgetion against service execution failure by
using compensation and contingency at differentpmsition granularity levels. The model is
enhanced with the concept of assurance points (AR&)integration rules, where APs serve as
logical and physical checkpoints for user-definemhsistency checking, invoking integration
rules that check pre and post conditions at diffepmints in the execution process. The unique
aspect of APs is that they provide intermediatbaok points when failures occur, thus allowing
a process to be compensated to a specific AP éopuinpose of rechecking pre-conditions before
retry attempts. APs also support a dynamic backwaobvery process, known as cascaded
contingency, for hierarchically nested processemiattempt to recover to a previous AP that can
be used to invoke contingent procedures or altereaecution paths for failure of a nested
process. As a result, the assurance point apprpaatides flexibility with respect to the
combined use of backward and forward recovery apti®etri Nets have been used to define the
semantics of the assurance point approach to seceimposition and recovery. A comparison to
the BPEL fault handler is also provided.
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INTRODUCTION

In a service-based architecture, a process is cemtpof a series of calls to distributed Web
services and Grid services that collectively previtbme specific functionality of interest to an



application (Singh & Huhns, 2005). In a traditignalata-oriented, distributed computing
environment, a distributed transaction is usedrtwide certain correctness guarantees about the
execution of a transaction over distributed datarses. In particular, a traditional, distributed
transaction provides all-or-nothing behavior byngsihe two-phase commit protocol to support
atomicity, consistency, isolation, and durabiliqQID) properties (Kifer, Bernstein, & Lewis,
2006). A process in a service-oriented architectuogvever, is not a traditional ACID transaction
due to the loosely-coupled, autonomous, and hedeexmus nature of the execution environment.
When a process invokes a service, the service npesfis function and then terminates, without
regard for the successful termination of the glgizacess that invoked the service. If the process
fails, reliable techniques are needed to eithere$jore the process to a consistent state or 2)
correct critical data values and continue running.

Techniques such as compensation and contingenay een used as a form of recovery in
past work with transactional workflows (e.g., Wor&h Sheth, 1997) and have also been
introduced into recent languages for service coitipos(e.g., Lin & Chang, 2005). In the
absence of a global log file, compensation providderm of backward recovery, executing a
procedure that will “logically undo” the affects cdmpleted and/or partially executed operations.
Contingency is a form of forward recovery, proviglien alternate execution path that will allow a
process to continue execution. Some form of congtams may be needed, however, before the
execution of contingency plans. Furthermore, nestediice composition specifications can
complicate the use of compensating and contingesteplures. To provide a reliable service
composition mechanism, it is important to fully enstand the semantics and complementary
usage of compensation and contingency, as welbastiey can be used together with local and
global database recovery techniques and nestedcesecomposition specifications. Service
composition models also need to be enhanced witturfes that allow processes to assess their
execution status to support more dynamic ways sgarding to failures, while at the same time
validating correctness conditions for process etiexu

This research has defined an abstract executionelmémt establishing user-defined
correctness and recovery in a service compositionr@anment. The research was originally
conducted in the context of the DeltaGrid projedhjch focused on building a semantically-
robust execution environment for processes thatuggeover Grid Services (Xiao, 2006; Xiao,
Urban, & Dietrich, 2006; Xiao, Urban, & Liao, 200&iao & Urban, 2008). The service
composition model defines a hierarchical servicenposition structure, where a service is
composed of atomic and/or composite groups. An @taoup is a service execution with
optional compensation and contingency proceduresorposite group is composed of two or
more atomic and/or composite groups and can alée bptional compensation and contingency
procedures. A unique aspect of the model is thevigiom for multi-level protection against
service execution failure by using compensation apdtingency at different composition
granularity levels, thus maximizing the potentiat forward recovery of a process when failure
occurs. The work in (Xiao and Urban, 2009) pres¢msfull specification of the model using
state diagrams and algorithms to define the sepsanfi compensation and contingency in the
recovery process.

Our more recent work has extended the DeltaGridic@rcomposition and recovery model in
(Xiao et al., 2009) with the concept A§surance Point§APs) andntegration rulesto provide a
more flexible way of checking constraints and resfieg to execution failures. An AP is a
combined logical and physical checkpoint. As a ptalscheckpoint, an AP provides a way to
store data at critical points in the execution gfracess. Unlike past work with checkpointing,
such as that of (Dialini, Miles, Moreau, Roure &dky 2002; Luo, 2000) where checkpoints are
used to port an execution to a different platfosrpart of fault tolerant architectures, our work
focuses on the use of APs for user-defined comgigtehecking and rollback points that can be
used to maximize forward recovery options wherufas occur. In particular, an AP provides an
execution milestone that interacts with integratiales. The data stored at an AP is passed as



parameters to integration rules that are used ¢glchpre-conditions, post-conditions, and other

application conditions. Failure of a pre or postdition or the failure of a service execution can

invoke several different forms of recovery, inchglibackward recovery of the entire process,

retry attempts, or execution of contingent proceduThe unique aspect of APs is that they
provide intermediate rollback points when failucggur that allow a process to be compensated
to a specific AP for the purpose of rechecking qaditions before retry attempts. APs also

support a dynamic backward recovery process, kraswascaded contingency, for hierarchically

nested processes in an attempt to recover to @gopseeXP that can be used to invoke contingent
procedures or alternate execution paths for faibfi@e nested process.

After presenting related work, this chapter firstiews the basic features of the hierarchical
service composition model presented in (Xiao et 2009), together with an on-line shopping
case study and a summary of an evaluation framewWmkwas developed to demonstrate the
functionality of the recovery algorithms. An undargling of these basic features is a precursor
to a description of the extended model. The AP iatefration rule extensions to the model are
then presented, with a focus on the different foohsecovery actions as defined in (Shrestha,
2010). Petri Nets are then used to formalize theastics of the extended model, including
atomic and composite groups with shallow and demppensation integrated with assurance
points and rollback, retry, and cascaded contingenecovery activities. After discussing a
prototype implementation of an execution enginethe model, a comparison of the approach to
the fault handling and recovery procedures of BiREbresented, demonstrating that the approach
presented in this chapter provides a cleaner, fioleical approach to compensation order rather
than the “zigzag” behavior of BPEL as describedKhalaf, Roller, & Leymann, 2009). The
primary contribution of this research is found e tenhancements that assurance points and
integration rules lend to the service compositiod eecovery process. In particular, the assurance
point approach provides explicit support for usefirted constraints with rule-driven recovery
actions for compensation, retry, and contingen@c@dures that support flexibility with respect
to the combined use of backward and forward regowptions.

The paper concludes with a summary and discus$ifuture research.

RELATED WORK

The traditional notion of transactions with ACIDoperties is too restrictive for the types of
complex transactional activities that occur in rilistted applications, primarily because locking
resources during the entire execution period isapglicable for Long Running Transactions
(LRTs) that require relaxed atomicity and isolati@ichocki, 1998). Advanced transaction
models (ATMs) have been proposed to better supg®fis in a distributed environment (deBy,
Klas, & Veijalainen, 1998; Elmagarmid, 1992), indilng the Nested Transaction Model, the
Open Nested Transaction Model, Sagas, the Mulét&ransaction Model and the Flexible
Transaction Model. These advanced transaction rage&dx the ACID properties of traditional
transaction models to better support LRTs and ¢twige a theoretical basis for further study of
complex distributed transaction issues, such dgréaatomicity, consistency, and concurrency
control. These models have primarily been studiethfa research perspective and have not
adequately addressed recovery issues for transafdilure dependencies in loosely-coupled
distributed applications.

Transactional workflows contain the coordinated cexion of multiple related tasks that
support access to heterogeneous, autonomous, simidbuted data through the use of selected
transactional properties (Worah et al., 1997). $aational workflows require externalizing
intermediate results, while at the same time piagidconcurrency control, consistency
guarantees, and a failure recovery mechanism foruldi-user, multi-workflow environment.
Concepts such as rollback, compensation, forwacdvery, and logging have been used to



achieve workflow failure recovery in projects swuhthe ConTract Model (Wachter & Reuter,
1992), the Workflow Activity Model (Eder & Liebharii995), the CREW Project (Kamath &
Ramamritham, 1998), the METEOR Project (Worah gt18197), and Units of Work (Bennett et
al., 2000). These projects expose the weaknessesimg ATM techniques alone to support
reliable transactional workflow execution, mainkyedto the complexity of workflows. Previous
work also shows the weakness of ATMs in supporthef isolation, failure atomicity, timed
constraints, and liveness requirements of distethutransactional workflows (Kuo, Fekete,
Greenfield & Jang, 2002). Similar concerns are il papers addressing transactional issues
for traditional workflow systems (Alonso, Hagen, h8k, & Tresh, 1997; Kamath and
Ramamritham 1996; Kamath et al.,1998) as well asfleav for loosely-coupled distributed
sources such as Web Services (Fekete, Greenfield, & Jang, 2002; Kuo et al. 2002). More
comprehensive solutions are needed to meet théreatgnts of transactional workflows (Worah
et al. 1997).

In the Web Services platform, WS-Coordination (2086d WS-Transaction (2005) are two
specifications that enable the transaction senmatid coordination of Web Service composition
using Atomic Transactions for ACID transactions aBdsiness Activity for long running
business processes. The Web Services Transactemelork (WSTx) (MikalsenTai, &
Rouvelloy 2002) introducedransactional Attitudgswhere service providers and clients declare
their individual transaction capabilities and setitan Web Service Composition Action
(WSCA) (Tartanoglu, 2003) allows a participant peaify actions to be performed when other
Web Services in the WSCA signal an exception. Aenaghased transaction model (Jin &
Goshnick, 2003) integrates agent technologies iordinating Web Services to form a
transaction. Tentative holding is used in (Limthapmon & Zhang, 2004) to achieve a tentative
commit state for transactions over Web Serviceseptable Termination States (Bhiri, Perrin, &
Godart, 2005) are used to ensure user-definedrdadtomicity of composite services, where
application designers specify the global compasittructure of a composite service and the
acceptable termination states.

More recently, events and rules have been usegrtandcally specify control flow and data
flow in a process by using Event Condition Acti®@C@) rules (Paton & Diaz, 1999). ECA rules
have also been successfully implemented for examegtandling in work such as (Brambilla,
Ceri, Comai, & Tziviska, 2005; Liu, Li, Huang, & Xiao, 2007). The work Iru et al. (2007)
uses ECA rules to generate reliable and fault-éoleBPEL processes to overcome the limited
fault handling capability of BPEL. Our work withsasance points also supports the use of rules
that separate fault handling from normal businesgicl Combined with assurance points,
integration rules are used to integrate user-défioensistency constraints with the recovery
process.

Several efforts have been made to enhance the BREtland exception handling capabilities.
BPEL4Job (Tan, Fong, & Bobroff, 2007) addressesltfaandling design for job flow
management with the ability to migrate flow instasicThe work in (Modafferi & Conforti, 2006)
proposes mechanisms like external variable setfimgire alternative behavior, rollback and
conditional re-execution of the Flow, timeout, asdo mechanisms for enabling recovery actions
using BPEL. The work in (Modafferi, Mussi, & Perifi€006) presents the architecture of the
SH-BPEL engine, a Self-Healing plug-in for WS-BP&hgines that augments the fault recovery
capabilities in WS-BPEL with mechanisms such asotation, pre-processing, and extended
recovery. The Dynamo (Baresi, Guiea, & Pasqualeypframework for the dynamic monitoring
of WS-BPEL processes weaves rules such as pregpasiitions and invariants into the BPEL
process. Most of these projects do not fully indgrconstraint checking with a variety of
recovery actions as in our work to support moreaaiyic and flexible ways of reacting to failures.
Our research demonstrates the viability of variegatcovery approaches within a BPEL-like
execution environment.



In checkpointing systems, consistent executionestatre saved during the process flow.
During failures and exceptions, the activity carrdiked back to the closest consistent checkpoint
to move the execution to an alternative platforralibi et al. 2002; Luo, 2000]. The AP concept
presented in this paper also stores critical exacutata, but uses the data as parameters to rules
that perform constraint checking and invoke diffétgpes of recovery actions.

Aspect-oriented programming (AOP) is another waynofularizing and adding flexibility to
service composition through dynamic and autonomioposition and runtime recovery. In AOP,
aspects are weaved into the execution of a prograimg join points to provide alternative
execution paths (Charfi & Mezini, 2007). The work (Charfi & Mezini, 2006) illustrates the
application of aspect-oriented software developneenicepts to workflow languages to provide
flexible and adaptable workflows. AO4BPEL (Chatfiag, 2007) is an aspect-oriented extension
to BPEL that uses Aspect] to provide control flaatations (Kiczales et al., 2001). Business
rules can also be used to provide more flexibditlying service composition. APs as described in
this paper are similar to join points, with a nof@tus on using APs to access process history
data in support of constraint checking as well@glile and dynamic recovery techniques.

Due to the distributed nature of services, sergiomposition is often inflexible and highly
vulnerable to errors. Even BPEL, the de-facto saeshdor composing Web services, still lacks
sophistication with respect to handling faults awents. Our research is different than related
work by providing a hierarchical composition stiuret with support for user-defined constraints
with the use of rules for pre and post conditidnsaddition, the AP model integrates the rules
with different recovery actions as well as uselirtif compensation and contingency. Thus, our
AP model attempts to provide more flexible recovprgcess semantics with a focus on user-
defined constraints, which is a combination of diee$ that are not available in current or past
research.

OVERVIEW OF THE DELTAGRID SERVICE
COMPOSITION AND RECOVERY MODEL

Before describing the use of APs and integratidesiithis section first outlines the basic features
of the model in the context of the DeltaGrid projékhis section first elaborates on atomic and
composite group recovery issues and then presaraseastudy to illustrate the basic concepts of
the model.

Hierarchical Service Composition and Recovery

In the DeltaGrid environment, a process is hieraaity composed of different types of
execution entities. Table 1 shows seven executititiess defined in the service composition
model. Figure 1 uses a UML class diagram to gralgidiustrate the composition relationship
among these execution entities. pfocess is a top-level execution entity that contains othe
execution entities. A process is denotedhasvherep represents a process and the subscript
represents a unique identifier of the processOperation represents a service invocation, denoted
asop;j, such thabp is an operation,identifies the enclosing procegsand]j represents the unique
identifier of the operation withip; Compensation (denoted asop;)) is an operation intended for
backward recovery, whileontingency (denoted atpj) is an operation used for forward recovery.
An atomic group and acomposite group are logical execution units that enable the sjmatibn
of processes with complex control structure, featilng service execution failure recovery by
adding scopes within the context ofracess execution. Aratomic group contains aroperation, an
optionalcompensation, and an optionalontingency. A composite group may contain multipl@tomic
groups, and/or multiplecomposite groups that execute sequentially or in parallelcgnposite group



can have its ownompensation andcontingency as optional elements. grocess is essentially a top
level composite group.

An atomic group is denoted asg;;, while acomposite group is denoted asgix. The subscripts in
the atomic group and composite group notation atdiche nesting levels of afomic group or
composite group within the context of arocess. For example, a procegsis a top-level composite
group denoted asgs. Assumecgs contains two composite groups and an atomic grdine
enclosed composite groups are denotechasandcgiz, and the atomic group is denotedags.
Assumecgs,1 contains two atomic groups. These atomic groupsdanoted asgs 11 andagsi 2,
respectively.

Table 1. Execution Entities
Entity Name Definition
Operatior A service invocation, denoted op;;
Compenation | An operatiorthatis used to undo the effect ocommittec
operation, denoted asp;;
Contingenc An operation that is used as an alternativa failed operatior
(opij), denoted atp;;
Atomic Grou| | An execution entity that is composed of a primargrapon op;)),
an optional compensatiooof;;), and an optional contingency
operation {op;;), denoted asg;; = <op;; [,copi] [, topi]>
Composite An execution entity that is composed of multiplenaitogroups o
Group other composite groups. A composite group cantzdse an
optional compensation and an optional contingedegpted asgi
= <(agixm | cgikn) " [,copix] [,topix])>
Proces A top level composite grol, denoted api
DE-rollback An action of undoing theffect of an operation by reveng the
data values that have been changed by the opetattbair before
images, denoted dsp;;

abstract
Process

1 T

e Composite
Group &

A

Atomic Group

O3 e

Operation

0..1 0.1

Compensation Contingency
0.1 0..1

Figure 1. Service Composition Structure



The only execution entity not shown in Figure 1hs DE-rollback entity. DE-rollback is a
system-initiated operation that is unique to thétdiigzrid environment. Services in the DeltaGrid
environment, referred to aBelta-Enabled Grid Services (DEGSare extended with the
capability of recording incremental data changemwkn asdeltas (Blake, 2005; Urban, Xiao,
Blake, & Dietrich, 2009). Deltas are extracted fr@mrvice executions and externalized by
streaming data changes out of the database tocadrdlistory Capture System (PHCS) (Xiao et
al., 2006). The PHCS merges deltas from distribstaatces into a time-ordered schedule of the
data changes associated with concurrently execyiiogesses. Deltas can then be used to
backward recover an operation through a processviknas Delta-Enabled Rollback (DE-
Rollback) (Xiao, 2006). DE-rollback can only be used, howevié certain recoverability
conditions are satisfied, with the PHCS. The merggtkdule of deltas providing the basis for
determining the applicability of DE-rollback based data dependencies among concurrently
executing processes. A recoverable schedule reqthied, at the time when each transactjon t
commits, every other transactigiiitat wrote values read byhias already committed (Kifer et al.,
2006). Thus a recoverable schedule does not alloty drites to occur. In a recoverable
schedule, a transactiondannot be rolled back if another transactioreads or writes data items
that have been written by, tsince this may cause lost updates. When intextbaccess to the
same data item disables the applicability of DHbeatk on an operation, compensation can be
used to semantically undo the effect of the opemnati

Figure 2 shows an abstract view of a sample pradefasition based on the DeltaGrid service
composition structure. A process is the top level composite groug:. The proces®: is
composed of two composite grougs,+ andcgs»2, and an atomic grougg:s. Similarly, cgi1 and
cgipare composite groups that contain atomic groupsh Béomic/composite group can have an
optional compensation plan and/or contingency plyperation execution failure can occur on an
operation at any level of nestinghe purpose of the DeltaGrid service compositiordehds to
automatically resolve operation execution failung compensation, contingency, and DE-
rollback at different composition levels.

P1=Cg4
CJ1,1
Oop1,1
ag111 COp1.1
top.1 Cg1.2 2015
agi 21| op14 (non-critical) | '
ag12|  OP12 _ ¢ CZ)F;;GG
COp12 o .
+ ag122 OP15 top1,e
COP15
Op1.3
agdq13 -
top13 cg1.2.top
Cg1,1.COp
cgq.1.top
cgs.cop
cgi.top

Figure 2. An Abstract View of a Sample Process



Atomic Group Execution and Recovery

When the execution of an atomic group fails, prexeit recovery activities are applied locally to
clean up the failed operation execution before dperation terminates and communicates its
terminated status to the process execution envieohm

Definition 1 (Pre-commit Recoverability): Pre-commit recoverability specifies how an atomic
group should be locally recovered when an execuadore occurs before the operation as an
execution unit commits.

Table 2 presents pre-commit recovery options foatamic group. Ideally, aag operation’s
pre-commit recoverability isautomatic rollback for an ACID operation, orpre-commit-
compensatiorfor a non-ACID operation. With the delta captumpability of the DeltaGrid
environment, alag can also reverse the effect of the original opemahroughDE-rollbackif the
recoverability conditions are satisfied. If DE-b@tk cannot be applied due to the violation of the
semantic conditions for DE-rollback, the servicenposition model requires the use cdeavice
resetfunction. The service reset function cleans upetfiect of a failed operation and prepares
the execution environment for the next service aation. A service reset typically requires a
special program or a human agent to resolve thexdfaperation execution.

Table 2. Atomic Group Pre-commit Recoverability Ops

Option Meaning

Autcmaticrollback The failedservice execution can be autornically rolled
back by a service provider

Pre-Commit- A pre-commit-compensation is invoked by a serv

Compensation provider to backward recover a failed operation.

DE-rollback A failed operation can breverse by executing DE-
rollback

ServiceRese The service provider offers a service refunctior to
clean up the service execution environment.

After an atomic group has been locally recedethe failed execution transmits its terminated
status to the process execution environment. lcdheext of the global process, apmaximizes
the success of an operation execution by providimgptional contingency plan that is executed
as an alternative path if the original service exiea of theag fails.

In contrast to pre-commit recoverability, whidefines how to locally clean up a failed
operation executiorpost-commit recoverabilitgpecifies how the process execution environment
can semantically undo the effect of a successftdlyninated atomic group due to another
operation’s execution failure.

Definition 2 (Post-commit Recoverability): Post-commit recoverability specifies how an
operation’s effect can be semantically undone #fteoperation has successfully terminated.

Post-commit recoverability is considered when a meted operation inside of a composite
group needs to be undone due to runtime failu@nother operation. Table 3 defines three post-
commit recoverability optiongeversible(through DE-rollback)compensatableor dismissible
Post-commit recovery is only applicable in the eant of composite group execution.
Furthermore, the dismissable option indicates #haprocess execution can be application-
dependent and might not require every operatiobetssuccessfully executed. The DeltaGrid
service composition model offers the flexibility wfarking execution entities with @aiticality



decorator when failure does not affect the exeoutfcthe enclosing composite group. By default,
an operation’s post-commit recoverability is congaable.

Table 3. DEGS Post-Commit Recoverability Options
Option M eaning |
Reversibli (DE-rollback’ | A completed operation can be undone by reversingldta

values that have been modified by the operationudian.
Compensatabli A completed operation can be semanticalndone by
executing another operation, referred to as postgion
compensation.
Dismissible A completed operation does not need any cleanurities.

Definition 3 (Criticality): An atomic group iritical if its successful execution is mandatory for
the enclosing composite group.mdn-critical group indicates that the failure of this groupl wil
not impact the state of the enclosing compositaigr@and the composite group can continue
execution. When runtime execution failure occummntimgency must be executed for critical
groups, while contingency is not necessary formeritical group. By default, a group is critical.

As an example, in Figure 2, &gi2+ fails, cgi2 will continue executing sincegs 2 is non-
critical. Thus in the specification, there is n@ddo define a compensation and contingency plan
for agi21.

Composite Group Execution and Recovery

The recoverability of a composite group can be rdefi using the concepts ahallow
compensatiomnddeep compensatioihe terms shallow and deep compensation wer@atig
defined in (Leymann, 1995). Our research extendsetconcepts for use with nested service
composition.

Definition 4 (Shallow Compensation): Assume a composite grougix is defined asgix =
<(agixm | Cgikn)’, copik [topi])>. Shallow compensation otgyx is the invocation of the
compensation operation defined for the composibeeg;x, which iscopi.

Definition 5 (Deegp Compensation): Assume a composite groagy is defined asgix = <@gixm |
cgikn)*, copix [topik])>. Within the context of a composite groagy, a subgroup is either an
atomic group defined amgixm = <opij, copi; [,topi]>, or a composite group defined egx, =
<(adiknx | Cikny)" COPikn [,topikn])>. Deep compensation afji is the invocation of post-commit
recovery activity (compensation or DE-rollback) feach executed subgroup within the
composite group, such eap;;jfor an atomic group, arabpix, for a nested composite group.

Shallow compensation is invoked when a compostegsuccessfully terminates but needs a
semantic undo due to the failure of another opamagikecution. A deep compensation is invoked
if: 1) a composite group fails due to a subgroupcexion failure, and needs to trigger the post-
commit recovery of executed subgroups, or 2) a awmitg group successfully terminates, but no
shallow compensation is defined for the compogitelg.

As a backward recovery mechanism for a successéxbcuted composite group, shallow
compensation has higher priority than deep compiemsd-or example, in Figure 2, the failure of
a critical subgrouggs s (both op1s andtopss fail) within the enclosing composite groag: causes
the two executed composite growggss andcgs2 to be compensated. Singg 1has a pre-defined



shallow compensation, the shallow compensategii.cop will be executed.cgi2's deep
compensation will be invoked sincg » does not have shallow compensation.

An Online Shopping Case Study

This section introduces an online shopping caseysto illustrate the use of the service
composition and recovery model. The online shopppglication contains typical business
processes that describe the activities conducteshbgpers, the store and vendors. For example,
the processlaceClientOrder is responsible for invoking services that placent! orders and
decrease the inventory quantity. The progasseVendorOrder checks the inventory, calculates
restocking need, and generates vendor orders. rbloegseplenishinventory invokes services that
increase the inventory quantity when vendor ordegseceived.

Figure 3 presents a graphical view of titeeeClientOrder process using the same notation as
the abstract process example presented in FigurAs2shown in Figure 3, the process
placeClientOrder is hierarchically composed of composite groups atwinic groups. An atomic
group has an operation, an optional post-commitpEareationdop) and contingencytdp).

Process placeClientOrder (ps = cg1)

8911 ["receiveClientOrder
cop:chgOrderStatus

agrz | checkCredit |

no
good credit? | rejectClientOrder | agi4

yes

agiz [ checkinventory |

sufficient
inventory items?

no

€915 yes CJd16
chargeCreditcard chargeCreditcard
agss,1 | cop:creditBack agie1 | cop:creditBack
top:eCheckPay top:eCheckPay
agis» declnventory agi 62 addBackorder
| cop:inclnventory "~ | cop:rmvBackorder
packOrder

ag817 | cop:unpackOrder

upsShipOrder
ag1s [ cop:upsShipback
top:fedexShipOrder

Figure 3.placeClientOrder Process Definition
The placeClientOrder process starts when a client submits a clientrdogieinvoking a DEGS

operationreceiveClientOrder. The next operatiooreditCheck verifies if the client has a good credit
standing to pay for the order. If the client pagbesreditCheck, the inventory will be checked to
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see if there are sufficient inventory items totlile order by executingheckinventory. If the client
does not pass the credit check, the order willdpected. If there are sufficient inventory items,
the operationchargeCreditCard is to be executed to charge the client’'s credid,cand the
operationdeclnventory is executed to decrease inventory. These two tipesaare grouped into a
composite group indicating that both operationsukhbe successfully executed as a unit. Then
the order will be packed through operatpaickorder and shipped through operatiopsShipOrder.

If the inventory is not sufficient to fill the ordethe order will be marked as a backorder through
operatioraddBackorder, and the client will be charged the full amount.

When there is a service execution failure duringcpss execution, the process will be
recovered based on the recovery specification eddwedn the process definition, such as
compensation and contingency, as well as the reg@amantics of the service composition and
recovery model. For example, if operatiggsShipOrder fails, the contingenciedexShipOrder will
be invoked, sending the order package through Fausrad of UPS. If a client requests to
cancel the order after the operatigatkOrder but beforeupsShipOrder, each executed operation
will be backward recovered in the reverse executinter using the following list of recovery
commands: dop:unpackOrder, cop:inclnventory, cop:creditBack, DE-rollback:checkinventory, DE-
rollback:checkcredit, cop:chgOrderStatus]. DE-rollback is to be performed on operations
checklnventory andcheckCredit since these two operations do not have pre-defioetpensation
and no other concurrently executing processes aite Wependent on these two operations.
Furthermore, since these two operations do not fnadiy data, no recovery actions will be
performed for these two operations. Thus the freabvery commands for cancellation of an
order is: fop:unpackOrder, cop:inclnventory, cop:creditBack, cop:chgOrderStatus].

Figure 4 gives a graphical view of the procglaseVendorOrder. The process first invokes the
operationgetLowlnventoryltems which goes through all the inventory items to tgean entry for
each inventory item whose quantity falls below aecsfied threshold. The operation
getBackOrderltems goes througtackorderList, adding items in the backorder list to the itemgé
ordered from the operatiogetLowlnventoryltems. The process proceeds with the operation
confirmPrice, which confirms the unit price of a product with bagendor. Then the operation
genVendorOrder will generate vendor orders for different supgiekfterreviewVendorOrder which
performs a final check on the vendor orders, thesedor orders are sent to suppliers by
executing the operaticendVendorOrder.

If the operationreviewVendorOrder fails, the procesglaceVendorOrder will be backward
recovered by executing post-commit recovery agtifitr each executed operation in reverse
execution order: cpp:chgVOStatus, DE-rollback:confirmPrice, DE-rollback:getBackOrderltems, DE-
rollback:getLowInventoryltems]. DE-rollback will be invoked on operationsonfirmPrice,
getBackOrderltems and getLowlnventoryltems since these operations do not have pre-defined
compensation.

Figure 5 presents theplenishinventory process which is invoked when a vendor order pgeka
is received from a supplier. The process firstfiagiif there is any missing item by performing
operationverifyVOltem. If there is any missing item, the relevant venddr be contacted through
operation contactVendor. Otherwise, received items are entered into theeritory and the
operationinclnventory is executed to update quantity for each receivegritory item. The
operationpackBackorder iterates through the backorder list and pack batks for shipment.
After packBackorder, inventory will be decreased through operaté@alnventory to deduct the
backorder quantity from the inventory. At last, adin sendBackorder dispatches backorders to
customers.

As in the processeasaceClientOrder and placeVendorOrder, the recovery procedure of process
replenishinventory also conforms to the semantics defined in theisemomposition and recovery
model. For example, if the vendor recalls deficiégins when the process finishes the execution
of the operatiortdeclnventory, the processeplenishinventory needs a backward recovery followed
by sending the deficient items back to the vendoraf replacement. The backward recovery of
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the process will execute the compensation of egreguted operation in reverse execution order:
[cop:inclnventory, cop:unpackBorder, cop:decinventory]. The operationverifyVOltems will not be
recovered sinceerifyVOltems does not modify any data.

Process placeVendorOrder (p1 = cg4)

ag11 | getLowlnventoryltems |

ag12 | getBackOrderltems |

agis [ confirmPrice |
\
a genVendorOrder
914 ["cop:chgVOStatus

\
ags | reviewVendorOrder |

\
agis | sendVendorOrder
cop:invalidateVO

Figure 4.placeVendorOrder Process Definition

Process replenishinventory (p1= cgy)

agi1 [ verifyVOltems |

all the items no

received? contactVendor
yes
inclnventory
a
912 cop:declnventory
€913

ag1 s+ packBackorder
cop:unpackBorder

agis2 de_clnventory
cop:inclnventory

sendBackorder

a
gus cop:reqReturnBorder

Figure 5.replenishinventory Process Definition

12



Simulation and Evaluation Framework

The original version of the DeltaGrid service comifion and recovery model as described in this
section has been formally presented in (Xiao e2809; Xiao, 2006). The presentation includes
state diagrams and algorithms that define the stosarof applying compensation and
contingency when failure occurs. The work in (X&taal., 2009) also includes the description of
a DeltaGrid simulation framework using the DEVSJAMAcrete event simulation tool (Zeigler
& Sarjoughian 2004), as well as a performance etmn of some of the implemented
components of the simulation environment. Intekséaders should refer to (Xiao et al., 2009)
for further details on the formalization, simulatjcand evaluation of the original model. In the
remainder of this paper, we describe an extensidheomodel to more completely address data
consistency issues during execution and to alseigga means for partial rollback together with
increased options for forward recovery. The corkgpesented in this section are formalized
together with the extended features using Petrs iethe following sections of this chapter.

ASSURANCE POINTS AND INTEGRATION RULES FOR
ENHANCING CONSISTENCY AND RECOVERY

The model described in the previous section has ketended with the concept Aksurance
Points (APs)(Shrestha, 2010; Urban, Gao, Shrestha, & Cou2etPa; Urban, Gao, Shrestha,
and Courter, 2010b). An AP is a process executimmectness guard as well as a potential
rollback point during the recovery process. Givkattconcurrent processes do not execute as
traditional transactions in a service-oriented mvinent, inserting APs at critical points in a
process is important for checking consistency cairgs and potentially reducing the risk of
failure or inconsistent data. An AP also servea aglestone for backward and forward recovery
activities. When failures occur, APs can be usedddback points for backward recovery,
rechecking pre-conditions relevant to forward resgyvin the current version of the model, it is
assumed that APs are placed at points in a pragesee they are only executed once, and not
embedded in iterative control structures. The wersiescribed in this chapter also does not
address the use of APs in parallel execution strast such as thdlowgroup> activity of BPEL,
although a prototype execution engine supportsafmbility. An elaboration of these issues is
beyond the scope of the current paper and is agkttest the end of the chapter as part of future
research.
An AP is defined asAP = <apld, apParameters®, IRye?, IRpost?, IRcond™>, Where:

aplD is the unique identifier of the AP

apParameters is a list of critical data items to be stored ag pf the AP,

IRpre is @an integration rule defining a pre-condition,
- IRpest is an integration rule defining a post-condition,
- IRwng is an integration rule defining additional applioa rules.
In the above notatiori, indicates 0 or more occurrences, wHilendicates zero or one optional
occurrences.

IRpre, IRpost, @aNdIReong are expressed as Event-Condition-Action (ECA)gulsing the format
shown in Figure 6, which is based on previous waitk using integration rules to interconnect
software components (Jin, 2004; Urban, Dietrich, Nia, Sundermier, & Saxena, 2001). An IR is
triggered by a process that reaches a specific éihgl execution. Upon reaching an AP, the
condition of an IR is evaluated. The action speatfon is executed if the condition evaluates to
true. ForlRye andIRyest, @ constrain€ is always expressed in a negative fgnoi(C)). The action
(action 1) is invoked if the pre or post condition is natdr invoking a recovery action or an
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alternative execution path. If the specified ati®a retry activity, then there is a possibifity
the process to execute through the same pre orcpasiition a second time, wheaetion 2 is
invoked rather thaaction 1. In general, any number of actions can be spékifie

CREATE RULE  ruleName::{pre | post | cond}

EVENT apld(apParameters)
CONDITION rule condition specification
ACTION action 1

[ON RETRY action 2]
Figure 6.Integration Rule Structure

When pre and post conditions faib{{C) = True), recovery actions are invoked. In its most
basic form, a recovery action simply invokes agralative process. Recovery actions can also be
one of the following actions:

- APRollback: APRollback is used when the entire process needsmpensate its way back
to the start of the process according to the sénsaoft the service compensation model.

- APRetry: APRetry is used when the running process needi® tbackward recovered using
compensation to a specific AP. By default, the baokl recovery process will go to the first
AP reached as part of the shallow or deep compiensptocess within the same scope. The
pre-condition defined in the AP is re-checked.hié tpre-condition is satisfied, the process
execution is resumed from that AP by re-trying theovered operations. Otherwise, the action
of the pre-condition rule is executed. The APRetgmmand can optionally specify a
parameter indicating the AP that is the targehefliackward recovery process.

- APCascadedContingency (APCC): APCC is a backward recovery process that searches
backwards through the hierarchical nesting of caitpayroups to find a possible contingent
procedure for a failed composite group. During ARCC backward recovery process, when
an AP is reached, the pre-condition defined inARewill be re-checked before invoking any
contingent procedures for forward recovery.

The most basic use of an AP together with integnatules is shown in Figure 7, which
shows a process with three composite groups andlPabetween each composite group. The
shaded box shows the functionality of an AP usiRRAas an example. Each AP serves as a
checkpoint facility, storing execution status dat@ checkpoint database (denotedh\Bglata in
Figure 7). When the execution reaches AP2, IRsciseal with the AP are invoked. The
condition of an IR is evaluated first to validate the execution of. dfthe post-condition is
violated, the action invoked can be one of thegafred recovery actions as described above. If
the post-condition is not violated, then an.Rule is evaluated to check the pre-condition fer t
next service execution. If the pre-condition islaied, one of the pre-defined recovery actions
will be invoked. If the pre-condition is satisfigtie AP will check for any additional, conditional
rules (IRong that may have been expressedc,JRrules do not affect the normal flow of
execution but provide a way to invoke additionalrglial activity based on application
requirements. Note that the expression of a preliion, post-condition or any additional
condition is optional.

Assurance Point and Integration Rule Example
This section provides an example of assurance qdimtegration rules, and conditional rules in
Figure 8 using a revised version of the online givap application. All atomic and composite

groups are shown in the solid line rectangles, evbptional compensations and contingencies are
shown in dashed line rectangles, denotedopsandtop, respectively. APs are shown as ovals
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between composite and/or atomic groups, where tiRe identifiers and parameters are
OrderPlaced(orderld),  CreditCardCharged(orderld, cardnumber, amount), UPSShipped(orderld,
UPSShippingDate), USPSShipped (orderld), Delivered(orderld, shippingMethod, deliveryDate).

Table 4 shows the integration rules and conditionks associated with the APs in Figure 8.
The components of an assurance point are expldiakxlv using the APs in Figure 8 and the
rules in Table 4.

Service Composition with AP

Recovery Actions

APRollback

APRetry

APC

Alternative
Proce

@‘ Conditional Operation

>
AP Data

Figure 7.Basic Use of AP and Integration Rules

Component 1 (AP Identifiers and Parameters): An AP identifier defines the current execution
status of a process instance. Each AP may optiosp#icify parameters that store data when the
process execution reaches the AP. The data canhbhezrxamined in the conditions of rules
associated with the AP. For example, the first ABtderPlaced, which reflects that the customer
has finished placing the shopping order. The patamelerld is used in the rules associated with
the AP.

Component 2 (Integration Rules): An integration rule is optionally used as a trdosibetween
logical components of a process to check pre ast@mditions. In Table 4, treederPlaced AP

has a pre-condition that guarantees that the stast have enough goods in stock. Otherwise, the
process invokes thieackOrderPurchase process. TheéreditCardCharged AP has a post-condition
that further guarantees the in-stock quantity ninestn a reasonable status after dbelnventory
operation.

Component 3 (Conditional Rule): In Table 4, theCreditCardCharged AP has a conditional rule
that sends a message noatification for large chafjase no pre or post condition is specified for
the Delivered AP, only the conditional rulehippingRefund is evaluated. Assume the delivery
method was overnight through UPS with an extrapghgpfee. If UPS has delivered the item on
time, then the Delivered AP is complete and execution continues. Otherwise,
refundUPSShippingCharge is invoked to refund the extra fee while the mpmocess execution
continues. If backward recovery with retry takeacpl, it is possible that the process will execute
the same conditional rule a second time. The adfahe rule will only be executed during the
retry process if the action was not executed tts¢ tiime through.
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cgl
agi1 | Add to cart |
ag12 | Select shipping method |
ag13 | Payment information input |
agl4 | Place an order | _ ( A;g:tg:ge 0
cg2
ag21 Charge credit card
ag22 Dec inventory
CreditCardCharged (orderld, cardNumber, amount)
cg3
ag31
UPS shipping USPS shipping
Fe———1— | caiiop
ipped(orderld, . i (Fedex :
UPSShippingDate) USPSShipped (orderld) — shipping).

> Deliver order <

ag4

Delivered(orderld, shippingMethod, deliveryDate)

Check next day >l
automatically

Today < deliveredDate + 30

agd
| Order Close |

Figure 8.0nline Shopping Process with APs
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Table 4 AP Rules in the Online Shopping Process

Integration Rule Conditional Rule
create rule QuantityCheck::pre create rule Notice::cond
event: OrderPlaced (orderld) event: CreditCardCharged (orderld,
condition: exists(select L.itemld from | cardNumber , amount)
Inventory |, Lineltem L where condition: amount > $1000
L.orderld=orderld and L.itemld=L.itemld | action:
and L.quantity>l.quantity) highExpenseNotice(cardNumber)
action: backOrderPurchase(orderld)
create rule QuantityCheck::post create rule ShippingRefund::cond
event: CreditCardCharged (orderld, event: Delivered (orderld,
cardNumber, amount) shippingMethod, deliveryDate)
condition: exists(select L.itemld from | condition: shippingMethod = UPS &&
Inventory |, Lineltem L where deliveryDate !=
L.orderld=orderld and L.itemld=l.itemld | UPSShipped.UPSShippingDate+1
and l.quantity<0) action:
action1: APRetry refundUPSShippingCharge(orderld)
action2: APRollback

A Closer Look at Recovery Actions

This section provides an informal illustration betsemantics of the APRollback, APRetry, and
APCC recovery actions using the generic samplegadn Figure 9 as well as the Online
Shopping example in Figure 8. The remainder of thigpter does not elaborate on the use of
conditional rules. Further details on conditiondes can be found in (Jin, 2004).

The processcfo) in Figure 9 is successively composed of compagibeipscgor, €goz andcgos,
as well asatomic groupsgos andages. The assurance points AP1, AP2 and AP4 are insertibe
cgo scope followingegor, cgo. andagu, respectively. AP3 is inserted in tbgs scope afteagos:.
As a result, AP3 is at a more deeply nested léngi the other assurance points. In the following,
assume that each AP in Figure 9 hasRanand anR.st rule. Recovery actions for failed pre and
post conditions are considered first, followed égavery actions for execution errors.

APRoallback. Recall that APRollback is used to logically rewetke current state of the entire
process using shallow and deep compensation.

Scenario 1 (APRollbackAssume that the post-condition failsA®4 in Figure 9 and that the
action of IRwst is APRollback. Since APRollback is invoked, theogess compensates all
completed atomic and/or composite groups. The ABRck execution sequence is numbered in
Figure 9. First the process invokags.cop to compensateges. Second, the APRollback process
will deep compensatage: by invoking agesr.cop since 1) there is no shallow compensation for
cgos and 2)agos2 is non-critical and therefore has no compensatiogeaure. Finally, APRollback
invokes shallow compensatiogez.cop andcg01.cop.

The APRollback procedure is a standard way of ugsiompensation in past work. The
originality of the rollback process in this worktke way in which it is used together with APs in
the retry and cascaded contingency process to suppdial rollback together with forward
recovery options.

APRetry. APRetry is used to recover to a specific AP amhtretry the recovered atomic and/or

composite groups. If the AP has &g, then the pre-condition will be re-examined. I& thre-
condition fails, the action of the rule is executetiich either invokes an alternate execution path
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for forward recovery or a recovery procedure fatkveard recovery. By default APRetry will go
to the most recent AP. APRetry can also includarampeter to indicate the AP that is the target
of the recovery process.

CGo
Chn1 CQn2

20021

9ot adpz.cOp

agg:+.cop agoor 10D

SR T

adnaz y

agy

(r?éﬁ-critical) 39022-C0P /| 8902 agos

{non-critical) (non-critical)
Cguz,tﬂp
CQo:.COP CQpz-COP CQos.top
cgotop

Figure 9.Generic Process: ScenarioAPRollback

Scenario 2 (APRetry-defaulthssume that the post-condition failsA@ in Figure 10 and that
the action ofiR,st is APRetry. This action compensates to the mastnieAP within the same
scope by default. In Figure 10, APRetry first in@skgos.cop to compensategu at step 1. The
process then deep compensatesby executingagesr.cop at step 2. At this poinAP2 is reached
and the pre-condition dRy. is re-evaluated shown as step 3. If the pre-candifails, the
process executes the recovery actiotRgf. If the pre-condition is satisfied or if therens IR,
then execution will resume again frags. In this case, the process will reagkf a second time
through steps 4, 5 and 6, where the post-condisi@hecked once more. If failure occurs for the
second time, the second action defined on theisutxecuted rather than the first action. If a
second action is not specified, the default actidhbe APRollback as steps 7 through 10.

Scenario 3 (APRetry-parameterized)s shown in Figure 11, now assume that the aation
the pre-condition forAP4 is parameterized a&PRetry(AP1), indicating that the retry activity
should rollback t&AP1. The process will first compensate the procedack lto the point oAP1
through steps 1, 2, 3 and 4, ignoring all APs itwkeen. The process then resumes execution
from AP1 at step 5.

APCascadedContingency (APCC). The APCC process provides a way of searching for
contingent procedures in a nested composition tstrelc searching backwards through the
hierarchical process structure. When a pre or postlition fails in a nested composite group,
APCC will compensate its way to the next outer fayfethe nested structure. If the compensated
composite group has a contingent procedure, itlv@lexecuted. Furthermore, if there is an AP
with a pre-condition before the composite group pre-condition will be evaluated before
executing the contingency. If the pre-conditiorisfaihe recovery action dR,. will be executed
instead of executing the contingency. If theredscantingency or if the contingency fails, APCC
continues by compensating the current compositepgback to the next outer layer of the nested
structure and repeating the process described above
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Figure 10. Scenario 2 (APRetry-default)

Scenario 4 (APCC)Assume that the post-condition failsAd4 in Figure 9 and that th&g.s
action is APCC. The process starts compensatiribiturgaches the parent layer. In this case, the
process will reach the beginning afy, after compensating the entire process through deep
shallow compensation through the same steps asnsimolrigure 9. Since there is no AP before
Cgo, cgo.top is invoked.

Scenario 5 (APCC)Assume that the post-condition failsA®3 in Figure 12 and that tHB.
action is APCC. Sinc@P3 is in cges, which is nested ingo, the APCC process will compensate
back to the beginning @fji;, executingagesi.cop at step 1. The APCC process firkR2 with an
IRy rule for cges at step 2. As a result, the pre-condition will baleated before trying the
contingency forcges. If there is no pre-condition or if the pre-coiit is satisfied, thenges.top is
executed at step 3 and the process continues, shewstep 4. Otherwise, the recovery action of
IRy for AP2 will be executed and the process quits APCC mddwpsltop fails at step 3 then the
process will still be under APCC mode, where thecpss will keep compensating through steps
5 and 6 until it reaches tlg, layer, wherego.top is executed at step 7.
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Figure 11. Scenario 3 (APRetry-parameterized)
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Figure 12. Scenario 5 (APCC)

When process execution encounters an internal, en@running operation first tries the most
immediate contingency. If the contingency succedfts recovery is complete and the execution
continues. If the contingency fails or if therenis immediate contingency, then APCC mode is
invoked.

Scenario §Online Shopping Example - Failure GtargeCreditCard): Returning to the Online
Shopping Example of Figure 8, assume the procelsswhile executingchargeCreditCard. The
process then executes the contingesgytop (eCheckPay). If ag..top fails, then APCC process
begins, during which the process reacheotttePlaced AP, where the pre-condition of the AP is
re-checked (rulQuantityCheck in Table 1). If the pre-condition is violated, thetionbackOrder is
invoked, which means there are not enough goosdtouk.

Scenario 7(Online Shopping Example — Failure @@Shipping): From Figure 8, assume the
process fails on the operatiti®SShipping. Since there is no immediate contingency, the psces
invokes the APCC process, rolling back to @reditCardCharged AP at the outer level. Since
there is no pre-condition defined at th&editCardCharged AP, the contingencycgs.top
(FedexShipping) will be executed. Ifcgs.top fails, the process will be still under APCC mode,
compensating its way back to the beginning of taedaction.

PETRI NET FORMALIZATION OF SERVICE
COMPOSITION WITH ASSURANCE POINTS AND
RECOVERY ACTIONS

In this section, the formal execution semanticshaf web service composition and recovery
model with assurance points and integration rudegrésented using Petri nets. Petri nets have
been useful for modeling systems that demonst@attral flow behavior (Peterson, 1981). Van
der Aalst (1998) was one of the first to use Redts to represent workflow management systems.
Desel (2005) discusses process modeling with Betd. Stahl (2005) also gives the complete
Petri net semantics for the Business Process Hraduhinguage for Web Services (BPEL).
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General Approach

A Petri Net (Murata, 2002) is a directed, connectaul bipartite graph in which nodes represent
places and transitions, and tokens occupy placatte&ted arc in a Petri Net connects a place to
a transition or a transition to a place. The plabes have arcs running to a transition are called
input places of the transition. The places thathares coming from a transition are called output
places of the transition. A transition is enablddew each of its input places has at least one token
After firing a transition, exact one token at ea€lits input places has been consumed, while one
token at each of its output places has been geerat

In the Petri Net formalization of the service comifion and recovery model presented in this
chapter, a transition represents a basic task, asiéghvoking an operation of a process. A place
represents an execution status, a condition, @saurce. A token at the place of an execution
status corresponds to the thread of control infltve. A token at the place of a condition
indicates that some condition regarding the curseatus of a process instance is true. A token at
the place of a resource indicates that the resasrg¢er in some cases is not) available. For
example, in the service composition model, comp@nsés a resource associated with an atomic
or composite group within a process, so resourcegl are used to indicate whether
compensation is or is not available for a giverugto

Before discussing the details of the Petri Net falipation, the notation used in the Petri Net
diagrams is introduced. All transitions are labedsdn inside a transition node. Each place in a
Petri Net has a short phrase beside the place &bt phrases are used to label places due to
limited room in the Petri Net graph. The compleze & all places that appear in the graphs that
follow for atomic and composite execution groups stnown in Table 5, while Table 6 indicates
the places that are associated with graphs for ARs.left column of each table contains the
short phrase of each place. The middle column @mthe actual meaning of places. The right-
most column indicates the type of the place, wisdpecified as status, condition, or resource.

Atomic Group

An Atomic group is the most basic executable unit in the model.atdmic group contains an
operation, an optionakompensation, and an optionatontingency. Figure 13 depicts the execution
semantics for aatomic group as a Petri net. All places standing on the lirfethe® box around a
Petri Net represent the execution status, conditiand resources of the atomic group.

An atomic group is activated when a token appetdageA. By firing transitionT1, the
operation of the atomic group is invoked, indicalbgdhe place labeleRunning. If the operation
succeeds, the atomic group is finished successhyllynarking places through transitionr2.
Otherwise, the operation execution fails and mesalborted to plac&borted by transitionT3. If
an execution error occurs, the process will firgtthe immediatecontingency if it is available.
PlacesT and N_T are two resource places that represent the aildyabr non-availability,
respectively, of an immediateontingency. If place T and aborted are marked, transitiofi4 is
enabled, which means the immediatmtingency is available. By firingT4, the immediate
contingency is running. Note that placdeis a resource place, therefore after firfdga token must
be returned to plack If the immediateontingency succeeds, transitiofY fires and then placg
(successful) is marked. If the immediate contingefails or does not exist, the APCC mode is
triggered to cascade the search domtingencies to outer levels of the process. Transitith
depicts contingency failure by marking placé®_CC (cascaded contingency) andS
(unsuccessful). Similarly, if placd$ T andaborted are marked, transitiofi6 is enabledvhich
represents the case that the immediaténgency does not exist.
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Table 5. Places in an Execution Group Petri Net
SHORT PHRASE MEANING TYPE
A Activate Status
S Group executes successfully Status
Us Group executes unsuccessfully Status
AP_CC AP_Cascaded Contingency Status
AP_RB AP_Rollback Status
AP_RT AP_Retry Status
CA Compensation activates Status
Running Operation executing Status
Aborted Operation aborted Status
T_Running Contingency executing Status
C_Running Shallow compensation executing Status
C_Error Shallow compensation failed Status
C_S Compensation succeeds Status
Critical Critical atomic group Resource
N_ Critical Non-critical atomic group Resource
T Contingency exists Resource
N_T Contingency does not exist Resource
Shallow_C Shallow compensation exists Resource
N_ Shallow_C Shallow compensation does not exist Resource

Table 6. Places in an AP Petri Net

SHORT PHRASE MEANING TYPE
A Activate Status
P AP Passed Status
ALT Alternative Process Status
AP_CC AP_Cascaded Contingency Status
AP_RB AP_Rollback Status
AP_RT AP_Retry Status
APCC_PRE Pre-condition re-check (AP-CC) Status
APCC_P Pre-condition re-check passed (AP-CC) Status
APRT_PRE Pre-condition re-check (AP-Retry) Status
APRT_P Pre-condition re-check passed (AP-Retry) Status
POST_VIO_F First time post-condition violation Condition
PRE_VIO_F First time pre-condition violation Condition
POST_VIO_S Second time post-condition violation Condition
PRE_VIO_S Second time pre-condition violation Condition
POST Post condition exists Resource
N_POST Post condition does not exist Resource
PRE Pre condition exists Resource
N_PRE Pre condition does not exist Resource
POST-Checking Checking post condition Status
PRE-Checking Checking pre condition Status
POST-Passed Post condition passed Status
Pre-Passed Pre condition passed Status
POST-Violated Post condition violated Status
Pre-Violated Pre condition violated Status
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Figure 13. Petri Net of Atomic Group

The discussion above represents the normal atgroigp invocation semantics. The normal
atomic group invocation starts from plagend ends at either plaGeor placedJS andAP_CC.
Now consider the compensation semantics of an atagroup. In Figure 13, if plac€_A
(compensation activity) is marked, the atomic growgeds to be compensated. Here, four
resource places are introduced. Pl@cgcal represents that the atomic group is critical, wher
placeN-Critical indicates that the atomic group is not criticdade Shallow-C represents that the
pre-defined compensation procedure is availableereds placeN-Shallow-C indicates that
compensation is not available. There are four diffeatomic compensation cases in Figure 13:

» Compensation is available and the atomic group is critical: TransitionT8 fires. After

invoking compensation, two different situations nexjst:

» Compensation succeeds. Transition T9 fires and then place€_S is marked,
indicating that compensation is successful.

» Compensation fails: TransitionsT10 fires marking theC_Error status, indicating that
compensation has failed. Then transitibi fires which represents invoking DE-
Rollback or service reset (involving human actiyity reset the error. Finally, place
C_S is marked.

« Compensation is unavailable and the atomic group is critical: Transition T12 fires,

which represents invoking DE-Rollback or servicgete Then plac€_S is marked.

* The atomic group is non-critical: If the atomic group is non-critical, the processtju

ignores the compensation request by firing tramsifi 3 and marking plac€_S.
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To preserve the group condition consisterfcg,tbken at a resource place is consumed after
firing a transition, a new token must be returnedhe resource place immediately after the
transition. For example, in Figure 13, firing trdiosm T8 consumes three tokens at plae8,
Shallow_C and Critical respectively. AfterT8, two new tokens are generated back to places
Shallow_C and_Critical, respectively, as they are resource places. Onetmig¥stion the situation
that a token appears at pla&eA before the atomic group finishes successfully.hSasituation
will never happen, however, since the compensatiancompleted group can only be caused by
an error that occurs in the remainder of the pmcEkerefore, the pladz A can only be marked
by transitions after the completion of the currgrdup. The section below on Deep and Shallow
Compensation will discuss compensation issues tdtipte groups.

Assurance Points

Before describing the semantics of a compositemrtis section first describes the semantics of
APs. Figure 14 gives the Petri Net for AP execusemantics. There are four resource places.
PlacesPOST andN_POST represent the presence and absence of a postioandispectively.
Similarly, placesPRE and N_PRE represent the presence and absence of a preioondit
respectively. In addition, plac®9OST_VIO_F andPRE_VIO_F are condition places indicating that
the post and pre conditions have never been viblatfore. Thus, placeROST_VIO_F and
PRE_VIO_F each must have a default token before executionthé same manner, places
POST_VIO_S andPRE_VIO_S are the conditions indicating that the post arel gonditions have
been violated once, respectively.

A token at placé\ activates the AP. Depending on the status of dmeliion and resource
places, different execution cases exist:

» Post and pre conditions both exist:

» Pos and pre conditions are both satisfied: Firing transitionT1 andT2 represents
that the post-condition is satisfied. FiritrgnsitionT4 andT6 similarly indicates that
the pre-condition is satisfied. Finally, transitidf fires and place® is marked,
indicating that the AP was successfully executedsgpd) with all relevant
conditions satisfied.

* Pogt condition violated: TransitionT1 fires to check the post-condition. If the post-
condition is violated, transitiom3 is fired to mark the status pla®ast-Violated. If
placePOST_VIO_F is marked, indicating that this is the first tinmeetxecute the post
condition, then either transitiorl 1, T12, T13 or T14 will be fired to invoke the first
action of the rule, depending on the rule actioacjration. POST_VIO_S is then
marked If place POST_VIO_S is already marked, indicating that this is the selco
time to execute the post condition, then eithansitéon T15 or T16 will be fired to
execute the second action defined in the rule.

* Post condition passed and pre condition violated: Firing transitionT1 andT2 that
the post-condition is satisfied. Then transitidnfires to check the pre-condition. If
the pre-condition is violated, transitiorY is fired to mark the status pladee-
Violated. If placePRE_VIO_F is marked, indicating that this is the first viddet of the
pre-condition, then either transitidn7, T18, T19 or T20 will be fired to invoke the
first action of the rule an®RE_VIO_S is marked. If place®’RE_VIO_S is already
marked, indicating that this is the second violata$ the pre-condition, then either
transitionT21 or T22 will be fired depending on the second action defiin the rule.

» Only post condition exists. Firing transitionT1 checks the post-condition
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» Pos condition is satisfied: If the post-condition is satisfied, transitid fires and
status placePost-Passed is marked. Because of the absence of a pre-conditi
transitionT9 fires and then pladeis marked.

* Pos condition is violated: TransitionT1 fires to check the post-condition. If the
post-condition is violated, transitidi$ is fired to mark the status pla€est-Violated.

If place POST_VIO_F is marked, indicating that this is the first tinte éxecute the
post condition, then either transitidn1, T12, T13 or T14 will be fired to invoke the
first action of the rule, depending on the ruleiactspecification. POST_VIO_S is
then markedIf place POST_VIO_S is already marked, indicating that this is the
second time to execute the post condition, thdreeiransitionT15 or T16 will be
fired to execute the second action defined in tie r

* Only pre condition exists. Because of the absence of the post-condition, wheAP is

activated, transitiofi5 will be fired to check the pre-condition directly.

» Precondition is satisfied: If the pre-condition is satisfied, transitiofandT8 will
be fired successively. Finally, plaBds marked.

« Pre condition is violated: If the pre-condition is violated, transitidiT is fired to
mark the status plad®&e-Violated. If placePRE_VIO_F is marked, indicating that this
is the first violation of the pre-condition, theither transitionT17, T18, T19 or T20
will be fired to invoke the first action of the euandPRE_VIO_S is marked. If place
PRE_VIO_S is already marked, indicating that this is the selceiolation of the pre-
condition, then either transitior21 or T22 will be fired depending on the second
action defined in the rule.

» Pogt and pre condition do not exist: After placeA is marked, transitiofi10 fires and
then place’ is marked.

Note that there are four unlinked status @aneFigure 14APCC_PRE, APRT_PRE, APCC_P
andAPRT_P. These status places are relevant to the semarfté@scaded contingency and retry
actions, which will be addressed in following sens.

Hierarchical Process Composition

In the service composition and recovery model, mpmsite group is composed of two or more
atomic and/or composite groups and can also hat®nap compensation and contingency
procedures. Clearly, a process under this modelaoatain multiple groups that are embedded at
different levels. To represent the hierarchical elpd hierarchical approach is taken to the use of
Petri Nets. Specifically, a dashed-line quadriteepresents either an atomic or a composite
group. A dashed-arc connecting a transition andaaeprepresents repeating the same token
movement pattern described at the current levelthEtmore, all dashed-line atomic and
composite groups have the same places standinigeolines as introduced in Figure 13 and in
Figure 15. However, to make the graphs conciseutiieked places are omitted in hierarchical
representations. APs that appear in hierarchipabsentations also omit unlinked places. Finally,
to easily explain the semantics of the hierarchicghnization of the diagrams, two group levels
are definedL, is the outer level defined by a solid-ling.is the level of the inner dashed-line
groups. For example, in Figure 15, the outer siatiel-group is at level,and all inner dashed-
line groups, as well as the inner AP, are at lepel
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Figure 14. Petri Net of Assurance Point

Composite Group with Assurance Points

The Petri Net for normal execution semantics obmposite group with APs is shown in Figure
15. A composite group may contain multiple groupd APs. All activities in a composite group
are executed sequentially. Therefore, the normat@ion semantics expressed in Figure 15 are
straightforward. When a token appears at phaatlevell,, transitionT1 fires to activate the first
activity at the inner level,. Upon completion of the first inner activity, amsitionT2 fires and

the next activity is activated. In Figure 15, an i8fvoked after one of the atomic (or composite)
groups. When place at the AP at level,.1is marked, the AP is passed and the inner execution
continues. Finally, after the last inner activityighes, a transition fires and then pl&cat level

L, is marked. It is important to emphasize that iguFé 15, the Petri Net only shows the token
movement pattern of the normal execution semanfiescomposite group. The first activity in a
composite group can be either an AP, an atomicgyroua composite group. However, no matter
what activities a composite group contains, thevitiels are executed sequentially.
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Figure 15. Petri Net of Composite Group with APs

Shallow and Deep Compensation

The semantics of deep and shallow compensationskogn in Figure 16 and Figure 17,
respectively. The special plad®_ACTION is also introduced as a short hand notation for
recovery actions. Because compensation is invokeigmeitheAP-RB (rollback), AP-RT (retry),

or AP-CC (cascaded contingency) mode, we introduce pfC@ACTION in Figures 16 and 17,
representing either plaé®_RB, AP_RT or AP_CC, since a process instance can only be under one
of these recovery modes at any given time. Sodares 16 and 17, placAB_ACTION at levellL,
andL,:1 must represent the same mode status. For exarhpl@ne scenario, place AP_ACTION
represent®\P_RB in Figure 16 at level,, all placesAP_ACTION at levelL,:s must also represent
AP_RB.

First consider deep compensation. Deep compensationoked directly when a composite
group has no shallow compensation. The invocatfatkeep compensation is indicated by firing
transitionT1 in Figure 16. After firingl'1, the token at the resource pla¢ehallow_C at levell,
is consumed but also immediately returned. Alse, tttken at placé&P_ACTION at levell, is
consumed and the placé® ACTION and C_A at last inner group at levél. are marked.
Afterward, all groups at level.s are backward compensated one by one through fiarsii2
andT3. After placeC_S at the first inner group at level1is marked, transitiofi4 is enabled to
finish the compensation of the current level. Tleem compensation ends when plage$ and
AP_ACTION at levelL,are marked.
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In Figure 17, the semantics of shallow compensaisopresented. Shallow compensation
invokes a pre-defined procedure to compensaterttiee eomposite group rather than executing
compensation for each group within the compositeigr However, if shallow compensation fails,
deep compensation is initiated. Firing transitibh indicates the invocation of the shallow
compensation procedure. If the execution of shatlompensation succeeds, plé&cé at levell,
is marked by firing transitioi2. Then the shallow compensation ends. Otherwisesitran T3
fires and the status placghallow_C_Error is marked. To complete the compensation, deep
compensation takes place by firing transitibh Through transitiond5, 76 and 77, the deep
compensation semantics is performed. Finally, gl&c8 andAP_ACTION at levelL, are marked.

Note that during either shallow or deep compensa#id’s are ignored. Also, if the dashed-
line quadrilateral represents an atomic group, @msation semantics defined in Figure 13 takes
effect. If the dashed-line quadrilateral represemtsomposite group, either shallow or deep
compensation invokes depending on the availalwfitye shallow compensation procedure.
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AP-Rollback

AP-Rollback mode is triggered when a status plieeRB at an AP is marked. As shown in
Figure 18, transitiorT1 fires to begin the AP-Rollback mode at lekgh. The purpose of AP-
Rollback is to recover the overall process. Thillsc@npleted groups need to be compensated
under AP-Rollback mode. Through transitioiisand T3, all completed groups at level:s are
compensated. When the first group at ldvelis compensated, transitidd fires and the AP-
Rollback mode is propagated to letglby marking the status placAB_RB andC_S at levelL,.
Then, the same AP-Rollback semantics executedretlg will take effect at level, to further
rollback the overall process. Note that during lthekward recovery, the status pld&d¢eRB at a
completed group is marked when the group is congigrs
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AP-Retry

When a status pladd®_RT at an AP is marked, AP-Retry mode is triggeredufé 19 presents
the semantics of the default AP-Retry mode, whextovers the process back to the most recent
AP and checks the pre-condition before the re-ei@tuln Figure 19, transitiof1 fires to start

the recovery. Similar to AP-Rollback, the statuacplAP_RT at a completed group is marked
when the group is compensating. When the groupafist the most recent AP is compensated,
transition T3 fires and the placdPRT_PRE at the most recent AP is marked. Then the pre-
condition defined at the most recent AP is re-chdclf the pre-condition is satisfied, the status
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placeAPRT_P is marked and transitiof# is enabled to start the retry process. If thequmedition
fails, another action will take place dependingtmnaction specified in the rule.
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Figure 19. Petri Net of AP-Retry (default)

Figure 20 presents the semantics of re-checkingtéeondition under AP-Retry mode. In
Figure 20, if the pre-condition exists, transitidh fires. If the pre-condition is satisfied, the
APRT_P is marked through transitiori@ andT3. If pre-condition is violated, transitior# fires to
mark the status pladere-Violated. At this point, two different situations can occlfrthe place
PRE_VIO_F is marked, either transitiofb, T6, T7 or T8 is fired to invoke the first action and then
PRE_VIO_S is marked. If the placBRE_VIO_S is already marked, either transitid or T10 will
be fired depending on the second action defingfiérrule. In both cases, the process quits AP-
Retry mode and enters a new mode that depend&aoléhaction.
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Recall that the recovery process only allows APAREt occur within one composite group.
For example, AP-Retry only affects levgli in Figure 19 and does not extend to ldvelFor the
Petri Net of the parameterized AP-Retry, refeiGad, L. & Urban, S., 2010).

Figure 20. Petri Net of Re-Checking Pre-ConditiaR{Retry)

AP-Cascaded Contingency

Two situations will trigger the AP-CC mode. Oneniken the process encounters an execution
error. The other is when a post or pre conditiamation invokes the AP-CC action. Furthermore,
if there is an AP just before the failed group,nthbe pre-condition will be checked before
executing the contingency. As a result, there averal different execution scenarios for AP-CC

mode. Only one case is shown in Figure 21. All ottases have similar Petri Nets, which can be
found in (Gao, L. et al., 2010).
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Figure 21 presents the semantics of the AP-CC rrigtgered by an execution error. An AP
exists just before the failed group. If any errappens in a group at leviak, the place&)S and
AP_CC at the failed group are marked. This means thed@jroup has already tried the possible
contingency at level..1, but failed. To maximize forward recovery, the ggss attempts to
execute the contingency at the outer level. FiransitionsT1 and T2 fire to compensate all
completed groups before the failed group at I&vel After the first completed group at leugl
is finally compensated, transitiof8 fires and the plac€_S is marked. Since there is an AP
before the compensated group at ldvethe placeAPCC_PRE at the AP is marked as well after
firing T3 so that the pre-condition is re-evaluated befoymgrthe contingency at levél. If the
pre-condition is satisfied, either transitid or T7 will fire depending on the availability of the
contingency at levdl,.

If the contingency exists, there are two possibkges to consider. If the contingent procedure
is successful, transitiofb fires. The process quif-CC mode by marking the place S at lelel
If the contingent procedure is unsuccessful, ttemsil6 fires. The process is still undaP-CC
mode by marking the plac&$ andAP_CC at levelL,.

If the contingency at levéh does not exist, transitiolY fires and the placd$S andAP_CC at
level L, are marked directly. The unsuccessful result edglise the process to search and execute
other contingencies at the outer levels following $ame semantics described in Figure 21.

Figure 22 presents the semantics of re-checkingrxeondition under AP-CC mode. This is
the same semantics as in Figure 20, except thahRhiogic starts at the pladd’CC_PRE and
ends at the placAPCC_P if the pre-condition is satisfied. If the pre-cotah is violated, the
process quits AP-CC mode and enters a new recanedg depending on the action of the pre-
condition rule.
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PROTOTYPE IMPLEMENTATION

A prototype execution environment has been develdpedemonstrate the extended service
composition and recovery model with APs and intignarules. The execution environment does
not directly use BPEL since the broader scope ef rissearch is addressing techniques for
decentralized data dependency analysis amonghdittd Process Execution Agents (PEXAS)
(Urban, Liu & Gao, 2009). Existing BPEL engines dot provide the flexibility needed to
experiment with this form of decentralized commatimn among process execution engines.
BPEL also has limitations with respect to demottistgathe functionality described in this paper
as outlined in the following section that addressesmparison of the assurance point concept to
the BPEL fault handler. The process specificatimmework, however, is based on BPEL using
previous work with the Process Modeling Languagell(Pdescribed in (Ma, Urban, Xiao, &
Dietrich, 2005).

The process specification framework uses a mingeéalof activities, such assign, invoke,
and switch to illustrate the functionality of APs and the difént forms of recovery. Figure 23
shows a sample process in XML to illustrate thetayrfor defining atomic <ag ...>) and
composite €cg ...> ) groups with compensatingcop ...>) and contingent<fop ...>) procedures.
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The syntax for APs and their parameters is alsstilhted €ap ...>). Integration rules are also
specified using an XML format as shown in Figure 24

<cg name= “cg0">

<ap name= “OrderPlacedAP">
<apDataln variable="orderld” />
</ap>
<cg name="cg2">
<ag name = “ag21”
<invoke name="chargeCreditCard” serviceName="chargeCreditCard”
portType="cc:CreditCardPortType” operation="chargeCreditCard”
inputVariable = “chargeCardinput’
outputVariable = “chargeCardtOutput” />
<top name="top21">
<invoke name="eCheckPay” serviceName="eCheckPay”
portType=“cc:CreditCardPortType” operation="eCheckPay”
inputVariable = “makePaymentinput”
outputVariable = “makePaymentOutput” />
</top>
<cop name="cop21”>
<invoke name="creditBack” serviceName="creditBack”
portType=“cc:CreditCardPortType” operation=" creditBack”
inputVariable = “makePaymentinput”
outputVariable = “makeRefundOutput” />
</cop>
</ag>

</cg>

<ap name= “creditCardChargedAP”>
<apDataln variable="orderld” />
<apDataln variable="cardNumber” />
<apDataln variable="amount” />

</ap>

</C§>
Figure 23. PML Activity Syntax

The parser for the XML Java binding process has eglemented in the execution engine
using XMLBeans. For each activity defined in a e a wrapper class has been developed that
implements the semantics of the activity. AP datatored in a db40 object-oriented database.
The functionality described in this paper has biely developed to test and demonstrate all
algorithms associated with the creation and us@&PRs, rules, and recovery procedures. The
execution engine has also integrated the use ofaflBgecovery procedures into #flewgroup>
activity of BPEL to demonstrate how APs are usetha context of parallel execution threads.
Discussion of the use of APs with tkflowgroup> activity, howver, is beyond the scope of the
current chapter.
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<rules>

<event ap="orderPlacedAP">
<pre>
<ecaRule>
<condition name="QuantityCheck”
<invoke name="checkQuantity" serviceName="ruleConditions"

portType="rule:ruleConditionsPortType” operation="checkQuantity1"
inputVariable="quantity" outputVariable="result" />

</condition>

<actions>
<action name="backOrderPurchase”>
<invoke name="packOrderPurchase" serviceName="shopping"
portType="sho:ShoppingPortType” operation="BackOrderPurchase"
inputVariable="orderld" outputVariable="result" />
</action>
</actions>
</ecaRule>
</pre>
</event>

<[rules>

Figure 24. Integration Rule Syntax

COMPARISON TO THE BPEL FAULT HANDLER

This research has included a comparison of the Aéetnwith the BPEL fault and compensation
handlers. In BPEL, when a fault occurs, the faaldier attached to a scope catches the fault.
The aim of the fault handler is to continue thecpss execution, which might require undoing
certain actions already completed in the currenpsc Since the compensation handler defines
the semantics of undoing such changes, the faultlba may start the compensation handler
(Khalaf et al., 2009). Similar to our approach ofed and shallow compensation, the
<compensate> activity does the compensation of the completeilities in the nested scopes,
whereas, thecompensateScope> activity causes compensation of one single coragdlstope. If
any of the handlers are not specified, then thaudehandler is assigned to each scope. Default
compensation invokes the installed compensatiomieen for all the inner scopes. When the
default compensation is applied to a scope, thepeosation handlers are executed in reverse
order of completion of the scopes.

The work in (Khalaf et al.,, 2009) highlights two imaproblems with the fault and
compensation mechanism in the current BPEL standargarticular, compensation order can
violate control link dependencies if control linksoss the scope boundaries. In addition, high
complexity of default compensation order can reduét to default handler behavior. Like BPEL,
the AP model also honors control links between yseepes. Unlike BPEL, however, the order of
compensation is clear since the AP approach doesupport control links between non-peer
scopes, making the semantics of compensation ilEFhapproach unambiguous. In addition, the
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AP model supports a hierarchical structure duriompensation as promoted in (Khalaf et al.,
20009).

In general, the notion of compensation should Bescapable of handling constraint violations
(Coleman, 2005). Since BPEL’'s compensation handiiveghanism through thecompensate>
activity can only be called inside a fault handiis limits the ability to call compensation
outside of a fault handler. Thus, a fault has touodo invoke a compensation procedure. In the
case of the AP model, compensation can be invokeihg normal execution (no error has yet
occurred) when integration rules are not satisfidis allows a flexible way to recover the
process through compensation in response to cartstialations.

BPEL does not explicitly support a contingency featother than fault, exception, and
termination handlers. The designer is also resptm&r complex fault handling logic, which, as
pointed out in (Coleman, 2005; Khalaf et al., 200@)s the potential to increase complexity and
create unexpected errors. The AP model provideBciixpontingency activities so that forward
recovery is possible. Compared to BPEL, the APdatjows designers to have a clearer notion
of how recovery actions take place and at the stime provide flexibility through different
recovery actions depending upon the status of é¢xecwand user-defined integration rule
conditions.

SUMMARY AND FUTURE DIRECTIONS

This research has defined a hierarchical servieeposition model that provides multi-level
protection against service execution failure byngstompensation and contingency at different
composition granularity levels. The model has beahanced with the concept of assurance
points and integration rules to provide a flexifalay of checking constraints and responding to
execution failures. As a combined logical and ptaistheckpoint, an AP is used for user-defined
consistency checking, invoking integration ruleattbheck pre and post conditions at different
points in the execution process. The unique aspkE@&Ps is that they provide intermediate
rollback points when failures occur that allow aqess to be compensated to a specific AP for
the purpose of rechecking pre-conditions beforeyrattempts. APs also support a dynamic
backward recovery process, known as cascaded gentiy, for hierarchically nested processes
in an attempt to recover to a previous AP that lsarused to invoke contingent procedures or
alternate execution paths for failure of a nestetgss. As a result, the assurance point approach
provides flexibility with respect to the combinesgleuof backward and forward recovery options.
Petri Nets have been used to define the semartitsecassurance point approach to service
composition and recovery.

There are several directions for future researchdéscribed in the implementation section,
assurance points and the recovery actions desdnltéds chapter have already been extended to
support parallel execution threads within a proc®és are currently in the process of extending
the Petri Net formalization to describe the behawb APs and recovery actions for parallel
execution groups. We are also evaluating other-tagél Petri Net theories, such as colored Petri
Nets (Jensen, 1987), timed Petri Nets (Ramchand8ii3), and the Workflow Net approach of
Van Del Aalst (2005) to provide a more concise apph to description of the model.

Our research is also extending the concept of iatem rules in several ways. One extension
involves the use of invariant rules. Invariantsvide a way to monitor the status of a condition in
between two different APs to provide a more optiimisiay for concurrent processes to access
the same data. When a condition is violated, age®@an be interrupted to invoke recovery
procedures. Our initial results with the use ofaimants are described in (Courter, 2010). We are
also extending integration rules to the conceptppilication exception rules (AERs). AERs allow
a process to be interrupted by an external evedtt@arrespond to the event depending on the

37



execution status of the process as determinedeébyntist recent AP that has been executed. We
are also integrating the use of AERs with the diaf@endency analysis algorithms in (Urban, Liu,
and Gao, 2009) so that the recovery process catifidelata dependencies among concurrently
executing processes and use AERs as a means toucocate with the dependent processes of a
recovered process about the need to check corsistenstraints and possibly invoke recovery
procedures.
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