MASTER OF SCIENCE THESIS PROPOSAL
DEPARTMENT OF COMPUTER SCIENCE
TEXAS TECH UNIVERSITY

INTEGRATING EXCEPTION HANDLING AND DATA
DEPENDENCY ANALYSIS THROUGH APPLICATION
EXCEPTION RULES*

by
Janani Ramachandran

Committee Members:
Dr. Susan Urban (Chair)

Dr. Susan Mengel

November 2010

*This research is supported by NSF Grant No. CCF-0820152.

1. Introduction

Past years have witnessed the growth of the Internet from a medium for simple communication into a
powerful platform that supports evolving online business enterprises. This has led to the increased usage
of Web Services and Service-Oriented Computing (SOC) to enhance and support online business
transactions for both business-to-business (B2B) and business-to-consumer (B2C) applications. In
service-oriented computing, services are used as the fundamental units to develop solutions. The
application of SOC on the web is realized by the use of Web Services (Papazoglou and Georgakopoulos
2003).

In traditional distributed computing environments, data consistency among distributed transactions is
guaranteed by the application of the two-phase commit protocol to support the ACID properties of
atomicity, consistency, isolation and durability. Also, serializability is ensured by the use of locking
protocols (Elmasri and Navathe 2010). However, in a service-oriented environment, processes that are
composed of services cannot be treated like traditional transactions that satisfy ACID properties since the
individual services are loosely-coupled and autonomous in nature. Moreover, it is not feasible to enable
services to lock data for the duration of the process they constitute since these processes may be long
running. Therefore, in such an environment, it is necessary to relax the isolation requirement. Due to this,
the correctness of concurrently running processes that access shared data might be affected. Thus,
ensuring the semantically correct execution of concurrent transactions by maintaining data consistency in
a service-oriented environment is an important issue.

Data consistency issues for concurrently running processes has been the major focus of the Decentralized
Data Dependency (D3) Analysis Project. The primary objective of the D3 project has been to develop a
decentralized approach to data dependency analysis and failure recovery among concurrently executing
processes. As part of achieving this objective, an approach to identify dependencies among concurrent
processes that may potentially lead to inconsistencies was proposed in (Xiao 2006). Based on this
approach, algorithms to determine data dependencies in a decentralized manner were developed in (Liu
2009). These concepts addressed the need to maintain consistency by identifying processes that may be
affected by the recovery of a failed process but lacked support to detect and handle inconsistencies
dynamically. A more flexible service composition and recovery model was developed in (Shrestha 2010)
through the use of Assurance Points in association with events and rules to provide a flexible way of
checking constraints and responding to failures. Shrestha's work was developed as an extension to past
work on the service composition and recovery model in (Xiao and Urban 2009) to support approaches for
flexible failure recovery.

Ideally, the work of (Liu 2009) and (Shrestha 2010) needs to be integrated so that the partial recovery of a
process can also use data dependency analysis to identify processes that may be data dependent on the
recovered process. The recovery techniques proposed in (Shrestha 2010) can be used to dynamically
respond to internal events while checking for consistency, where internal events are errors that occur
during process execution. But to achieve efficiency in exception handling, the process execution
environment also needs enhanced capabilities to have variability of response to external events based on
process execution status, where external events are interrupts received from the environment external to a
process. Furthermore, the work in (Shrestha 2010) addresses the flexible recovery of a particular process
that has failed. But in a concurrent process execution environment, it is also important to address the

consistency issues that may arise due to data dependencies between concurrently executing processes.
That is, failure recovery of a process needs to be communicated to the dependent processes so that they
may also recover if required. Therefore, processes in concurrent execution need to have flexible constraint
checking and recovery capability, handle exceptions efficiently, and maintain consistency in the
environment by communicating failure recovery to dependent processes.

This proposal presents the use of Application Exception Rules, together with the use of Data Dependency
Analysis, to provide an efficient and flexible way of responding to exceptions, and maintaining data
consistency in concurrent process execution. Similar to Integration Rules (Jin 2004; Urban et al., 2001),
Application Exception Rules are triggered by the occurrence of events. An Application Exception Rule
(AER) is a rule that specifies recovery actions to be carried out based on the execution status of the
corresponding process. The concept of AERs provides a flexible way of using rules to respond to internal
and external events. Using these rules will facilitate processes to handle exceptions depending on their
execution status, instead of giving a fixed response to all exceptions. During process execution, when an
exception occurs, the exception is communicated to the process as an event. This event interrupts process
execution and triggers the corresponding Application Exception Rule, which checks the process execution
status based on the critical points that have been crossed during process execution. These critical points
are determined using the Assurance Point (AP) concept (Shrestha 2010). Based on the most recently
crossed AP, the AER fires the corresponding recovery action. This requires AERs to work in association
with APs and the recovery technigques described in the AP model. Therefore, providing the functionality
of AERs will involve extending the AP model. This concept, combined with the Data Dependency
Analysis capability will provide an approach to flexible exception handling along with maintaining data
consistency.

The remainder of this proposal is structured as follows. Section 2 gives an overview of related work.
Background on Decentralized Data Dependency Analysis and Assurance Points is given in Section 3.
Section 4 presents the statement of objectives for the proposed research, followed by a discussion of the
objectives in Section 5. Section 6 presents the proposed timeline for the research. A brief summary of the
proposal is given in Section 7.

2. Related Work

A fault is defined as an abnormal condition at the component or sub-system level and may lead to a
failure. Faults oscillate between active and dormant states. A web service fails when a fault becomes
active (Chan et al., 2007). An exception is a situation that is raised to indicate the occurrence of errors,
faults or failures. It is important to build exception aware systems so that they can learn, correct
themselves and evolve (Luo et al., 2000). According to (Brambilla et al., 2005), the exceptions for a
process can be classified into three categories: behavioral or user-generated exceptions caused by
incorrect execution order of process activities; semantic or application exceptions caused by unsuccessful
logical outcomes of process activities execution; and system exceptions caused by the malfunctioning of
the application infrastructure. Failures lead to deviation and prevent business processes from completing
normally and therefore need to be handled to ensure system consistency (Greenfield et al., 2003).

Some techniques that have been used to handle failures are rollback, forward recovery through
contingency, backward recovery through compensation, retry, and even manual intervention (Eder and
Liebhart 1996). The work in (Greenfield et al., 2003) argues that such standard approaches of fault
handling and compensation mechanisms are not enough to manage the fault tolerance and failure recovery
in workflow systems. Also, services are more prone to failures in a service composition compared to
atomic services because of the dependency of composite services on external services. In a service
composition, failures may be caused by service unavailability, concurrency, dependency, inconsistency,
or incorrect composition. Thus, stronger mechanisms are required to handle failures, address dynamic
failure recovery and build more fault tolerant systems. The following sections outline some of the related
work in these areas.

2.1 Fault Handling in BPEL

Techniques are being devised to advance the standard behavior of the Business Process Execution
Language (BPEL) in fault and exception handling and failure recovery. BPEL4Job (Tan, Fong, and
Bobroff 2007) is a BPEL based advanced fault handling design for job flow management in a distributed
environment. BPEL4Job supports job flow modeling integrated with fault handling policies - cleanup,
task level re-try and flow instance re-submit and, a set of fault handling schemes including a method for
instance migration between flow engines in the distributed environment. A solution for automated and
dynamic exception handling has been developed in (Christos, Costas, and Panayiotis 2007). The proposed
framework known as Service Relevance and Replacement Framework (SRRF), uses a pre-processor that
enhances BPEL scenarios with code that detects failures, discovers alternate web services that can be used
and invokes them, thereby resolving the exception.

An approach to specify monitoring directives and weave them dynamically into their corresponding
process is presented in (Baresi and Guinea 2005). BPELCheck (Fischer, Majumdar, and Sorrentino 2008)
is a tool that has been developed to check BPEL processes for consistency violations by checking pre-
defined conditions. Some examples of tools developed for monitoring and verification of web service
compositions are ASTRO (Trainotti et al., 2005), WSAT (Fu, Bultan, and Su 2004) and LTSA-WS
(Foster et al., 2006). More such BPEL process verification techniques and tools have been discussed in
(Breugel and Koshkina 2006).

Several projects in recent years have focused on using agents in business transaction models. Agents are
self-contained, autonomous entities that are capable of achieving tasks through observation and learning.
Huhns (Huhns 2002) compares agents and web services and points out several ways in which agents
extend web services. The use of agent-based web services is a current topic of research. ADEPT
(Jennings et al., 2000), an agent-based design and implementation approach, implements a robust and
flexible business process management system in which the agent-based approach enables the businesses
to retain the autonomy of the transactions. The work in (Muller, Grener, and Rahm 2004) presents
AGENTWORK as a workflow management system that supports dynamic and automated workflow
adaptations. In this system, a rule-based approach is followed to specify exceptions and the required
workflow adaptations. The authors of (Chakravarty and Singh 2007) propose an event-driven approach
for agent-based business process management to support exception handling. The work in (Shen,
Ghenniwa, and Li 2006) describes an agent-based service-oriented system architecture to facilitate
automated and dynamic collaboration among businesses. In this system, web services are implemented by

the Agent-based Web Services (AWS) technology which considers the web service environment as a
collection of software agents implemented as services with different capabilities and functionalities.

With research involving agents in the service environment, the concept of self-healing has also been
gaining popularity. A self-healing plug-in that has been proposed for use with WS-BPEL engines to
enhance the ability of standard engines to provide process-based recovery actions is SH-BPEL
(Modafferi, Mussi, and Pernici 2006). The authors discuss the addition of some annotations for enabling
recovery actions, pre-processing based recovery mechanisms and, extended recovery mechanisms. The
authors of (Modafferi, and Conforti 2006) propose five mechanisms for enabling recovery actions in
BPEL.: external variable setting, timeout, redo, future alternative behavior, and rollback and conditional
re-execution of the flow. They argue that enhancing BPEL’s capability for failure recovery through these
mechanisms is a necessity to support emerging self-healing systems.

2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) has been proposed as a technique for
modularization and improving the separation of concerns in software. In AOP, three key concepts are
used: join points, pointcuts and advice. Join points are checkpoints in the execution of a program such as
method calls, constructor calls. A pointcut is used to determine related join points. The advice specifies
the crosscutting functionality at join points identified by a pointcut. The advice code is executed when a
join point identified by a pointcut is reached. This code may be executed before, after, or instead of the
join point currently reached. An aspect module consists of several pointcut definitions and their
corresponding advice code. In AOP, aspects are woven into the program execution.

Current workflow languages do not support modularization of concerns that span across process
boundaries such as data validation and security. Due to this, the code of the crosscutting concerns is
spread across several workflows and is tangled with the code addressing other concerns. This leads to
complex workflow process specifications that are difficult to comprehend, maintain, modify, and reuse.
To address these issues, (Charfi and Mezini 2006) proposes the use of aspect-orientation concepts in
workflow languages. Aspect-oriented workflow languages are introduced which provide crosscutting
modularity by the use of concepts such as aspects, join points, pointcuts, and advice. These workflow
languages therefore support a concern-based decomposition: the business logic which is the main concern
in workflows can be specified in a modular way a workflow process module and crosscutting concerns
can be specified in a modularized manner using workflow aspects. Through such an approach, aspects can
be used to obtain a cross-process view on how a concern is handled in various workflows. Thus if a
programmer needs to understand or change a concern, he/she has to be concerned only about the relevant
aspect. This concern-based decomposition of workflow process specification by the use of aspect-oriented
workflow languages has been validated by the development of AO4BPEL (Charfi and Mezini 2007),
which is an aspect-oriented workflow language for web service composition. It is an aspect-oriented
extension to BPEL and provides support for modularization of crosscutting concerns and dynamic
changes in BPEL.

2.3 Checkpoints, Events and Rules
The technique of using checkpointing for failure recovery and exception handling has been discussed in
(Luo 2000). In this technigue, consistent states in transaction execution are saved as checkpoints. When a

failure occurs, workflows restore a checkpoint by rolling back and resuming their execution from that
checkpoint. Events and rules can also be used with business processes to enforce constraints, detect
failures and define appropriate recovery mechanisms. An event is the occurrence of an activity that may
signify a problem, an opportunity or a deviation (Michelson 2006). Other than controlling the flow of
business process execution, events and rules can be used as a mechanism for handling failures and
exceptions. Event Condition Action (ECA) rules can be used to specify actions that need to be
automatically carried out on the occurrence of an event. In (Liu et al., 2007), ECA rules have been used
for handling and recovering from faults. These rules are integrated with business logic to generate fault-
tolerant BPEL processes in order to overcome BPEL’s limited fault handling capability. The work in (Luo
et al., 2000) proposes the use of “Justified” ECA to allow the use of context-based reasoning to enhance
the exception handling in business processes.

The work in (Shrestha 2010) proposes an approach that builds on the concept of checkpointing and
enhances it with the use of events and rules. It presents the use of Assurance Points, combined with the
use of events and rules, to provide a flexible way of checking for consistency and responding to internal
events. APs store critical data related to process execution and can serve as checkpoints. During process
execution, APs check pre-, post- and application conditions by invoking corresponding integration rules.
This enables the check for consistency of the process with respect to user defined constraints. When
failures occur, APs are used as rollback points that recheck preconditions and determine whether to
invoke forward or backward recovery actions.

2.4 Data Consistency Techniques for Services

This section discusses some of the techniques that have been proposed for ensuring consistency in a
service composition.

2.4.1 Promises

One of the issues in the design of complex web-service based applications is the lack of support for
isolation. Execution of concurrent applications in such an environment may lead to semantically incorrect
conditions, dirty reads and lost updates (Jang, Fekete, and Greenfield 2007). The promises approach was
proposed to address this issue by providing the isolation support. The goal of this approach is to enable
the applications in an SOC environment to have the benefits of isolation.

A ‘promise’ is a form of agreement between a service i.e., a promise maker, and a client application i.e., a
promise client. When a service grants a promise to a client, it assures the client that some set of conditions
(predicates) will be maintained over a set of resources for a specific duration of time, as requested by the
client. In the model discussed in (Greenfield et al., 2007), a Promise Manager works with resource
managers and application services to check resource availability, grant or deny promises, and make sure
that the granted promises are not violated. Client applications determine the constraints they need to have
over a set of resources, express them as predicates, and send them to the relevant promise manager within
a promise request. Every promise request contains a set of predicates, a set of resources and, a promise
duration. The promise manager will then check the existing set of promises, check for the availability of
resources by corresponding with the resource managers, and either grant or reject the promise request by
sending back a promise response. When a promise request is accepted, a promise duration is fixed,
indicating how long the promise manager guarantees to keep its promise to the client. This might be the

same as or lesser than the duration included in the promise request of that client. Once a promise is
granted to a client application, it gets isolated from the effects of concurrent execution activities on the
resources protected by that promise. Such a client can make changes to resources protected by its
promises successfully if such changes do not violate the constraints implied by its promises. The clients
release their promises by sending promise release messages to their promise managers. If a promise
request expires i.e., exceeds the promise duration fixed in the promise response, the corresponding
promise manager returns a ‘promiseexpired’ error to the client if it tries to perform operations under the
protection of the expired promise.

One of the general mechanisms to implement promises is ‘soft locks’. This method shows whether an
item is allocated or reserved for clients by recording this information as a field in the database records.
This does not lock the records of allocated or reserved items from being accessed. Instead, this field is
read when checking for available resources and corresponding records are simply ignored if the field
indicates that the item is allocated. Traditional locking mechanisms to ensure isolation can be seen as a
very strong form of promise. The promises approach is weaker but is effective as it is more precise. The
main advantage of this approach is that it allows the client applications to be very specific with respect to
conditions they need held over resources, thereby allowing other promises over the same resources to be
granted simultaneously as long as they do not conflict with existing promises. Once promises are granted,
clients can continue processing without the effects of concurrency in the execution environment.

2.4.2 Tentative Hold

The Tentative Hold technique (Limthanmaphon and Zhang 2004) provides another approach to avoid
traditional locking of data to support isolation. This approach allows tentative, non-blocking holds on
required resources. The resource owners, on receiving requests, grant non-blocking reservations on their
resources. At the same time, they maintain control over their resources and allow several clients to place
their requests for resources. This technique minimizes the need for cancellation of transactions by
providing the clients with the correct and up-to-date data. This is done by maintaining track of the hold
through several states. The states of a hold are Responding — initial state when an application sends a
request for a hold, In Process — intermediate state which indicates that hold request has been received,
Active — state reached when the requested hold has been granted, and Inactive — state that indicates that
the tentative hold is no longer valid. There are tentative hold coordinators at both the client (client
coordinator) and resource owner sides (resource coordinator). The client coordinator determines the status
of previously granted tentative holds and allows a client to request holds from resource owners for
specific resources, query the status of existing holds owned by it, cancel existing holds owned, query
logged activities, and request to modify existing holds. The resource coordinator first checks the status of
previously granted holds and verifies their expiration times. It allows a resource owner to query existing
holds granted by it, cancel existing holds granted by it, and query activities. The resource coordinator is
also responsible to notify affected client coordinators when a relevant resource becomes unavailable.
Thus this approach provides a non-blocking mechanism of temporarily holding resources.

2.4.3 Reservation-Based Coordination

The reservation based approach proposed in (Zhao, Moser, and Melliar-Smith 2005) serves the purpose
of temporarily locking data, similar to the promises and tentative hold techniques. This technique
‘reserves’ resources for use based on resource requests. In this protocol, each task within a business

activity is executed in two steps. Each step is executed as a single traditional transaction. The first step
reserves resources according to business logic. This reservation forms a contract between the client and
the resource provider. A ‘fee’ is associated with the reservation proportional to the duration of the
reservation, to discourage applications from reserving the resources for extended periods of time. The
second step involves confirming or rejecting the reservation in accordance with the business rules. Since
the first step involves explicit reservation of the resources, the application can choose to either continue
with the process or go backward, as the reservation may have either effect. After the first step of
reservation by an application, other transactions cannot make any assumptions about the future of the
resources reserved by that application. A two-phase protocol is used to coordinate the different tasks
within a business activity. In the first phase, the client coordinator sends reservation requests to all the
participants. The confirmation or cancellation of the reservations is done by the coordinator at the end of
the first phase. In the second phase, the confirmation or cancellation requests are sent to the
corresponding participants. Once a participant has accepted a reservation, it is committed to the reserved
resource until the coordinator cancels the reservation. In traditional transactions, any of the participants
might affect the transactions to rollback or abort. But in the reservation-based coordination protocol, only
the client is authorized to commit or rollback the business transaction through its coordinator.

One of the advantages of this technique over traditional locking is that if a resource is reserved and a
different transaction wants to access it, the transaction can be informed that the resource is already
reserved. So instead of waiting as in traditional locking, the transaction can take necessary and
appropriate actions to proceed further without waiting for the resource to be available. Therefore, the
reservation-based approach provides a way to avoid traditional locking while maintaining the ACID
properties.

2.4.4 Transactional Attitudes

The work in (Mikalsen, Tai, and Rouvellou 2002) proposes the Web Service Transaction (WSTX)
framework to address the issue of transactional reliability in web service composition. The WSTx
framework introduces transactional attitudes that enable web service providers to explicitly describe their
specific transactional semantics and capabilities, and web service clients to describe their transactional
requirements. The transactional attitudes are used to communicate otherwise implicit transactional
semantics and requirements while maintaining the autonomy of the individual transactional web services.
This enables a clear separation of the participants’ transactional properties from other aspects of a service
description.

The authors of (Mikalsen, Tai, and Rouvellou 2002) define transactional attitudes for the web service
providers as Provider Transactional Attitudes (PTAS) and the transactional attitudes for clients as Client
Transactional Attitudes (CTAs). PTAs allow the web service providers to explicitly describe their
transactional semantics and are therefore useful in automating the composition of web services into larger
transactional patterns. CTAs allow the clients to describe their expectations explicitly. Each client
executes one or more actions within the scope of a web transaction, where each action is a provider
transaction executing within the scope of a larger web transaction. The transactional attitudes can
therefore be used to automate reliable execution of individual web transactions. In the WSTx framework,
such automation is supported by the middleware system. The middleware acts as an intermediary between
a client and multiple web service providers. It maps the client transactional requirements (associated with

CTAs) with the various transactional capabilities and semantics of the web service providers (associated
with PTAs). This helps in a reliable execution of web transactions through the use of transactional
attitude descriptions.

2.4.5 Decentralized Data Dependency Analysis for Concurrent Process Execution

The work in (Liu 2009) provides techniques to perform data dependency analysis in a concurrent process
execution scenario. The central focus in (Liu 2009) is to identify concurrently executing processes that are
write-dependent and potentially read-dependent on a failed process. The idea here is to ensure data
consistency by recovering processes that are dependent on a failed process, in addition to recovering the
failed process itself. The concept in (Liu 2009) builds on the approaches discussed in the previous
subsections and locks data items accessed by the failed process and the identified dependent processes
temporarily, till all of these processes are recovered. Therefore, in the execution environment, only the
concurrently running processes that need access to the locked data items need to wait temporarily. The
other processes continue running uninterrupted.

3. Background

To provide the appropriate background for the proposed research, this section discusses the work on
decentralized data dependency analysis, and assurance points in the context of the DeltaGrid service
composition and recovery model from (Xiao, and Urban 2009). Section 3.1 will first summarize the data
dependency analysis work of (Liu 2009). Section 3.2 will then summarize the concept of Assurance
Points from (Shrestha 2010). Section 4 will then present objectives that represent an extension and
integration of this research.

3.1 Decentralized Data Dependency Analysis

As described in (Urban et al., 2009), then a Process History Capture System (PHCS) merges deltas from
distributed service executions to create a centralized, time-sequenced global delta object schedule. This
object schedule is then used to analyze data dependencies between various process executions and
determine how the failure and recovery of one process can potentially affect other processes. The work in
(Urban et al., 2009) demonstrates this model and discusses the overhead associated with the centralized
approach to data dependency analysis. The work in (Liu 2009) developed a decentralized approach to
analyzing data dependencies in a service composition. Liu's work developed the concept of Process
Execution Agents (PEXASs), which are capable of capturing deltas locally. Each PEXA communicates
with other PEXAs to determine data dependencies between distributed service executions. The internal
architecture of a PEXA is described in detail in (Liu 2009).

In the decentralized data dependency analysis approach, PEXAs are responsible for the execution of local
processes. Each PEXA also maintains a local delta object schedule. This enables the determination of data
dependencies between the locally executing services. Since a process can execute services at multiple
sites, with each site being monitored by a different PEXA, every PEXA must communicate with other
PEXAS to determine a global view of the process data dependencies. This global view is provided by the
construction of a graph known as the Process Dependency Graph.

The work in (Liu 2009) also developed two different algorithms for decentralized data dependency
analysis - the Lazy Approach, and the Eager Approach. The algorithm used in the Lazy approach assumes

that every process runs successfully and starts building the process dependency graph only when one of
the processes fails due to the failure of one of its services. The algorithm used in the Eager approach
builds the dependency graph dynamically, at runtime. This makes sure that a global process dependency
graph is available as soon as a process fails.

One of the limitations of the work in (Liu 2009) is that the data dependency analysis procedure is not
fully integrated into a flexible service composition model. In (Liu 2009), when a process fails, the current
algorithms assume that the failed process and all dependent processes recover by rolling back completely
to the beginning of their execution. Therefore the approaches discussed perform the data dependency
analysis at the process level. The proposed work will investigate how to integrate the data dependency
analysis process into a service composition and recovery model enhanced with APs for more flexible
recovery actions.

3.2 Assurance Points

According to the service composition and recovery model in (Xiao, and Urban 2009), a process is a top
level execution entity hierarchically composed of different types of execution entities. A process is
denoted as p;, where p represents the process and the subscript i represents the unique identifier of the
process. An operation represents a service invocation. An operation in process p; is denoted as op;j, where
op is the operation, i represents process p; and j represents the unique identifier of the operation within the
process p;. Compensation, denoted as cop;; is an operation for backward recovery and contingency
denoted as top;; is an operation for forward recovery. In this model, service execution failure recovery is
made flexible by adding scopes within the context of a process execution. Atomic groups and composite
groups are logical execution entities that enable the specification of the complex control structure of a
process. An atomic group is an execution unit that contains an operation, an optional compensation, and
an optional contingency. A composite group is an execution unit that may be composed of multiple
atomic groups and/or multiple composite groups that execute in sequence or parallel, an optional
compensation, and an optional contingency. The entire process can be considered to be the top level
composite group. Contingency is an operation that provides an alternate execution for forward recovery.
Upon the failure of a group, contingency is tried first. If contingency fails or is not available,
compensation is invoked. Compensation is the backward recovery operation that logically undoes the
outcomes of completed activities. While execution of the compensating procedure attached to a composite
group is known as shallow compensation, deep compensation involves individually compensating each
entity contained in the composite group.

Although the model in (Xiao, and Urban 2009) uses rules for process recovery during failures, it does not
provide approaches for flexible constraint checking and dynamic response to events. To address this,
(Shrestha 2010) extends the model with the concept of Assurance Points. An AP has been defined as a
process execution correctness guard and a potential rollback point during forward and backward recovery
activities. APs are inserted at critical points in a process to check for consistency and reduce the risk of
failure. They can also be used as checkpoints for recovery procedures. They are used together with
integration rules to support correctness and consistency checking.

An AP is defined as AP = <apld, apParameters, IRpe, IRpost, IRcong™ Where, aplD uniquely identifies the
AP, apParameters is the list of critical data items stored in the AP, IR, is an integration rule that defines

10

a pre-condition, IRy is an integration rule that defines a post-condition and, IRcnq is an integration rule
that defines additional application rules. There may be 0 or more occurences of apParameters and IRng
and 0 or 1 occurrence of IRy, and IRy The IRs that are part of APs are expressed as ECA rules as
shown in Figure 1. When process execution reaches a specific AP, the IRs corresponding to it are
trigerred. When an IR is invoked, its condition is checked. If the condition evaluates to true, the action
specified is carried out. For IRy and IRy, the condition is always expressed as the negative form of the
constraint so that the corresponding action is executed whenever the constraint is not satisfied. Thus, the
action part of these IRs can be used to specify recovery activities which will be performed on the
violation of specific constraints. This way, APs serve as consistency checks and support recovery to
handle any inconsistencies.

On reaching a particular AP, the condition associated with IRpost is evaluated first to validate the
execution of the previous entity in process execution. If the post-condition is violated, the corresponding
recovery action is carried out. If the post-condition is satisfied or there is no IR in the AP, the condition
of IRy is checked. If the pre-condition is violated, the corresponding recovery action is carried out. If the
pre-condition is satisfied or there is no IR, in the AP, any IR, ns that may have been specified are
checked. The IR.g rules invoke additional parallel activity based on the application conditions and do
not alter the normal flow of process execution.

The most basic recovery action is to invoke an alternative process. The recovery actions associated with

APs can also be one of the following.

- APRollback: This recovery action is used when the entire process needs to be rolled back through
compensation, to the start of the process.

- APRetry: This is used when the process needs to be compensated to a specific AP. The APRetry
procedure can optionally specify the particular AP to which the process needs to be backward
recovered. By default, APRetry compensates the process to the first AP reached through
compensation, within the same scope. When the specified/first AP is reached, the pre-condition
defined at that AP is first re-checked. If the condition is violated, the corresponding action is
executed. Otherwise, process execution is resumed from that point to re-execute compensated
activities. In such a case, there is a possibility that the process may encounter the same inconsistency
that caused APRetry to be invoked. When this happens, action 2 (see Figure 1) is invoked instead of
action 1.

- APCascadedContingency (APCC): This recovery action searches backwards through the hierarchical
nested structure of the process for a possible contingent procedure for a failed execution entity in the
process. During the APCC backward recovery process, when an AP is reached, the pre-condition at
that AP is re-checked before executing any contingent procedure for forward recovery. If the pre-
condition is violated, APRollback is performed to compensate the entire process.

CREATE RULE ruleName::{pre | post | cond}
EVENT aplD(apParameters)
CONDITION rule condition specification
ACTION action 1

[ON RETRY action 2]

Figure 1. Structure of an Integration Rule in an AP (Shrestha 2010)

11

Although the AP model provides flexible combinations of forward and backward recovery actions to
handle internal errors and failure, the model does not provide approaches to respond to external events.
The concept in (Shrestha 2010) also does not consider the potential inconsistencies that may arise in
concurrent process execution due to data dependencies on the recovering process. The proposed research
will extend the AP model to handle external events through AERs, and integrate the data dependency
analysis capability into the extended model such that the recovery of a failed process includes the
identification and interruption of the dependent processes.

4. Statement of Objectives

The main objective of this research is to develop the concept of Application Exception Rules to support
flexible exception handling and response to external events, and integrate their use with support for
analysis of data dependencies in concurrent process execution. The use of AERs will enable processes to
handle exceptions and respond to external events based on their execution status. Such responses to
failures and exceptions will involve the recovery of the process to a consistent state based on the
techniques proposed in (Shrestha 2010). In the proposed research, the recovery of a process will be
integrated with the additional ability to perform data dependency analysis. This will enable the
identification of, and the communication of recovery to concurrently running processes that may be
affected by the recovery of a process. The proposed work therefore involves developing the AER concept,
along with the capability to perform data dependency analysis.

This research will demonstrate the use of Application Exception Rules through the integration and

extension of the concepts proposed in (Shrestha 2010) and (Liu 2009). In the proposed environment,

when a process receives an external event,

- the corresponding AER will be triggered.

- based on the most recently crossed AP, a recovery action will be fired. This will enable the process to
recover itself to a consistent state depending on its current execution status.

- data dependency analysis will be performed to determine which processes are dependent only on the
“recovered portion” of the current process.

- the process execution interruption and recovery will be communicated to the identified dependent
processes in the form of events.

In the proposed concept, Application Exception Rules will use a case based rule structure to provide
variability of response to exceptions. These rules, in association with assurance points, define the
responses to the exceptions depending on the process execution status. Using this concept, different
instances of a process may respond to events differently depending on the APs they have passed during
execution. Each AER defines recovery actions based on APs. Therefore, when an exception triggers an
Application Exception Rule, it fires a recovery action depending on the most recently passed assurance
point. For example, if a process receives an event about the failure and recovery of another process that it
is dependent on, the current process, using AERs, may avoid inconsistency by recovering itself based on
the APs that it has passed. Thus, the proposed concept will enhance the exception handling mechanisms
to also consider critical points in process execution that may affect recovery actions, and support variable
response to exceptions.

12

To achieve the main objective, this research will involve the following sub-objectives.

a)
b)

c)

d)

Extend the AP model to support the specification of Application Exception Rules.

Integrate the use of data dependency analysis with the extended AP model.

Design and prototype an execution environment with data dependency analysis capability to
demonstrate the AER concept.

Demonstrate and evaluate the Application Exception Rules model for concurrent process execution
with a sample processing scenario.

5. Discussion of Objectives
This section provides a more detailed discussion of the objectives of this research outlined in the previous
section.

a)

b)

Extend the AP model to support the specification of Application Exception Rules.

AERs respond to exceptional conditions based on the execution status of the corresponding instance
of the process. To determine the execution status of a process instance, it will be necessary to store
information about critical points of execution that it has passed. The concept described in (Shrestha
2010) uses APs as logical checkpoints where critical data related to the current execution status of a
process is stored. Therefore, developing the AER concept will involve the checkpointing functionality
of the APs. This research will extend the constraint checking and failure recovery functionality of the
AP model to include exception handling by the specification of AERs.

Since, the AER concept needs to enable responding to exceptions variably, according to the execution
status of the process, each AER will have a case structure and define recovery actions based on APs,
as shown in the middle column of Figure 2. In the structure of an AER, each AP represents the fact
that the process has crossed a certain critical point of execution. Responding to an exception depends
on APs that have been passed by different instances of the process. When an exception occurs, it will
get communicated to the process as an event. This event will trigger an AER. The triggered rule,
based on the AP that was most recently passed by the corresponding process instance, will carry out
the recovery actions according to the case structure.

As part of developing a prototype system, this research will use XML to specify Application
Exception Rules for concurrently running processes in a sample scenario. The db4o (database for
objects) object-oriented database will be used to store information about process execution and AP
information.

Integrate the use of data dependency analysis with the extended AP model.

The proposed research involves the use of AERs of a process to handle exceptions and at the same
time maintain data consistency in the concurrent process execution environment by informing
dependent processes of data modifications that may affect them. Therefore, the research work will
involve the provision of the data dependency analysis capability. This functionality will be built
primarily from the concept proposed in (Liu 2009) to determine data dependencies. As described in
Section 3.1, each site of execution will have a PEXA agent that maintains a local delta object
schedule. A similar approach will be followed in the AER system.

13

Process
Specification

Process A

AP1

AP2

Application Exception Rule

On Event eventName

Instance 1
Process Al

AP1

Case
AP1:
Action 1; €
AP2:
Action2; €
End Case

Execution Point

Instance 2
Process A2
AP1

AP2

Execution Point

The work in (Liu 2009) provides the Lazy and Eager algorithms to determine data dependencies. It
also assumes that whenever a process fails, it recovers itself by rolling back completely. In such
cases, any process that is read/write dependent on the main process is included in the list of dependent
processes. That is, the dependencies are determined on a process level. But in the proposed research,
a failed process will be recovering itself only to a consistent state of execution. Therefore, only
processes that are dependent on the recovered portion of the main process need to be identified and

informed.

Figure 2: The Use of Application Exception Rules

To address this issue, the following steps will be taken.

- Since data dependency analysis needs to be handled only on the recovered portion of the process,
the Lazy approach will be used as a preferred choice. The Eager approach assumes that all
processes will potentially fail and determines dependent processes dynamically to support fast
recovery. But since recovery in that context means rollback, it will not be suitable for the AER
system which will support flexible process recovery to critical and consistent execution states. On
the other hand, the Lazy approach determines the dependencies only when a process fails. This
will be more suitable to the proposed system. A critical difference here would be that the list of
dependent processes will be built only after the process is recovered to a consistent state. This
will enable the availability of information about the “start and end points of recovery”. Based on

these points, the lazy approach will be employed to identify dependent processes.

14

c)

d)

- The data dependency analysis capability of the AER system will also require modifications to the
types of information stored in the delta object schedule and the way in which the delta object
schedules are queried to retrieve information about write dependent and potentially read
dependent processes. In the general approach (Xiao, and Urban 2008), when a process fails,
dependent processes are determined by querying the delta object schedule to identify processes
that have a write/read operation after a write operation by that process. But in the AER system,
since only the recovered portion of the process needs to be considered, it will be necessary to
modify the delta object schedule to also include information about APs crossed in execution. This
way, the querying of the schedule can be modified such that only the dependencies of a process
between two particular APs (start and end points of recovery) are identified.

Design and prototype an execution environment with data dependency analysis capability to
demonstrate the AER concept.

As part of the research, an execution environment in JAVA with support for concurrent process
execution will be designed and implemented. The prototype will be developed as an extension to the
AP model with support for the specification and functionality of AERs. In addition, the execution
environment will be designed to support the use of Delta Enabled Grid Services (DEGS) (Urban et
al., 2009) to facilitate the analysis of data dependencies between the concurrently running processes.
The proposed system will be designed such that there is an associated PEXA with the execution
environment which maintains the local delta object schedule in a time-sequenced manner. Each
process in the prototype will be designed to handle exceptions. When the occurrence of an exception
triggers an AER, leading to the execution of a recovery action for the process, construction of the
process dependency graph to determine dependent process will also be done immediately. After the
dependent processes identification is handled, steps to generate events to interrupt their execution will
be followed.

Demonstrate and evaluate the Application Exception Rules model for concurrent process execution
with a sample processing scenario.

The proposed research will develop the AER concept, integrate it with the AP model, and extend it to
have data dependency analysis capability. The research will also involve testing and demonstrating
the AER system in a concurrent process execution scenario. After the execution environment is
prototyped, the demonstration of the sample application will be used to test the functionality of the
system.

6. Timeline for the Research
A tentative schedule for the research is given below.

Milestone Start Date End Date
Review of past and current related work Jun 2010 Aug 2010
Definition of research direction Aug 2010 Sep 2010
Thesis proposal Sep 2010 Nov 2010

15

Extension of AP model for AER specification Oct 2010 Nov 2010
Integration of operation-level data dependency analysis Nov 2010 Dec 2010
Development of execution environment for the AER system Dec 2010 Jan 2011
Demonstration and evaluation of the AER system Jan 2011 Mar 2011
Initial writing of thesis Jan 2011 Feb 2011
Submission of thesis outline for first review - Feb 2011
Submission of thesis to committee for final review - Mar 2011
Thesis Defense - Mar 2011
Graduation - May 2011
7. Summary

This proposal has defined the concept of application exception rules together with the use of data
dependency analysis. The proposed research will use AERs to provide an efficient and flexible way of
responding to external events. The use of AERs will enable processes to give variable response to
exceptions, depending on their execution status. This provides an approach to dynamically handle
exceptions without giving a fixed response to each exception.

The proposed work will also employ the use of AERS in a concurrent process execution scenario with
support for data dependency analysis. Therefore, the flexible exception handling and failure recovery
capabilities of the AER model will include the identification of processes dependent on the recovered
portion of a failed or interrupted process. These dependent processes will be informed of the recovery by
interruption through events. Thus, this research will provide an approach for exception handling with
strong support for data consistency for concurrent process execution through AERs and data dependency
analysis.

References

Baresi, L. and Guinea, S. (2005). Towards Dynamic Monitoring of WS-BPEL processes. Proceedings of
the 3rd International Conference on Service Oriented Computing (ICSOC'05), Amsterdam,
Netherlands.

Brambilla, M., Ceri, S., Comai, S., and Tziviskou, C. (2005). Exception handling in Workflow-Driven
Web Applications. Proceedings of the 14th international conference on World Wide Web, 170-179.

Breugel, F. V., and Koshkina, M. (2006). Models and Verification of BPEL. Technical Report, York
University, Toronto, Canada.
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

Chakravarty, P., and Singh, M. P. (2007). An Event-Driven Approach for Agent-Based business Process
Enactment. In Proceedings of the 6" International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS '07).

16

Chan, K. S. M., Bishop, J., Steyn, J., Baresi, L., and Guinea, S. (2007). A Fault Taxononmy for Web
Service Composition. Lecture Notes in Computer Science In Proceedings of the 3™ International
Workshop on Engineering Service Oriented Applications (WESOA '07), Springer, 4907: 363-375.

Charfi, A. and Mezini, M. (2006). Aspect-Oriented Workflow Languages. Proceedings of Conference on
Cooperative Information Systems (CooplS 2006).

Charfi, A. and Mezini, M. (2007). AO4BPEL.: An Aspect-Oriented Extension to BPEL. World Wide Web
Journal, 10, 3: 309-344.

Christos, K., Costas, V., and Panayiotis, G. (2007). Enhancing BPEL scenarios with Dynamic Relevance-
Based Exception Handling. IEEE International Conference on Web Services (ICWS 2007), 751-
758.

Eder, J. and Liebhart, W. (1996). Workflow recovery. Proceedings of the First IFCIS International
Conference on Cooperative Information Systems. 124-134.

Elmasri, and R. Y., Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.): Addison-Wesley
Longman Publishing Co., Inc.

Fischer, J., Majumdar, R., and Sorrentino, F. (2008). The consistency of web conversations, Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, 415-
418.

Foster, H., Uchitel, S., Magee, J., Kramer., J. (2006). LTSA-WS: A Tool for Model-Based Verification of
Web Service Compositions and Choreography. In Proceedings of the 28" International Conference
on Software Engineering (ICSE 2006).

Fu, X., Bultan, T., and Su, J. (2004). WSAT: A Tool for Formal Analysis of Web Services. In Proc. 16th
Int. Conf. on Computer Aided Verification, 3114: 510-514.

Greenfield, P., Fekete, A., Jang, J., and Kuo, D. (2003). Compensation is not enough. In Proceedings of
the 7th International Conference on Enterprise Distributed Object Computing (EDOC), 232.

Greenfield, P., Fekete, A., Jang, J., Kuo, D, and Nepal, S. (2007). Isolation Support for Service-based
Applications: A Position Paper. Proceedings of the 3™ Biannual Conference on Innovative
Database Systems Research (CIDR '07), 314-323.

Huhns, M. N. (2002). Agents as Web Services. IEEE Internet Computing, 6, 4: 93-95.

Jang, J., Fekete, A., and Greenfield, P. (2007). Delivering Promises for Web Service Applications. IEEE
International Conference on Web Services (ICWS '07), 599-606.

Jennings, N. R., Faratin, P., Norman, T. J., O'Brien, P., Odgers, B., and Alty, J. L. (2000). Implementing a
Business Process Management System using ADEPT: A Real-World Case Study. Applied Artificial
Intelligence, 14, 5: 421-463

Jin, Y. (2004). An architecture and Execution Environment for Component Integration Rules: Ph.D.

Dissertation, Arizona State University.

Kiczales, G., Lamping, J., Mendhekar, A, et al. (1997). Aspect-Oriented Programming. Lecture Notes in
Computer Science In Proceedings of the 11" European Conference on Object-Oriented
Programming (ECOOP), Springer, 1242: 220-242.

Limthanmaphon, B., and Zhang, Y. (2004). Web service composition transaction management. In
Proceedings of the 15" Australasian Database Conference (ADC 2004), Conference in Research
and Practice in Information Technology, 27: 171-179.

Liu, Z. (2009). Decentralized Data Dependency Analysis for Concurrent Process Execution. M.S. Thesis,
Texas Tech University.

Liu, A., Li, Q., Huang, L., and Xiao, M. (2007). A Declarative Approach to Enhancing the Reliability of
BPEL Processes. Proceedings of the International Conference on Web Services, 272-279.

Luo, Z. W. (2000). Checkpointing for workflow recovery. In Proceedings of the 38th Annual on
Southeast Regional Conference, 79-80.

Luo, Z., Sheth, A., Kochut, K., and Miller, J. (2000). Exception handling in workflow systems. Applied
Intelligence, 13, 2: 125-147.

Michelson, B. M. (2006). Event-Driven Architecture Overview. Patricia Seybold Group.

17

Mikalsen, T., Tai, S., and Rouvellou, I. (2002). Transactional Attitudes: Reliable Composition of
Autonomous Web Services. In Proceedings of the Workshop on Dependable Middleware-Based
Systems (WDMS 2002), 44-53.

Modafferi, S. and Conforti, E. (2006). Methods for Enabling Recovery Actions in Ws-BPEL.
Proceedings of the International Conference on Cooperative Information Systems (CooplS), 4275:
2109.

Modafferi, S., Mussi, E., and Pernici, B. (2006). SH-BPEL.: A Self-Healing plug-in for Ws-BPEL Engine.

In Proceedings of the 1st Workshop on Middleware for Service Oriented Computing (MW4SOC),
48-53.

Miiller, R., Grener, U., and Rahm, E. (2004). AgentWork: A Workflow System Supporting Rule-Based
Workflow Adaptation. Database and Knowledge Engineering, 51, 2: 223-256.

Papazoglou, M. P., and Georgakopoulos, D. (2003). Service-Oriented Computing. Communications of the

ACM, 46, 10: 25-28.

Shen, W., Ghenniwa, H., and Li, Y. (2006). Agent-Based Service-Oriented Computing and Applications.
Proceedings of the 1% International Symposium on Pervasive Computing and Applications, 8-9.

Shrestha, R. (2010). Using Assurance Points and Integration Rules for Recovery in Service Composition:
M.S. Thesis, Texas Tech University.

Tan, W., Fong, L., and Bobroff, N. (2007). BPEL4JOB: A fault-handling design for job flow
management. Proceedings of the 5th international conference on Service-Oriented Computing,
4749: 27-42.

Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P., and Traverso, P.
(2005). Astro: Supporting composition and execution of web services. Lecture notes in Computer
Science, In Service Oriented Computing -- ICSOC 2005, Third International Conference, Springer,
3826: 495.

Urban, S. D., Dietrich, S. W., Na, Y., Jin, Y., Sundermier, A., and Saxena, A. (2001). The IRules Project:
Using Active Rules for the Integration of Distributed Software Components. Proceedings of the 9th
IFIP Working Conference on Database Semantics: Semantic Issues in E-Commerce Systems, 265-
286.

Urban, S. D., Xiao, Y., Blake, L., and Dietrich, S. W. (2009). Monitoring Data Dependencies in
Concurrent Process Execution through Delta-Enabled Grid Services. International Journal of Web
and Grid Services, 5, 1: 85-106.

Xiao, Y., and Urban, S. D. (2008). Process Dependencies and Process Interference Rules for Analyzing
the Impact of Failure in a Service Composition Environment. Journal of Information Science and
Technology, 5, 2: 21-45.

Xiao, Y., and Urban, S. D. (2009). The DeltaGrid Service Composition and Recovery Model.
International Journal of Services Research (IJWSR), 6, 3: 35-66.

Zhao, W., Moser, L. E., and Melliar-Smith, P. M. (2005). A Reservation-Based Coordination Protocol for
Web Services. In Proceedings of the IEEE International Conference on Web Services (ICWS’05),
49-56.

18

