
International Journal of Web Services Research , Vol.X, No.X, 200X

 1

Decentralized Communication for Data Dependency Analysis
Among Process Execution Agents

Susan D. Urban, Ziao Liu, Le Gao

Texas Tech University
Department of Computer Science

Lubbock, TX 79409
susan.urban@ttu.edu, ziao.liu@ttu.edu, le.gao@ttu.edu

ABSTRACT:

This paper presents our results with the investigation of decentralized data dependency analysis
among concurrently executing processes in a service-oriented environment. Distributed Process
Execution Agents (PEXAs) are responsible for controlling the execution of processes that are
composed of web services. PEXAs are also associated with specific distributed sites for the
purpose of capturing data changes that occur at those sites in the context of service executions
using Delta-Enabled Grid Services. PEXAs then exchange this information with other PEXAs to
dynamically discover data dependencies that can be used to enhance recovery activities for
concurrent processes that execute with relaxed isolation properties. This paper outlines the
functionality of PEXAs, describing the data structures, algorithms, and communication
mechanisms that are used to support decentralized construction of distributed process dependency
graphs, demonstrating a more dynamic and intelligent approach to identifying how the failure of
one process can potentially affect other concurrently executing processes.

KEY WORDS:
Service composition, concurrent processes, data dependency analysis, process execution agents,
decentralized communication, failure and recovery

INTRODUCTION

One of the advantages of service-oriented computing is that it allows business processes to be
composed by executing distributed web services (Jordan, Evdemon et al., 2007). Unlike
traditional distributed transaction processing, however, since each service is autonomous and
platform-independent, the commit of a service execution is controlled by the residing service
instead of the global process. As a result, processes composed of web services do not generally
execute as transactions that conform to the concept of serializability. Since a service can commit
before a global process is complete, dirty reads and dirty writes can occur among globally
executing processes.

From an application point of view, dirty reads and dirty writes do not necessarily indicate an
incorrect execution, and a relaxed form of correctness dependent on application semantics can
produce better throughput and performance. User-defined correctness of a process can be
specified as in related work with advanced transaction models (Rolf, Klas et al., 1998) and
transactional workflows (Worah and Sheth, 1997), using concepts such as compensation to
semantically undo a process. But even when one process determines that it needs to execute
compensating procedures, information about global data dependencies is needed to determine
how the data changes caused by the recovery of one process can possibly affect other processes
that have either read or written data modified by the services of the failed process. This ability to
capture and analyze data dependencies in a service composition environment does not exist in

International Journal of Web Services Research , Vol.X, No.X, 200X

 2

current service-oriented architectures, thus creating data consistency problems for concurrent
execution and limiting the effectiveness of recovery procedures for failed processes.

This paper presents our results with the investigation of an approach that performs decentralized
data dependency analysis among concurrently executing processes in a service-oriented
environment. In particular, we present the concept of Process Execution Agents (PEXAs) and the
manner in which multiple PEXAs communicate to discover data dependencies that can be used to
support recovery activities. PEXAs are responsible for controlling the execution of processes that
are composed of web services. PEXAs are associated with specific distributed sites and are also
responsible for capturing and exchanging information with other PEXAs about the data changes
that occur at those sites in the context of service executions.

The ability to capture data changes, known as deltas, builds on our past work with the use of
Delta-Enabled Grid Services (DEGS) (Blake 2006; Urban, Xiao et al., 2009a). DEGS are Grid
Services that have been extended with the capability of recording and externalizing incremental
data changes using features such as Oracle Streams (Tumma, 2004). Whereas the work in (Urban,
Xiao et al., 2009a; Xiao, 2006; Xiao and Urban, 2008a) forwarded streaming deltas from multiple
DEGS to a single, time-ordered, delta object schedule for a centralized approach to data
dependency analysis, the work presented in this paper has extended the data dependency analysis
process to support decentralized communication among multiple PEXAs. Each PEXA creates its
own local delta object schedule that can be used to create process dependency graphs. But since a
process can execute services that are associated with multiple PEXAs, the data dependency
analysis process requires a global view of distributed process dependency graphs.

This paper outlines the functionality of PEXAs and also describes the data structures, algorithms,
and communication mechanisms that are used to achieve a decentralized approach to the analysis
of data dependencies and the construction of distributed process dependency graphs (Liu, 2009;
Urban, Liu et al., 2009b). Two different decentralized algorithms for data dependency analysis
have been developed. One approach, known as the lazy algorithm, defers the analysis of data
dependencies until the failure of a process. When a process fails, PEXAs communicate to
construct a distributed process dependency graph that is used to control recovery activities. The
other approach, known as the eager algorithm, constructs distributed process dependency graphs
during process execution so that dependency information is already known at the time of process
failure. One of the challenges with building distributed process dependency graphs is discovering
the hidden dependencies that are created by having each PEXA maintain its own local delta
object schedule. We describe the use of link objects and other runtime control information that is
used to discover hidden dependencies as well as global cycles in the construction of distributed
process dependency graphs. We also illustrate how the distributed graphs are used to propagate
recovery procedures, with a simulation and evaluation that addresses graph construction time and
the number of sub-graphs generated within a distributed dependency graph.

The decentralized approach eliminates the bottleneck and overhead reported in (Urban, Xiao et al.,
2009a) of forwarding all data changes to a central point for analysis. More importantly, the
distributed delta object schedule and decentralized data dependency algorithms described in this
paper represent a new way of integrating existing transaction processing theories with execution
platforms that can be used to address data consistency issues for concurrent process execution in
service-oriented environments, providing more dynamic and intelligent ways of monitoring
failures, detecting dependencies, and responding to failures and exceptional conditions.

In the remainder of this paper, we first present related work. We then outline the functionality of
PEXAs together with an illustration of graph construction issues for decentralized data

International Journal of Web Services Research , Vol.X, No.X, 200X

 3

dependency analysis. We then present the algorithms for the lazy and eager approaches to
decentralized data dependency analysis, followed by an evaluation of the algorithms in a
simulation environment. The paper concludes in with a summary and discussion of future
research directions.

Related Work

This section first summarizes past work with advanced transaction models and transactional
workflows. We then address recent work with recovery issues for service-oriented. The section
concludes by presenting background on our own past research with the DeltaGrid project that
provides the basis for the work described in this paper.

Advanced Transaction Models

Advanced Transaction Models (ATMs) were designed to relax traditional ACID properties and
the use of the two-phase commit protocol to provide functionalities such as compensation for
backward recovery and contingency for forward recovery. ATMs providebetter support for Long
Running Transactions (LRTs) that need relaxed atomicity and isolation properties (Cichocki,
Helal et al., 1998). In the work of (Garcia-Molina and Salem, 1987), sagas were defined as a
mechanism to structure long running processes. A saga defines a chain of transactions, with each
sub-transaction having a compensating procedure to reverse the affects of the saga when it fails.
Other advanced transaction models, such as the multi-level transaction model and the flexible
transaction model have made use of compensation for hierarchically structured transactions (Rolf,
Klas et al., 1998). In fact, current standards for web services, such as WS-BPEL (Jordan,
Evdemon et al., 2007) and WS-Business Activity (Newcomer, Robinson et al., 2006) build on the
concept of compensating procedures as a means of recovery. These models, however, do not
support isolation of data and do not address recovery for dependent transactions in loosely-
coupled applications.

Transactional Workflows

The term transactional workflows was introduced to recognize the relevance of transactions to
workflow activity. Unlike database transactions, transactional workflows do not support all ACID
properties. Transactional workflows involve the coordinated execution of multiple related
tasksthat support access to heterogeneous, autonomous, and distributed data through the use of
selected transactional properties for individual tasks or entire workflows (Worah and Sheth,
1997). The ConTract Model provides a classic example of work with transactional workflows
(Wächter and Reuter, 1992), supporting the correct execution of non-atomic, long-lived
applications with application-dependent consistency constraints. The ConTract Model provides
compensation for backward recovery, and user-defined consistency through the specification of
pre-conditions or post-conditions for steps. Other examples of transactional workflow models
include the Workflow Activity Model (Eder and Liebhart, 1995), the Crew Project (Kamath and
Ramamritham, 1998), and METEOR (Worah and Sheth, 1997).Transactional workflow models
have improved the robustness of distributed transaction executions, but the work in this area still
does not address the affect that a failed process can have on other concurrently executing
processes. Most of the work in this area depends on declared knowledge of workflow
dependencies.

Workflow management systems have been studied in the context of transaction workflows.
Workflow Management Systems typically provide exception handlers to support backward and

International Journal of Web Services Research , Vol.X, No.X, 200X

 4

forward recoveries (Chiu, Li et al., 2000; Hagen and Alonso, 2000; Kiepuszewski, Muhlberger et
al., 1998). However, correctness in workflow management is still an open question, especially
with respect to data consistency issues (Kamath and Ramamritham, 1996).

Transactional Issues for Service Compositions

Numerous other techniques are being investigated for addressing data consistency in service
composition. Tentative holding is used in (Limthanmaphon and Zhang, 2004) to achieve a
tentative commit state for transactions over Web Services. Acceptable Termination States (ATS)
(Bhiri, Perrin et al., 2005) are used to ensure user-defined failure atomicity of composite services.
The concept of a promise is used in (Greenfield, Fekete et al., 2007), where a promise is an
agreement between a client and a resource owner, allowing a service provider to offer assurances
that resources will be available when they are needed. A reservation-based protocol is defined in
(Zhao, Moser et al., 2005) where a process uses an explicit reservation phase to request resources,
followed by an explicit confirmation/cancellation phase. By borrowing the trigger feature in
active database, compensation rules are defined for all subtransaction operations in (Strandenæs
and Karlsen, 2002). To enhance compensation flexibility, work such as that in (Lin and Liu, 2005)
has used business rules to alter the execution of compensating procedures. Other techniques
include Web Services Composition Action (Tartanoglu, Issarny et al., 2003), WebTransact (Pires,
Benevides et al., 2003), and the work of (Vidyasankar and Vossen, 2004), defining a model that
supports features such as atomic transactions, pivot transactions, compensatable transactions, and
re-triable transactions, as well as forward and backward recovery techniques.

In the above techniques, the question of how the recovery of a composite process could possibly
affect other concurrently executing processes has not been addressed. The technique presented in
this paper dynamically analyzes write dependencies and potential read dependencies among
concurrently executing processes by capturing data changes from distributed service executions
and providing an intelligent, decentralized approach to discovering dependencies that can be used
to enhance recovery techniques such as those described above.

The DeltaGrid Project

The research described in this paper builds on our past work with the DeltaGrid project (Xiao,
2006; Xiao and Urban, 2008a; Xiao and Urban, 2008b) and Delta-Enabled Grid Services (DEGS)
(Blake 2006; Urban, Xiao et al., 2009a). A DEGS is a Grid Service that has been enhanced with
an interface that provides access to the incremental data changes, or deltas, that are associated
with service execution in the context of globally executing processes. A DEGS uses an OGSA-
DAI Grid Data Service for database interaction. The database captures deltas using capabilities
provided by most commercial database systems. In (Urban, Xiao et al., 2009a), we experimented
with triggers and with the use of Oracle Streams as a way to capture data changes. Oracle Streams
is a feature that monitors database redo logs for changes and publishes these changes to a queue
to be used for data sharing (Tuma, 2004).

Deltas captured over the source database are stored in a local delta repository. Deltas are then
generated as a stream of XML data from the delta repository to the Process History Capture
System (PHCS) of the DeltaGrid execution environment, where a complete execution history for
distributed, concurrent processes is formed. The execution history includes deltas from
distributed DEGSs and the process runtime context generated by the process execution engine.
Deltas are dynamically merged using timestamps as they arrive in the PHCS to create a time-
ordered schedule of data changes from distributed DEGS. This global delta object schedule is

International Journal of Web Services Research , Vol.X, No.X, 200X

 5

used to support recovery activities when process execution fails (Xiao and Urban, 2008a). The
global delta object schedule can be used to support the backward recovery of a completed service
and also provides the basis for discovering data dependencies among processes. Data
dependencies are used to identify concurrently executing processes that may be affected by the
failure and recovery of a process that is accessing shared data. The work in (Xiao and Urban,
2008b) describes a technique that uses user-defined rule conditions to determine the recovery
actions of processes that are dependent on a failed process.

Our past research results have demonstrated the feasibility of the DeltaGrid approach to analyzing
data dependencies among concurrently executing processes, but identified the centralized
approach to data dependency analysis as a major bottleneck in the process. The results presented
in this paper extend the data dependency analysis concept to a decentralized approach, where
multiple Process Execution Agents maintain local delta object schedules and communicate as
peers to share information about common data access patterns among concurrent processes.

Process Execution Agents (PEXAs)

This section provides an initial overview of process execution agents. The discussion begins with
an example execution scenario in Figure 1, where we assume there are three PEXAs in the
decentralized environment. Each PEXA is indicated as a rectangular box and is associated with a
distributed site (Di) that has a DEGS interface and possible multiple databases. Executing
processes are indicated as circles, with lightening bolts indicating the PEXA that is controlling
the execution of the process. A solid line from a process to a DEGS interface represents a service
invocation. Dashed lines between PEXAs indicate decentralized communication among PEXAs.
Data changes that are made by each DEGS are forwarded to the PEXA that is associated with the
DEGS and stored in the local delta object schedule. This section presents an example execution
scenario, describes the internal architecture of a PEXA, and outlines challenges for decentralized
data dependency analysis.

A PEXA Execution Scenario

As shown in Figure 1, each PEXA is responsible for controlling the execution of local processes
that are composed of service executions. Each process is invoking services that modify data at
distributed sites. For example, site D1 is controlling the execution of p1 and p4. Process p1 is
composed of two service executions identified as op11 and op12, both executing at D1. Process p4
executes op41, also at site D1. Site D2 controls the execution of p2, where p2 executes op21 at D1and
op22 at D2. Site D3controls the execution of p3, which is executing op31 at D2, op32 at D1, and op33 at
D3.

As indicated in Figure 1, each invocation of an opij has a timestamp, tx, indicating the time at
which the operation is invoked. The box inside each PEXA provides a snapshot of the local delta
object schedule for the data items that are being modified by each service that accesses data at the
site, illustrating the interleaved data access by the service invocations of concurrent processes.
For example, the delta object schedule for D1 shows that objects X1 and Y1 have been modified.
The schedule indicates the operations that have made the modifications and orders the schedule
by the operation timestamps. The local schedule at D1 indicates that p2 is dependent on p1 since
op21 has modified X1 after op11 has modified X1 and p1 is still executing. The schedule also
indicates that p4 is dependent on p3 through access to Y1. At D2, the operations have accessed data
item X2, with the local schedule indicating that p3 is dependent on p2.

International Journal of Web Services Research , Vol.X, No.X, 200X

 6

Figure 1: Decentralized Process Execution Agents

Internal PEXA Architecture

Figure 2 shows the internal architecture of a PEXA. A PEXA contains a process execution
component, such as a BPEL processor, with a Process History Capture System that records
runtime information about the status of each executing process. Our implementation uses the
db4o object-oriented database (Paterson, Edlich et al., 2006) to record the runtime status of each
process and to record the data changes that are communicated to the PEXA from each DEGS
associated with the PEXAs local environment.

The local delta object schedule is an indexing structure defined in (Xiao, 2006) that sequences
data changes in the delta repository according to time stamps and allows the recovery system to 1)
analyze data dependencies and 2) retrieve delta information at different levels of granularity (e.g.,
all changes associated with a specific process or all changes associated with a specific service
invocation within a process). The data dependencies are used by the recovery algorithm to
identify processes that are write dependent on a failed process. There is no explicit data about
read dependencies, so potential read dependencies are identified using runtime information about
overlapping service execution as defined in (Xiao and Urban, 2008b). Dependent processes can
then query delta values, checking user-defined conditions to determine if they need to recover
(i.e., execute compensating procedures) or continue running.

As part of the recovery process, a PEXA builds a process dependency graph based on the
information in its local delta object schedule. But since a process can execute services at multiple

International Journal of Web Services Research , Vol.X, No.X, 200X

 7

sites, each monitored by a different PEXA, a PEXA must communicate with other PEXAs to
construct a global, distributed view of process dependencies when a process fails. Furthermore,
local process dependency graphs are extended with a structure known as a link object to assist in
the construction of the global, distributed view. The next subsection elaborates on the use of link
objects and other runtime information to construct global, distributed process dependency graphs.

Figure 2: Internal PEXA Architecture

Challenges for Decentralized Data Dependency Analysis

The objective of decentralized data dependency analysis is to construct a virtual, global process
dependency graph to determine all active processes that are potentially affected by the recovery
of a failed process. For example, if p2 is dependent on p1 and p3 is dependent on p2, then if p1 fails,
the global process dependency graph is p1←p2←p3. As a simplification, this research assumes that
a failed process and every dependent process of the failed process executes a compensating
procedure as part of the recovery process, creating a cascaded recovery process. This is a worst-
case scenario for constructing the full process dependency graph. Extensions to this simplification
are addressed at the end of this paper in the context of future research directions for the use of
user-defined correctness conditions.

If the data changes for all active processes are in one delta object schedule, as originally defined
in (Xiao, 2006), the construction of a global process dependency graph is straightforward. The
challenge with the use of multiple PEXAs is that the delta object schedule is distributed among
several PEXAs. As a result, a global view of process dependencies must be discovered through
PEXA communication.

As an example, consider again the process execution scenario in Figure 1. Figure 3 shows the
interleaved execution view of each process and operation from a data access point of view when
op12 fails at time t8. The global process dependency graph for the four active processes is shown in
the upper right part of Figure 4, indicating that the process dependency graph is p1←p2←p3←p4.
The recovery process is invoked when op12 fails at site D1 and invokes the compensation of p1,
which is controlled by PEXA 1. Figures 3 and 4together illustrate that PEXA 1 can detect that p2
is dependent on p1 due to modification of X1. PEXA 1 can also detect that p4 is dependent on p3
due to modification of Y1, but PEXA 1 cannot identify this dependency as part of the global
graph for p1 because of the distributed nature of the execution. As shown in Figure 4, p3 is not

International Journal of Web Services Research , Vol.X, No.X, 200X

 8

dependent on p1, p2, or p4 based on data access patterns at D1, but p3 is dependent on p2 based on
data accessed at D2. Disconnected graphs such as those in PEXA 1 of Figure 4 are referenced to
as hidden dependencies. Additional execution information must be recorded to link together all
distributed components of the graph and to identify hidden dependencies within a single PEXA.

In particular, the runtime information about processes must be extended to record information
about the distributed execution. When a service is executing at a PEXA, it is important to record
whether the service is invoked by an internal or external process. An internal process is a process
that is controlled by the PEXA where the service is invoked. An external process is a process that
is controlled by a PEXA different from the one where the service is invoked. For example, in
Figure 1, op21 executes at the site of PEXA 1 but is invoked by a process running at PEXA 2. As a
result, p2 is marked as an external process (EX) in PEXA 1 within Figure 4. Using the same
rationale, p3is marked as external in PEXA 2 (because of op31) and also in PEXA 1 (because of
op32).

In the opposite direction, a PEXA that controls a process that invokes a service at a different site
must create a link object to record information about the site where the service is executed. In
Figure 4, PEXA 2 creates a link object to indicate that op21 of process p2 is executed at the site of
PEXA 1. PEXA 3 creates two link objects to record the fact that op31 executes at PEXA 2 and op32
executes at PEXA 1. Used in combination, link objects together with an indication of internal or
external process invocation can be used to dynamically discover global, distributed process
dependency graphs. The following section elaborates on the algorithm for constructing distributed
process dependency graphs among decentralized PEXAs.

Figure 3: Data Access View of Interleaved Execution

Dependency Analysis Using the Lazy Algorithm

Two recovery algorithms are proposed to achieve decentralized data dependency analysis. The
lazy algorithm assumes that every process runs successfully and that a PEXA does not start to
build the process dependency graph until one process fails. The eager algorithm dynamically
builds graphs at runtime during service. As a result, process dependency graphs are available as
soon as any process fails. This sectionaddresses the lazy algorithm (Urban, Liu et al., 2009b),
describing dependency graph construction under the lazy approach and propagation of the
recovery process among multiple PEXAs. The eager algorithm is addressed in the following
section, describing dependency graph construction during process execution. Both algorithms are
demonstrated using the execution scenario from Figure 1.

International Journal of Web Services Research , Vol.X, No.X, 200X

 9

Figure 4: Global, Distributed Process Dependency Graph

The distributed graph construction and recovery algorithm is invoked upon the failure of a service
within a process. The approach is to construct an initial process dependency graph at the site of
the failure by calling findProcessDependencies(processId), where processId is the identifier of the
failed process. The graph is then used to 1) recover local service executions and 2) find
information about external processes and link objects to communicate with other PEXAs about
propagation of recovery and graph construction activities. Link objects point to services that are
under the control of a process at the current PEXA but were executed at a different PEXA,
whereas services marked as external (EX) have executed at the current PEXA but are under the
control of a process at a different PEXA.

Preliminary Issues for Graph Construction and Analysis

The process dependency graph data structure is created to store information about data
dependencies at the process level. Let opjk represent a service invoked from process pj and opmn
represent a service invoked from process pm. If opmn is write dependent (or potentially read
dependent) on opjk, then pmis identified as dependent on pjin a process dependency graph for pj
when pjfails. In the graph, nodes represent processes and edges represent process dependencies.
For example, if p1 is dependent on p2, then the dependency p2p1 is stored in the graph as two
nodes, with an edge pointing from p1 to p2. The graph is represented as a hashmap called
adjacencyMap that combines a key-value pair for fast retrieval, where a process is a key and its
value is a list to store all processes that are immediately read and/or write dependent on another
process. Dependencies are found using procedures in (Xiao, 2006) for querying a delta object
schedule. After finding immediate dependencies, transitive dependencies are recursively found.

There can potentially be cycles in a process dependency graph. For example, suppose the
following cycle exists: p1←p2←p3←p1when p1 fails, where p1 and p3 are dependent on each other.
The dependency of p3 on p1 was created before the dependency of p1 on p3. For the lazy algorithm,
since the graph is constructed to control the order of the recovery process, a cycle when detected
is not needed in the graph. In the above example, p1 will be recovered before p2 and p2 will be
recovered before p3. As a result, it is not necessary to enter the cycle in the graph since p1 is

International Journal of Web Services Research , Vol.X, No.X, 200X

 10

recovered before p3 is recovered. Here, compensation is used as a logical approach to backward
recovery. The difficulty with cycles is that the graph is distributed. A PEXA must therefore be
capable of dealing with local and global cycles.

Local cycles can be detected using information in the local delta object schedule. The method
addVertex(pi) is used to add nodes that represent processes (pi) to the graph (g). A process is added
to a graph only if a node representing the process does not already exist. The method addEdge(pi,
pj) is used to create an edge in g, indicating that pjis dependent on pi. To avoid local cycles, the
method addEdge(pi, pj) prevents cycles by first checking to see if pj is already a parent of pi in the
graph. If so, the edge is not created to avoid a cycle. The variable result is a list that defines the
current value of the dependency graph using a breadth first traversal. The traversal() method is
used to do a breadth first traversal of the graph and return the value of result.

Information about a service execution that was requested by an external process is stored in the
runtime information component of a PEXA. The structure of an entry in the schedule is:

- pName(the process name)
- pId(the process identifier)
- opName(the operation name)
- opId(the operation identifier)
- oId(the object identifier)
- PEXAId(the controlling PEXA)
- inOrEX(indicating whether a process is local or external)
- status(the execution status of the process)

The inOrEx field distinguishes between service execution requested by a local (i.e., internal)
process and service execution requested by an external process running at another PEXA. This
information is queried during the graph construction process to indicate that notifications must be
sent to the corresponding PEXA about propagation of the recovery and graph construction
process.

Because the processes in the process dependency graph can come from multiple PEXAs as
remote operations composing processes, the location of a process in the controlling PEXA needs
to be identified so that the dependency analysis can be conducted in a decentralized manner. Link
objects are used to support this capability. Link objects are virtual references to the external
operations and are created by a PEXA when a process executing at a local PEXA invokes a
service at a remote site. The structure of a link object is:

- processId(identifier of the controlling process)
- opName (name of the service)
- opId(service identifier)
- degsId(DEGS identifier)
- status(indicating successful or compensated)

A db4o database is used to store the link objects of each PEXA. During recovery, a PEXA can
compensate all its operations, both local and remote ones. The use of link objects supports the
detection of hidden dependencies. Link objects are also needed for propagation of the recovery
and graph construction process. The link object attribute status is used to address distributed
cycles. The attribute indicates the status of an external operation as either successful or
compensated. When an external operation finishes executing successfully, it will send its
successful status back to the controlling process and update the corresponding link object. If the

International Journal of Web Services Research , Vol.X, No.X, 200X

 11

service is later compensated at the execution site, a notification will be sent back to the
controlling process to change its status to compensated. This value is used in the propagation of
the recovery and graph construction process to avoid distributed cycles (i.e., to prevent invoking
compensation of procedures that have already been compensated). The use of this value and the
decentralized algorithms will be illustrated in the following two sections.

The Lazy Algorithm

Figure 5 provides pseudocode of the graph propagation for the lazy algorithm. This procedure is
called after the PEXA discovers a failed process and the failed process is passed to the procedure
findProcessDependencies(processId). Two list variables for dependency detection are created,
processWDon for write dependency and processRDon for read dependency. These lists indicate the
processes on which the service is write or potentially read dependent.

Figure 5: findProcessDependencies() Procedure

The findProcessDependencies() procedure first finds all of the immediate dependent processes of
the failed process, both write dependencies and potential read dependencies. Write dependencies
are collected from the local delta object schedule by the method

public void findProcessDependencies (String processId) //failed process id
{
 //create a new vector
 Vector pListWD=new Vector();
 Vector pListRD=new Vector();

 //create a new list to store all the dependent processes based on the failed one
 List result=new LinkedList();

// n is used for building graphs
int n=0;

 //get all the processes that are write dependent on failed process or read
 //dependency
pListRD=ProcessInfoAccess.getReadDependentProcessListOnProcess(processId)
pListWD=GlobalScheduleAccess.getWriteDependentProcessListOnProcess(processId);

 //merging lists procedure eliminates duplicated processes
 Vector newList=merge(pListRD, pListWD);

 //building graphs
 Graph g=new Graph(processId);

 //recursively iterate through every dependent process
buildGraph(newList, processId, g, n);

 //breadth first traversal
result=g.traversal(processId);

 //start the recovery process for the graph
recover(result);

 }

International Journal of Web Services Research , Vol.X, No.X, 200X

 12

getWriteDependentProcessListOnProcess(processId) and returned to processWDon. The potential read
dependencies are from the runtime information by using the method
getReadDependentProcessListOnProcess(processId) and returned to processRDon.

Figure 6: buildGraph() Procedure

In (Xiao, 2006), every concurrent process is suspended to execute recovery procedures and
resumes after the recovery. In this research, these two methods contain procedures to lock the
data items of dependent processes. So if there are concurrent processes trying to access locked
data items, they have to wait for the release of locks held by the recovery processes. Processes
accessing other data items continue running. Compared with suspending everything in the

// recursive method to build dependent processes
public void buildGraph(Vector pList, String processId, Graph g, int n)
{
//temporary value temp1 to pass processId to
 String temp1=processId;

 //whether there are dependent processes
if(pList.size()!=0)
{
//start to build graph by adding the vertex
g.addVertex(processId);

 //check each of the dependent processes
for(inti=0;i<pList.size();i++)
{
//use a temporal variable
ProcessInfotemP=(ProcessInfo)pList.get(i);

 //add vertex
g.addVertex(temP.getProcessId());

 //add edge
g.addEdge(temp1, temP.getProcessId());

 //get the process id
temp1=temP.getProcessId();

 //find all the processes write and read dependent on temp1 (or read dependency)
 Vector temPListRD
 =ProcessInfoAccess.getReadDependentProcessListOnProcess(processId)

 Vector temPListWD

=GlobalScheduleAccess.getWriteDependentProcessListOnProcess(temP.getProcessId());

 //merge two lists
 Vector newList=merge(tempListRD, tempListWD);

 //check the current process dependency and keep building the graph
buildGraph(newList, temp1, g, n);
 }
}end if
}end for
 }

International Journal of Web Services Research , Vol.X, No.X, 200X

 13

previous work, the locking of data items is more efficient and reasonable. Each of the two
methods will return lists of processes dependent on the failed process. Since there could be
duplicate processes in these two list, they are merged into one list and sent to the recursive graph
construction method buildGraph(list, processed, graph, n), where list is the merged dependent process
list and n is a value to make sure that a node from the list is considered only once. As shown in
Figure 6, the buildGraph() method is invoked to run through each of the dependent processes,
creating nodes and edges in the local process dependency graph.

After graph construction, the traversal() procedure is called to do a breadth first traversal of the
graph and generate an ordered list of processes that is returned for use in the recovery process.
Figure 7 provides pseudocode for the recovery process. The procedure is called after the
construction of the local process dependency graph and is passed the ordered list of processes to
be recovered.

Figure 7: recover() Procedure

The recover() procedure examines each process in the list and determines if each process is
internal or external. All local service executions are identified and recovered. Recall that we are
initially assuming that every process is recovered through compensation of each service
invocation. Since each internal process can also invoke services at other sites, the algorithm then

// recover dependent processes according to where they come from
public void recover(List list){

 //create a new list for operations from the lcoal schedule
 List tempList;

 FOR each process in the list
 {
 //find operations from the lcoal schedule
tempList = (List)ProcessInfoAccess.getExecutedOperationList(processId);

 // there are operations to be compensated
if(tempList!= null){
compensate(tempList);
 }

 IF the process is initiated by the local PEXA
{
 //find external operations of processId from the link objects table
tempList=LinkObject.getExecutedOperationList(processId);

 //send notifications
if(tempList!=null)
sendNotification(tempList);
 }
 ELSE //the process is initiated by a peer PEXA
{
 //send notifications when the process is not a root node in the graph
if(! g.isRoot(processId))
sendNotification(processId);
 }
}END FOR
}

International Journal of Web Services Research , Vol.X, No.X, 200X

 14

queries the link objects associated with the process to find services of the process that were
executed at other sites (i.e.,the IF part of the algorithm). Notifications are then sent to the PEXAs
of each external process. Each PEXA will then invoke findProcessDependencies(processId) for the
relevant process to construct its own local dependency graph to continue the recovery process at
the new PEXA site.

For a service invoked by an external process, the service is compensated and then a notification is
sent to the external PEXA to propagate the recovery and graph-building process. The notification
includes information about changing the status of the corresponding link objects to compensated.
Once a graph is compensated, it is deleted.

Execution Scenario for the Lazy Algorithm

Figure 8 uses the execution scenario from Figure 1 to illustrate the logic of the algorithm
presented in Figures 5-7. When the execution of an external operation is completed, the execution
result is sent back to its controlling PEXA to mark the status in its link object. This
communication is shown as solid lines between PEXAs in Figure 8. Notifications that are
initiated by the sendNotification() procedure are drawn as dashed lines in Figure 8.

Figure 8: Lazy Algorithm Execution Scenario

In the scenario from Figure 4, the recovery process is initiated when op12 fails in PEXA 1 and
constructs a local process dependency graph. Recall that link objects have already been created
for each process as a result of execution up to this point. In PEXA 1, the local dependency graph
is initially determined to be p1p2. In Figure 8, the box to the left of each process node shows the
runtime information for the process, indicating the service executed and the internal/external
status of the associated process. The recover procedure for the graph compensates procedure op11,
which is an internal service. There are also no entries for p1 in the link object table, indicating that

International Journal of Web Services Research , Vol.X, No.X, 200X

 15

all of p1’s services were executed at site D1. As a result, tempList is null and no notifications are
sent. Since p2 is an external process, op21 is compensated at PEXA 1 and then a notification is sent
to PEXA 2 (labeled as notification 1 in Figure 8), indicating that 1) op21 should be marked as
compensated in the link object table and 2) the recovery and graph construction process should
continue at PEXA 2 using p2 as a root node (i.e., invoke findProcessDependencies(p2)).

At PEXA 2, the graph p2p3 is created from the local delta object schedule. The algorithm in
Figure 7 is then invoked to recover the operations associated with the graph. The first iteration
through the recover procedure determines that p2 is an internal procedure, finding a local operation
(op22) and a remotely executed operation (op21). PEXA 2 will compensate op22 and discover that
op21 has already been compensated. As indicated in the comment box in Figure 8, successful* is
changed to compensated for op21 in thePEXA 2link object table when notification 1 is received.

When p3 is processed, it is identified as an external node. As a result, op31 is compensated and
notification is sent to PEXA 3 (notification 2 in Figure 8) to propagate the recovery and graph
construction process, together with information about changing the status of the link object for
op31 from successful* to compensated.

At PEXA 3, the graph contains only one node for p3, which in an internal process. When the
algorithm in Figure 7 is invoked, the IF part of the code is then executed. As a result, op33 is
compensated since it was executed at PEXA 3. Link objects are then found for op31 and op32.
Since op31has already been marked as compensated, the notification message is only sent to
PEXA 1 for the invocation of findProcessDependencies(p3). The status of op32’s link object is
changed from successful** to compensated before sending the notification, with the actual
compensation to take place at PEXA 1.

PEXA 1 constructs the graph p3p4. Since p3 is an external node, op32 is compensated at PEXA 1
and a notification is sent back to PEXA 3 (not shown in Figure 8). PEXA 3 will be able to
determine at this point that all relevant services for p3 have already been compensated and thus
will not continue to propagate the process (i.e., detects and terminates a distributed cycle). PEXA
1 then compensates op41and terminates since there are no more notifications to send.

Note that when the findProcessDependencies() procedure is called in each PEXA to construct a
local process dependency graph, the data items identified in the local delta object schedule are
locked, with compensating procedures executing as nested transactions that inherit the associated
locks. This prevents other executing processes from accessing the data involved in the recovery
process and creating further dependencies.

Dependency Analysis Using the Eager Algorithm

Unlike the lazy algorithm, the eager algorithm dynamically builds the process dependency graph
at runtime. As a result, whenever a service is invoked, the PEXA builds a graph using both its
runtime information and deltas. As in the lazy algorithm, the graph is used to recover local
service executions, using information about external processes and link objects to communicate
with other PEXAs for recovery and graph construction.

The Eager Algorithm

Figure 9 illustrates the difference between the lazy and eager algorithms. As mentioned in the
previous section, the lazy algorithm is invoked on the failure of an operation from a process. To
determine data dependencies, the algorithm reads forward in the delta object schedule to discover
processes dependent on the failed process.

International Journal of Web Services Research , Vol.X, No.X, 200X

 16

The eager algorithm detects dependencies dynamically at runtime instead of waiting for the
failure to occur and then builds process dependency graphs during execution. When a process
fails, the dependent processes are ready to be recovered since the process dependency graph is
dynamically maintained. When an operation of a process completes, the object schedule is
scanned backwards in time to determine processes on which the completed process is dependent.
If dependencies are identified, the process dependency graph will be updated. If not, a new graph
with a single root node for the process of the completed operation is created.

Figure 9: Difference between Lazy and Eager Algorithm

The link object information, which represents external service executions, is still recorded for
recovery consideration. The advantage of the eager approach is that when an operation fails or a
notification triggers the recovery process, PEXAs already have the dependent processes and are
able to initiate the recovery process immediately. The eager algorithm, however, has overhead
associated with process dependency graph construction for every process, especially if the
process failure rate is low.

Figure 10 provides pseudocode of the graph propagation for the eager algorithm,
findProcessDependencies(). When the graph construction procedure is invoked after the completion
of each operation, write and read dependencies are discovered and process dependency graphs are
updated accordingly with new elements, such as a new edge or a new separate node.

To generate the processWDon list, deltas created by the current process are examined to get the
data items that have been modified. Since there can be more than one data item that has been
modified, the data items are recorded into processWDon by identifiers. A procedure is also called
to get the potential read dependencies, which also returns the read dependencies to the
processRDon list. After merging the two lists to avoid duplicates, edges are added in to the graph
pointing from the current process to its dependent processes.

The graph is built at the process level under the eager algorithm. A completed process only needs
to record its most immediate dependencies. For example, suppose, p1, p2 and p3 have all modified
data item X in the order of p1 at t1, p2 at t2, and p1 at t3. When p3 completes, it records that it is
dependent on p2. p2 will record the dependency on p1, creating the transitive dependency of p3 on
p1. As a result, it is not necessary to explicitly record the dependency of p3 on p1.

International Journal of Web Services Research , Vol.X, No.X, 200X

 17

If processId does not exist in the current graph, a new vertex is added. The processId and
operationId of the completed process is then passed into the
checkLastModificationOnSameDataItem(processId, operationId) procedure of Figure 11 to find the data
items that have been modified. During process execution, when a data item is modified by an
operation from a process, processId and objectId are recorded separately as a key and value in
latestOperationOnData. As a result, when the modified data items of a completed process are
identified, the corresponding latest process can be discovered as well. The
checkLastModificationOnSameDataItem() procedure returns a list containing all of the latest
processes on which the completed process is dependent according to each data item that was
modified.

Figure 10: Graph Propagation for the Eager Algorithm

Figure 11: checkLastModificationOnSameDataItem()Procedure

The eager approach assumes that a process will potentially fail and collects all the dependencies
to build graphs for fast recovery. Therefore, when a process actually fails, the relevant dependent

public Vector checkLastModificationOnSameDataItem(String processId, String operationId){
 Vector result=new Vector();
 Vector dlist=GlobalScheduleAccess.getDeltas(processId, operationId);
if(dlist==null) return null;
for(inti=0;i<dlist.size();i++){
 Delta temp=(Delta)dlist.get(i);
 String dataItem=temp.getObjectId();
 String latestProcess= (String)Server.latestOperationOnData.get(dataItem);
result.add(latestProcess);
 }
return result;
 }

public void findProcessDependencies(String processId, String operationId){

 //a list to store all the operations that this operation is write or read dependent on
booleannodeInGraph=checkExisting(processId);
 Vector processWDon=new Vector();
 Vector processRDon =new Vector();
 Vector merge=new Vector();
 //if it's not existing, add node
if(!nodeInGraph){
g.addVertex(processId);
 }
processWDon =CheckLastModificationOnSameDataItem(processId, operationId);
processRDon
 =ProcessInfoAccess.getReadDependentProcessListOnProcess(processId);
merge=merge(processWDon, processRDon);
 //if there is a process that the current process is dependent on
if(merge!=null){
 //add edge a ---> b for each dependent process
for(inti=0;i<merge.size();i++)
g.addEdge((String)merge.get(i), processId);
 }
}

International Journal of Web Services Research , Vol.X, No.X, 200X

 18

processes already exist and are recovered using the same recover() procedure in Figure 7 as in lazy
algorithm. If a process fails, the graph will be retrieved by the traversal() procedure passing the
identifier of the failed process as the parameter to recover the sub-graph that represents the
dependent process list.

Execution Scenario for the Eager Algorithm

The example in Figure 12shows how to build a process dependency graph using the eager
algorithm. The left side of the figure shows the order of execution for the operation of processes
p1, p2, and p3. The right side of the figure shows the dependency graph that is constructed along
with the process execution at runtime.

Figure 12: Process Dependency Graph Construction with the Eager Approach

In Figure 12, op11 of p1 executes and modifies data item object1. After its execution, the
findProcessDependencies() procedure is invoked to decide whether p1 is dependent on other
processes. At this point, p1 is not dependent on any previous processes. As a result, a node will be
added in a new graph for p1.

After executingop21 of p2, based on the data items it has modified, p2 is not dependent on the other
processes. So a node for p2 is also added to the graph. When op22 of p2 executes, the
findProcessDependencies() procedure discovers that the latest process operating on object1 is op11
from p1. Hence an edge pointing from p2 to p1 is created in the graph to represent the dependency
labeled as Edge1 in Figure 12.

International Journal of Web Services Research , Vol.X, No.X, 200X

 19

After op12 of p1executes, the dependency of p1 on p2is discovered. This edge, indicated as Edge2 in
the graph of Figure 12, is also added, creating a cycle in the graph. Unlike the lazy algorithm,
cycles are needed in the graph since the order of dependent processes to be compensated depends
on which process fails.

After op31 of p3 executes, p3 is dependent on both p1 and p2 according to data item object2 that they
have modified. However, p1 has the latest modification to the data item that p3 has modified. So
the dependency of p3 on p1 is added to the graph, as Edge3 in Figure 12.

Decentralized Scenario for the Eager Algorithm

Figure 13uses the distributed execution scenario from Figure 4, to illustrate the use of the eager
algorithm with a decentralized dependency graph. Processes execute concurrently in three PEXAs
and graphs are constructed at runtime. At the end of an operation execution, the
findProcessDependencies() procedure is invoked to update the process dependency graph data
structure, either to generate a root node or to add a node and edges to an existing graph.

In PEXA 1, after op11 of p1 executes on X1, the application calls the graph construction procedure.
The deltas created by this operation are retrieved to find the modified data items for the write
dependencies to add in the processWDon list. Here, data item X1 is found modified by p1. For each
data item found by delta retrieval, only the latest operation on the item is needed to construct the
graph if there is any. The HashMap structure latestOperationOnDatais used to retrieve the latest
operation corresponding to each data item since this variable records the pair of the latest process
and data item. At this time, there is no process that has modified X1. As a result, no dependencies
are discovered and only a node for p1 is added to the graph structure.

After the execution of op21 of p2 from PEXA 2, the findProcessDependencies() procedure is
invoked. The deltas that op21 has created are retrieved. The result returns X1. Based on X1, write
dependencies are analyzed and p1 is found to be the latest operation to modify X1. p1 is added in
the processWDon list. Then the node p2 is added in the graph and an edge from p2 to p1 is also
created.

Meanwhile, op22 of p2 is executing in PEXA 2 modifying data item X2. Since no dependency exists
at this point, the graph in PEXA 2 is created with p2 as a root node. After p3 executes op31 in
PEXA 2, the findProcessDependencies() procedure is invoked. The delta created by p3 indicates the
data item modified is X2 and, according to the latestOperationOnDatavariable, p2 is the latest
operation that has modified the same data item before p3. Therefore, p3 is added in the graph as a
node and an edge from p3 pointing to p2 is also added for the dependency discovered.

After p3 creates a delta in PEXA 1, the findProcessDependencies procedure is invoked. The delta
indicates data item Y1 has been modified. Since no other process has been found to have modified
this data item, p3 only generates a node in the graph with no edges. Then p4 executes and
generates a delta by modifying Y1. The latest process that has modified Y1 is p3, resulting in an
edge from p4 pointing to p3 in the graph.

In PEXA 3, after op32 of p3 invokes a service in PEXA 2, op33 of p3 executes locally and creates a
delta by modifying a data item X3. Since no other process can be found to have modified X3, a
graph is generated with only one node p3 as a root. Then, p3 remotely invokes a service at PEXA
1.

International Journal of Web Services Research , Vol.X, No.X, 200X

 20

Figure 13: Decentralized Execution Scenario for the Eager Algorithm

At this point, there are two graphs in PEXA 1, one graph in PEXA 2 and one in PEXA 3. When
op12 from p1 executes locally at PEXA 1 and fails, the same recover() procedure in Figure 7 used
by the lazy algorithm is invoked. Since the process dependency graphs exist already, the sub-
graph based on the problematic process can be simply retrieved. The rest of the recovery is the
same with that of the lazy algorithm.

Process Dependency Graph Issues for the Eager Algorithm

As illustrated in the previous sections, the eager approach allows cycles to appear in local process
dependency graphs. It is necessary to represent cycles since the graph is constructed for all
executed processes in anticipation of a possible failure. In comparison, the lazy algorithm only
constructs a process dependency graph when a process fails. The graph for the lazy approach
defines the order for recovery of dependent processes. As a result, dependency cycles are not
relevant.

Using the eager approach, when a failure occurs, the sub-graph to be recovered is extracted from
the graph by doing a breadth first traversal starting from the node that represents the failed
process with the traversal() procedure, detecting and eliminating cycles for recovery. Using
Figure 12 as an example, when P1 in the graph fails, the sub-graph based on P1 is P2 P1 P3.
When P2 fails, the sub-graph based on P2 is P2P1 P3. Since a failure can potentially happen to
any active processes, different sub-graphs will be generated for different failed processes.
Therefore, when a failure occurs, the graph is traversed to create the recovery order of dependent
processes.

The primary overhead issue for the eager algorithm is maintenance of the graph during execution.
It is important to delete nodes from the process dependency graph to prevent the graph from
growing unnecessarily large with continuously executing processes. There are two situations to
consider for deletion of nodes. One situation occurs after the execution of the recovery procedure
when sub-graphs need to be deleted from the graph structure for recovered processes. The other
situation requires that PEXAs using the eager algorithm periodically examine their own graphs

International Journal of Web Services Research , Vol.X, No.X, 200X

 21

for the deletion of completed processes. The work in (Liu, 2009) elaborates on both of these
situations for the eager algorithm.

Implementation and Evaluation of Decentralized Data
Dependency Analysis

This section presents an evaluation of the decentralized data dependency analysis algorithms. The
first subsection describes the implementation environment and measurement criteria. The second
subsection presents an evaluation of the recovery propagation algorithm that is central to the lazy
and eager algorithms.

Implementation Environment and Measurement Criteria

The implementation was done on a workstation using Windows XP Professional x64 Edition with
an Intel processor Core 2 Extreme Q6850 @ 3 GHz 4 GB of memory. Java was used to develop
the PEXA architecture and distributed algorithms, as well as the delta generator using Netbeans
6.5 as the integrated development environment. The communication between PEXAs was set up
using Java Sockets. Each PEXA has a socket server and client to send and receive messages from
other PEXAs, for compensation or updating process status. In this experiment, three PEXAs were
deployed. This research mainly focused on analyzing different aspects of the distributed
algorithms rather than communication costs. As a result, all PEXAs were deployed on the same
workstation.

This initial implementation of the algorithms was designed as a simulation of process execution
and recovery activities and, as such, cannot provided any definitive statements about performance
measures at this stage of the research. True performance measures are affected by many factors.
For example, the implementation of decentralized algorithms developed in this thesis is limited
by use of existing procedures to detect write/read dependencies from (Xiao, 2006). These
procedures were originally designed to demonstrate the functionality of the delta object schedule
and have not been optimized for efficient retrieval of data. This implementation is also not fully
integrated into an actual process execution environment with full support for compensation or use
of actual Delta-Enabled Grid Services. The main focus of this initial implementation of the
algorithms was on observation of characteristics of the algorithms.

A delta generator was used to simulate every service call at a PEXA and also invokes services in
other sites. The deltas generated are controlled by specifying attributes such as:

- number of processes (the number of concurrent processes)
- number of services in a process (number of composing services in a process)
- percentage of external operations
- failure rate (possible percentage for a failure to occur in a process)
- number of accessed data objects by a service invocation

By varying these attributes, decentralized algorithms under different situations were tested under
different simulations. Data sets for different simulations were captured and used to examine the
algorithms with different process failure rates. The study has focused on analysis of the lazy
approach with respect tograph construction and recovery. For the eager algorithm, the main
measurement is to examine the time to add a node to the graph after discovering data
dependencies for the local delta schedule. After building a graph in the eager algorithm, the
recovery procedure is the same as that used by the lazy algorithm.

International Journal of Web Services Research , Vol.X, No.X, 200X

 22

Performance Analysis for the Decentralized Algorithms

The major issue for the lazy algorithm is to 1) examine the average time to build local process
dependency graphs, and 2) examine the number of graphs and the time for graph construction that
propagates among the PEXAs as part of the recovery process. As described in the previous
subsection, the simulations were run using three PEXAs. One simulation assumed 10 processes
running at each PEXA, with each process executing five operations (i.e., service invocations). A
second simulation assumed 100 processes running at each PEXA, with the number of operations
ranging from five to ten. A third simulation generated 500 processes running at each PEXA, with
five to ten operations for each PEXA.

Figure 14 shows the number of graphs vs. graph construction time for 100 processes per PEXA.
Results for the 10 and 500 process simulations can be found in (Liu, 2009). Each simulation was
divided into four tests:

- t1 represents 20% external operations, 5-10% failure rate, and random access to 30-50%
of the data objects,

- t2represents 30-50% external operations, 5-20% failure rate, with random access to 30-
50% of the data objects,

- t3 represents 30-50% external operations, 5-15% failure rate, with random access to 50%
of the data objects, and

- t4 represents 70% external operations, a 2-10% failure rate, with random access to 50%
of the data objects.

The percentage of external operations increases from 20% in t1 to 70% in t4. The percentage of
data objects accessed also increases from a range of 30-50% in tests t1 and t2 to 50% in tests t3
and t4. Test t2 also has the largest failure rate, while t4 has to lowest failure rate.

Figure 14: 100-process simulation

One common observation from the 10, 100, and 500 processsimulation is that the average number
of graphs generated by the algorithm is closely associated with the failure rate and percentage of
external operations. A higher percentage of external operations can distribute more dependencies
across PEXAs. A higher failure rate also causes more errors to occur and thus more opportunities
to trigger the data dependency analysis to recover dependent processes. A second observation is

0 

100 

200 

300 

400 

500 

600 

700 

24  26  28  30  32  34  36  38  40  42  44  46 

avg. graph 
construc/on 
/me (ms) 

avg. number of graphs 

100 processes 

t1 

t2 

t3 

t4 

International Journal of Web Services Research , Vol.X, No.X, 200X

 23

that the more graphs generated, the less the average graph construction time. A lower percentage
of external operations will have more local dependencies and thus have to spend more time
retrieving the local delta object schedule. Therefore, more time will be consumed for the local
retrieval and graph construction of individual graphs. More distributed dependencies are
generated by the higher percentage of external operations. As a result, local dependencies might
be less, thus spending less time constructing each local graph, but having more distributed sub-
graphs to build.

Figure 15 shows the number of distributed graphs generated across all three PEXAs by a single
error for the 10-process, 100-process, and 500 process simulations. The t4 tests are the highest in
the 100 and 500 process simulations since they have the highest external operation rates. Figure
16 compares the average numbers of errors, graphs and nodes for each simulation. The average
number of graphs increases significantly from 10 processes to 500 processes, while the average
number of errors increases slightly. However, the average number of nodes per graph does not
increase significantly as the number of processes per PEXA increases.

Figure 15: Distributed graphs generated per one error

Figure 16: Comparison of 3 levels of execution

Figure 17 shows the average time for adding nodes per PEXA using the eager algorithm. For the
10, 100, and 500 process execution, tests t1, t2, and t3 increase slightly corresponding to the

0 
5 
10 
15 
20 
25 
30 
35 

10‐process  100‐process  500‐process 

nu
m
be

r 
of
 g
ra
ph

s 

Distributed graphs generated per error 

t1 

t2 

t3 

t4 

0 

20 

40 

60 

80 

100 

120 

140 

10‐process  100‐process  500‐process 

Comparison of  3 levels of execu/on 

avg. errors per PEXA 

avg. graphs per PEXA 

avg. nodes per graph 

International Journal of Web Services Research , Vol.X, No.X, 200X

 24

different levels of execution. Test t4 in the 500-process simulation consumed less time for adding
nodes since the failure rate (2%) was low. The time to retrieve dependencies and add nodes to the
graphs is relatively stable for the eager algorithm and, in fact, is less than the time for retrieving
dependencies using the lazy algorithm since the process for discovering dependencies is different
for each technique. The lazy approach searches through a larger collection of deltas to discover
dependencies. The eager approach, however, only finds the latest dependencies according to
modified data items provided by a set of variables in memory. Therefore, the time to add nodes
using the eager approach is less. The main overhead associated with the eager approach is
maintenance of the process dependency graph for successfully completed processes. Given the
low percentages for web service failures as reported in (Amazon Simple Storage Service, 2007),
maintenance of the graph for successfully completed processes would be unnecessary overhead
since the deletion of completed processes can lead to re-structuring the dependency graph for
adding new edges, merging nodes, and deleting nodes and edges.

Figure 17: Average time for adding nodes per PEXA

Summary and Future Research

This thesis has presented a decentralized approach to analyzing data dependencies among
concurrently executing processes in a service-oriented environment. The decentralized approach
extends existing research with the DeltaGrid project that analyzes data changes captured from
service executions to identify processes that are dependent on a failed process based on data
access patterns. Unlike the original work with the DeltaGrid project, where data changes are
merged and analyzed in a centralized manner, this research defined algorithms that allow multiple
process execution engines to share information about data dependencies. Process Execution
Agents have been defined that control the execution of processes and build local delta object
schedules. Process execution histories are then enhanced with control information that allows the
construction of data dependency graphs to be distributed among multiple PEXAs. This research
has explored a lazy algorithm that constructs distributed process dependency graphs upon the
failure of a process. The research has also explored an eager algorithm that dynamically
constructs process dependency graphs for all executing process so that dependency graphs are
available as soon as a failure occurs. The data dependency analysis algorithms developed as part
of this research represent an initial step towards the development of distributed, process-aware
execution environments that can support more intelligent ways of monitoring failures, detecting

0 

5 

10 

15 

20 

25 

30 

35 

10 processes  100 processes  500 processes 

avg. /me for 
adding nodes 

(ms) 

t1 

t2 

t3 

t4 

International Journal of Web Services Research , Vol.X, No.X, 200X

 25

dependencies, and responding to failures and exceptional conditions in an environment that
cannot conform to traditional data locking protocols.

There are several directions for future research, especially considering that this work has been
conducted as part of a larger project involving the development of more dynamic and flexible
approaches to service composition and recovery with user-defined correctness conditions. This
initial stage of the research has focused on testing and demonstrating the feasibility of the
algorithms for decentralized data dependency analysis. As a result, the algorithms have not been
fully integrated into an actual process execution engine. Future work should investigate the
integration of the algorithms with BPEL execution engines embedded in PEXAs. The research
presented in this thesis has also simplified the recovery process, assuming that all dependent
processes will recover by executing compensating procedures. The use of the decentralized data
dependency analysis algorithms need to be fully integrated into a service composition and
recovery model, with recovery options for compensation, contingency, and retry of failed
procedures (Greenfield, Fekete et al., 2003; Xiao and Urban, 2009). Current research directions
are defining an event and rule-based model, with user-defined correctness conditions and the
ability to do partial rollbacks to checkpoints that support alternative paths for forward execution.
The role of decentralized data dependency analysis in the recovery process needs to be further
explored. Finally, the concept of a PEXA needs to be extended into a more process-aware
execution environment that is knowledgable of the service-composition and recovery model and
the manner in which it interacts with the data dependency analysis algorithm to transform PEXAs
into true agents that can reason about execution and recovery among multiple PEXAs.

ACKNOWLEGMENT

This research has been supported by the National Science Foundation under Grant No. CCF-
0820152. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

Amazon Simple Storage Service. (2007). Website: http://aws.amazon.com/s3-sla/

Bhiri, S., Perrin, O., & Godart, C. (2005).Ensuring required failure atomicity of composite web

services.Proc. of the 14th Int. Conference on World Wide Web, 138-147.

Blake, L. (2006). The Design and Implementation of Delta-enabled Grid Services, M.S. Thesis, Arizona

State University, 2006.

Cichocki, A., Helal, A.,Rusinkiewicz, M., & Woelk, D. (1998).Workflow and process automation concepts

and technology: Kluwer Academic Publishers.

Chiu, D., Li, Q., & Karlapalem, K. (2000). Facilitating exception handling with recovery techniques in

ADOME workflow management system.Journal of Applied Systems Studies, 1, 467-488.

Eder, J., & Liebhart, W. (1995). The workflow activity model WAMO. Proc. of the 3rd Int. Conference on

Cooperative Information Systems (CoopIs).

Garcia-Molina, H., & Salem, K. (1987). Sagas. Proc. of the ACM SIGMOD Annual Conference on

Management of Data, 249-259.

International Journal of Web Services Research , Vol.X, No.X, 200X

 26

Greenfield, P., Fekete, A., Jang, J., & Kuo, D. (2003). Compensation is not enough. 7th Int. Conf. on
Enterprise Distributed Object Computing.

Greenfield, P., Fekete, A., Jang, J., Kuo, D., & Nepal, S. (2007) Isolation support for service-based

applications: A position paper. Proc. of CIDR.

Hagen, C., & Alonso,G. (2000). Exception handling in workflow management systems.IEEE Transactions

on Software Engineering, 26, 943-958.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., &

Goland, Y. (2007). Web services business process execution language version 2.0. OASIS
Standard, 11.

Kamath, M., & Ramamritham, K.(1996). Correctness issues in workflow management. Distributed Systems

Engineering, 3, 213-221.

Kamath, M., & Ramamritham, K. (1998). Failure handling and coordinated execution of concurrent

workflows. Proc. of the IEEE Int. Conference on Data Engineering, 334-341.

Kiepuszewski, B., Muhlberger, R., & Orlowska, M. (1998). FlowBack: providing backward recovery for

workflow management systems.ACM SIGMOD Record, 27, 555-557.

Limthanmaphon, B., & Zhang, Y. (2004). Web service composition transaction management.Proc. of the

15th Australasian Database Conference, 171-179.

Lin, L., & Liu, F. (2005). Compensation with dependency in web services composition.Proceedings of the

International Conference on Next Generation Web Services Practices, 183-188.

Liu, Z. (2009). Decentralized Data Dependency Analysis for Concurrent Process Execution, M.S. Thesis,

Department of Computer Science, Texas Tech University, Fall 2009.

Newcomer, E., Robinson, I., Freund, T., Green, A., Harby., & Little, M. (2006). Web Services Business

Activity (WS-Business Activity).

Paterson, J., Edlich, S., Hörning, H., & Hörning, R. (2006).The Definitive Guide to db4o, Berkely, CA,

USA.

Pires, P. F., Benevides, M. R. F., & Mattoso, M. (2003). Building reliable web services

compositions.Lecture Notes in Computer Science: Web, Web Services, and Database Systems, 59-
72.

Rolf, A., Klas, W., & Veijalainen, J.(1998).Transaction management support for cooperative applications:

Kluwer Academic Publishers.

Strandenæs, T., & Karlsen, R. (2002).Transaction compensation in web

services.NorskInformatikkonferanse.

Tartanoglu, F., Issarny, V.,& Romanovsky, A. (2003).Coordinated forward error recovery for composite

web services. Proc. of the IEEE Symposium on Reliable Distributed Systems, 167-176.

Tumma, M. (2004). Oracle Streams: High Speed Replication and Data Sharing: Rampant TechPress.

Urban, S. D., Xiao, Y., Blake, L., & Dietrich, S. W. (2009a). Monitoring Data Dependencies In Concurrent

Process Execution through Delta-Enabled Grid Services. International Journal of Web and Grid
Services, 5(1), 85-106.

International Journal of Web Services Research , Vol.X, No.X, 200X

 27

Urban, S. D., Liu, Z., & Gao, L. (2009b). Decentralized Data Dependency Analysis for Concurrent Process
Execution. Middleware for Web Service Workshop, Auckland, New Zealand.

Vidyasankar, K., & Vossen, G. (2004). A multilevel model for Web service composition.Proc. of the IEEE

Int. Conference on Web Services, 462-469.

Worah, D., & Sheth, A. (1997). Transactions in transactional workflows.Advanced Transaction Models and

Architectures, 3-34.

Wächter, H., & Reuter, A. (1992). The contract model: Morgan Kaufmann Publishers Inc. San Francisco,

CA, USA.

Xiao, Y. (2006). Using deltas to analyze data dependencies and semantic correctness in the recovery of

concurrent process execution. Ph.D. Dissertation, Arizona State Univ., Tempe, AZ, USA.

Xiao, Y., & Urban, S. D. (2008a). Using Data Dependencies to Support the Recovery of Concurrent

Processes in a Service Composition Environment (CoopIs) , Monterrey, Mexico, 139-156.

Xiao, Y., & Urban, S. D. (2008b). Process Dependencies and Process Interference Rules for Analyzing the

Impact of Failure in a Service Composition Environment. Journal of Information Science and
Technology, 5(2), 21-45.

Xiao, Y., & Urban, S. D. (2009). The DeltaGrid Service Composition and Recovery Model. International

Journal of Web Services Research, 6(3), 35-66.

Zhao, W., Moser, L. E., & Melliar-Smith, P. M. (2005). A reservation-based coordination protocol for Web

Services. Proceedings of the IEEE International Conference on Web Services, 49-56.

ABOUT THE AUTHOR(S)

Susan D. Urban received the B.S, M.S., and Ph.D. degrees in computer science in 1976, 1980, and
1987, respectively, from the University of Louisiana at Lafayette. She is currently a Professor in
the Department of Computer Science at Texas Tech University. She was previously at Arizona
State University from 1989-2007, where she currently holds the status of Emeritus Professor. She
was also an Assistant Professor at the University of Miami from 1987-1989.Her research
addresses event processing as well as integrated techniques for event, rule, and transaction
processing to address data consistency and active behavior in distributed, data-centric applications.

Ziao Liu received the B.E. degree in computer science in 2007 from Taishan University in China
and the M.S. degree in 2009 from Texas Tech University at Texas.

Le Gao received his B.S. degree in computer science in 2004 from Nanjing University of
Aeronautics and Astronautics, China. He is currently a Ph.D. student in the department of
computer science at Texas Tech University. Before coming to Texas Tech University, he was a
database engineer at China Mobile corporation from 2006-2007. He was also working at China
Telecom corporation as a database operator from 2004-2006.

