
Decentralized Data Dependency Analysis for Concurrent Process Execution

Susan D. Urban, Ziao Liu, Le Gao
Texas Tech University

Edward E. Whitaker Jr. College of Engineering
Department of Computer Science

Lubbock, TX 79409
susan.urban@ttu.edu

Abstract—This paper presents our results with the investigation
of decentralized data dependency analysis among concurrently
executing processes in a service-oriented environment.
Distributed Process Execution Agents (PEXAs) are responsible
for controlling the execution of processes that are composed of
web services. PEXAs are also associated with specific distributed
sites for the purpose of capturing data changes that occur at
those sites in the context of service executions using Delta-
Enabled Grid Services. PEXAs then exchange this information
with other PEXAs to dynamically discover data dependencies that
can be used to enhance recovery activities for concurrent
processes that execute with relaxed isolation properties. This
paper outlines the functionality of PEXAs, describing the data
structures and communication mechanisms that are used to
support decentralized construction of distributed process
dependency graphs, demonstrating a more dynamic and
intelligent approach to identifying how the failure of one process
can potentially affect other concurrently executing processes.

Keywords-data dependency; concurrent process execution;
relaxed isolation; process recovery; decentralized communication

I. INTRODUCTION
One of the advantages of service-oriented computing is

that it allows business processes to be composed by
executing distributed web services [16]. Unlike traditional
distributed transaction processing, however, since each
service is autonomous and platform-independent, the
commit of a service execution is controlled by the residing
service instead of the global process. As a result, processes
composed of web services do not generally execute as
transactions that conform to the concept of serializability.
Since a service can commit before a global process is
complete, dirty reads and dirty writes can occur among
globally executing processes.

From an application point of view, dirty reads and dirty
writes do not necessarily indicate an incorrect execution, and
a relaxed form of correctness dependent on application
semantics can produce better throughput and performance.
User-defined correctness of a process can be specified as in
related work with advanced transaction models [12] and
transactional workflows [21], using concepts such as
compensation to semantically undo a process. But even when
one process determines that it needs to execute compensating

procedures, information about global data dependencies is
needed to determine how the data changes caused by the
recovery of one process can possibly affect other processes
that have either read or written data modified by the services
of the failed process. This ability to capture and analyze data
dependencies in a service composition environment does not
exist in current service-oriented architectures, thus creating
data consistency problems for concurrent execution and
limiting the effectiveness of recovery procedures for failed
processes.

This paper presents our results with the investigation of
an approach that performs decentralized data dependency
analysis among concurrently executing processes in a
service-oriented environment. In particular, we present the
concept of Process Execution Agents (PEXAs) and the
manner in which multiple PEXAs communicate to discover
data dependencies that can be used to support recovery
activities. PEXAs are responsible for controlling the
execution of processes that are composed of web services.
PEXAs are associated with specific distributed sites and are
also responsible for capturing and exchanging information
with other PEXAs about the data changes that occur at those
sites in the context of service executions.

The ability to capture data changes, also known as
deltas, builds on our past work with the use of Delta-Enabled
Grid Services (DEGS) [3, 17], which are Grid Services that
have been extended with the capability of recording and
externalizing incremental data changes using features such as
Oracle Streams [16]. Whereas the work in [3, 17, 22, 23]
forwarded streaming deltas from multiple DEGS to a single,
time-ordered, delta object schedule for a centralized
approach to data dependency analysis, the work presented in
this paper has extended the data dependency analysis process
to support decentralized communication among multiple
PEXAs. Each PEXA creates its own local delta object
schedule that can be used to create process dependency
graphs. But since a process can execute services that are
associated with multiple PEXAs, the data dependency
analysis process requires a global view of distributed process
dependency graphs.

This paper outlines the functionality of PEXAs and also
describes the data structures and communication
mechanisms that are used to achieve a decentralized
approach to the analysis of data dependencies and the

mailto:susan.urban@ttu.edu

construction of distributed process dependency graphs. In
particular, we outline the information that must be captured
during process execution and communicated when failures
occur to construct a complete picture of process
dependencies. The decentralized approach eliminates the
bottleneck and overhead reported in [3, 17] of forwarding all
data changes to a central point for analysis. More
importantly, the distributed delta object schedule and
decentralized data dependency algorithm described in this
paper represents a new way of integrating existing
transaction processing theories with execution platforms that
can be used to address data consistency issues for concurrent
process execution in service-oriented environments,
providing more dynamic and intelligent ways of monitoring
failures, detecting dependencies, and responding to failures
and exceptional conditions.

In the remainder of this paper, section II presents related
work. Section III then outlines the functionality of PEXAs
with an illustration of the decentralized data dependency
analysis problem in section IV. Section V discusses the
decentralized approach to the propagation of the recovery
and graph construction process. The paper concludes in
section VI with a summary and discussion of future research
directions.

II. RELATED WORK
This section outlines related work. Section A first

summarizes past work with advanced transaction models
and transactional workflows, as well as recent work with
recovery procedures for service-oriented environments.
Section B then presents background on the DeltaGrid
project that provides the basis for the work described in this
paper.

A. Advanced Transaction Models and Transactional
Workflows
Advanced Transaction Models (ATMs) were designed

to relax traditional ACID properties and the use of the two-
phase commit protocol to provide functionalities such as
compensation for backward recovery and contingency for
forward recovery. In the work of [6], a mechanism was
proposed to structure a long running process as a Saga. A
Saga defines a chain of transactions, with each sub-
transaction having a compensating procedure to reverse the
affects of the Saga when it fails. Other advanced transaction
models, such as the multi-level transaction model and the
flexible transaction model have made use of compensation
for hierarchically structured transactions [12]. In fact,
current standards for web services, such as WS-BPEL [1]
and WS-Business Activity [4] build on the concept of
compensating procedures as a means of recovery. These
models, however, do not support isolation of data and do not
address recovery for dependent transactions in loosely-
coupled applications.

The term Transactional Workflows was introduced to
recognize the relevance of transactions to workflow activity.

Transactional workflows involve the coordinated execution
of multiple related tasks that support access to
heterogeneous, autonomous, and distributed data through
the use of selected transactional properties for individual
tasks or entire workflows [21]. The ConTract Model
provides a classic example of work with transactional
workflows [19], supporting the correct execution of non-
atomic, long-lived applications with application-dependent
consistency constraints. The ConTract Model provides
compensation for backward recovery, and user-defined
consistency through the specification of pre-conditions or
post-conditions for steps. Other examples of transactional
workflow models include the Workflow Activity Model [5],
the Crew Project [8], and METEOR [19]. Transactional
workflow models have improved the robustness of
distributed transaction executions, but the work in this area
still does not address the affect that a failed process can
have on other concurrently executing processes.

Numerous other techniques are being investigated for
addressing data consistency in service composition.
Tentative holding is used in [9] to achieve a tentative
commit state for transactions over Web Services.
Acceptable Termination States (ATS) [2] are used to ensure
user-defined failure atomicity of composite services. A
reservation-based protocol is defined in [26], where a
process uses an explicit reservation phase to request
resources, followed by an explicit confirmation/cancellation
phase. The concept of a promise in [7] is similar to the work
in [26], where a promise is an agreement between a client
and a resource owner, allowing a service provider to offer
assurances that resources will be available when they are
needed. Other techniques include Web Services
Composition Action [14, 15], WebTransact [11], and the
work of [18], defining a model that supports features such as
atomic transactions, pivot transactions, compensatable
transactions, and re-triable transactions, as well as forward
and backward recovery techniques.

The technique presented in this paper dynamically
analyzes write dependencies and potential read dependencies
among concurrently executing processes by capturing data
changes from distributed service executions and providing an
intelligent, decentralized approach to discovering
dependencies that can be used to enhance recovery
techniques such as those described above.

B. The DeltaGrid Project
The research described in this paper builds on our past

work with the DeltaGrid project [22, 23, 24] and Delta-
Enabled Grid Services (DEGS) [3, 17]. A DEGS is a Grid
Service that has been enhanced with an interface that
provides access to the incremental data changes, or deltas,
that are associated with service execution in the context of
globally executing processes. A DEGS uses an OGSA-DAI
Grid Data Service for database interaction. The database
captures deltas using capabilities provided by most
commercial database systems. In [3, 17], we experimented

with triggers and with the use of Oracle Streams as a way to
capture data changes [16]. Oracle Streams is a feature that
monitors database redo logs for changes and publishes these
changes to a queue to be used for data sharing.

Deltas captured over the source database are stored in a
local delta repository. Deltas are then generated as a stream
of XML data from the delta repository to the Process
History Capture System (PHCS) [22, 23] of the DeltaGrid
execution environment, where a complete execution history
for distributed, concurrent processes is formed. The
execution history includes deltas from distributed DEGSs
and the process runtime context generated by the process
execution engine. Deltas are dynamically merged using
timestamps as they arrive in the PHCS to create a time-
ordered schedule of data changes from distributed DEGS.
This global delta object schedule creates a log file that is
used to support recovery activities when process execution
fails [22, 23].

In particular, the global delta object schedule can be
used to support the backward recovery of a completed
service using Delta-Enabled rollback (DE-rollback). The
delta schedule also provides the basis for discovering data
dependencies among processes. As defined in [22, 23], a
process-level write dependency exists if a process pi writes
an object x that has been written by another process pj before
pj completes (i≠j). An operation-level write dependency
exists if an operation opik of process pi writes an object that
has been written by another operation opjl of process pj.
Operation-level write dependency can exist between two
operations within the same process (i = j). The operations
that are write dependent on a specific operation opjl form
opjl’s write dependent set. If opik is write dependent on opjl,
the enclosing process of opik is also write dependent on opjl.
Note that DE-rollback of an operation is only performed if
the operation’s write dependent set is empty.

Similar definitions exist to define read dependencies,
but since a DEGS does not capture read information, the
global execution context can be used to reveal potential
read dependency among operations. An operation opik is
potentially read dependent on another operation opjl if: 1) opik
and opjl execute on the same DEGS, and 2) the execution
duration of opik and opjl overlaps, or opik is invoked after the
termination of opjl. The operations that are potentially read
dependent on an operation opjl form a set referred to as opjl’s
read dependent set. Potential read dependency can be
defined at the process or operation levels.

An object interface is used to query the delta object
schedule to return information about read and write
dependencies. This information identifies concurrently
executing processes that may be affected by the failure and
recovery of a process that is accessing shared data. A user-
defined rule-based approach for recovery actions of
processes that are dependent on a failed process is addressed
in [22, 25].

The research in [3, 17, 22, 23, 24] demonstrated the
feasibility of the DeltaGrid approach to analyzing data

dependencies among concurrently executing processes, but
identified the centralized approach to data dependency
analysis as a major bottleneck in the process. The results
presented in this paper extend the data dependency analysis
concept to a decentralized approach, where multiple Process
Execution Agents maintain local delta object schedules and
communicate as peers to share information about common
data access patterns among concurrent processes.

III. PROCESS EXECUTION AGENTS (PEXAS)
This section provides an initial overview of process

execution agents. The discussion begins with an example
execution scenario in Fig. 1, where we assume there are
three PEXAs in the decentralized environment. Each PEXA
is indicated as a rectangular box and is associated with a
distributed site (Di) that has a DEGS interface and possibly
multiple databases. Executing processes are indicated as
circles, with lightning bolts indicating the PEXA that is
controlling the execution of the process. A solid line from a
process to a DEGS interface represents a service invocation.
Dashed lines between PEXAs indicate decentralized
communication among PEXAs. Data changes that are made
by each DEGS are forwarded to the PEXA that is associated
with the DEGS and stored in the local delta object schedule.
Section A presents an example execution scenario. Section
B then describes the internal architecture of a PEXA.

A. A PEXA Execution Scenario
As shown in Fig. 1, each PEXA is responsible for

controlling the execution of local processes that are
composed of service executions. Each process is invoking
services that modify data at distributed sites. For example,
site D1 is controlling the execution of p1 and p4. Process p1 is
composed of two service executions identified as op11 and
op12, both executing at D1. Process p4 executes op41, also at
site D1. Site D2 controls the execution of p2, where p2
executes op21 at D1 and op22 at D2. Site D3 controls the
execution of p3, which is executing op31 at D2, op32 at D1, and
op33 at D3.

As indicated in Fig. 1, each invocation of an opij has a
timestamp, tx, indicating the time at which the operation is
invoked. The box inside each PEXA provides a snapshot of
the local delta object schedule for the data items that are
being modified by each service that accesses data at the site,
illustrating the interleaved data access by the service
invocations of concurrent processes. For example, the delta
object schedule for D1 shows that objects X1, Y1, and Z1
have been modified. The schedule indicates the operations
that have made the modifications and orders the schedule by
the operation timestamps. The local schedule at D1 indicates
that p2 is dependent on p1 since op21 has modified X1 after
op11 has modified X1 and p1 is still executing. The schedule
also indicates that p4 is dependent on p3 through access to
Y1. At D2, the operations have accessed data item X2, with
the local schedule indicating that p3 is dependent on p2.

D3

D2

DEGS
interface

DEGS
interface

p1

p3

p2
p4

t1 op11 t6 op41

t2 op21

t3 op22

t5 op32

DEGS
interface

PEXA 1
In control of p1 and p4

At Site D1
Local

Delta Object Schedule

PEXA 2
In control of p2

At Site D2
Local

Delta Object Schedule

PEXA 3
In control of p3

At Site D3
Local

Delta Object Schedule

D1

t8 op12

t4 op31

Solid Lines:
Service Invocation

Dashed Lines:
P2P Communication

Executing Process
p1

t7 op33
oID ts op
X1 t1 op11
X1 t2 op21
Y1 t5 op32
Y1 t6 op41
Z1 t8 op12

oID ts op
X2 t3 op22
X2 t4 op31

oID ts op
X3 t7 op33

Figure 1. Decentralized Process Execution Agents

B. Internal PEXA Architecture
Fig. 2 shows the internal architecture of a PEXA. A

PEXA contains a process execution component with a
Process History Capture System that records runtime
information about the status of each executing process. In
the current environment, we are simulating the process
execution component. Our current implementation uses the
db4o object-oriented database [10] to record the runtime
status of each process and to record the data changes that are
communicated to the PEXA from each DEGS associated
with the PEXAs local environment. Our future work will
integrate the use of BPEL [1] into the PEXA architecture.

The local delta object schedule is an indexing structure
defined in [22] that sequences data changes in the delta
repository according to time stamps and allows the recovery
system to 1) analyze data dependencies and 2) retrieve delta
information at different levels of granularity (e.g., all
changes associated with a specific process or all changes
associated with a specific service invocation within a
process). The data dependencies are used by the recovery
algorithm to identify processes that are write dependent on a
failed process. There is no explicit data about read
dependencies, so potential read dependencies are identified
using runtime information about overlapping service
execution as defined in [22, 23]. Dependent processes can
then query delta values, checking user-defined conditions to
determine if they need to recover (e.g., execute
compensating procedures) or continue running.

As part of the recovery process, a PEXA builds a
process dependency graph based on the information in its
local delta object schedule. But since a process can execute
services at multiple sites, each monitored by a different
PEXA, a PEXA must communicate with other PEXAs to
construct a global, distributed view of process dependencies
when a process fails. As a result, a PEXA also contains a
peer-to-peer communication component that uses the JXTA
message exchange protocol from Sun Microsystems [20].

Figure 2. Internal PEXA Architecture

Furthermore, local process dependency graphs are extended
with a structure known as a link object to assist in the
construction of the global, distributed view. Section IV
elaborates on the use of link objects and other runtime
information to construct global, distributed process
dependency graphs.

IV. DECENTRALIZED DATA DEPENDENCY ANALYSIS
The objective of decentralized data dependency

analysis is to construct a virtual, global process dependency
graph to determine all active processes that are potentially
affected by the recovery of a failed process. For example, if
p2 is dependent on p1 and p3 is dependent on p2, then if p1
fails, the global process dependency graph is p1←p2←p3. As
a simplification at this stage in the research, we assume that
a failed process and every dependent process of the failed
process executes a compensating procedure as part of the
recovery process, creating a cascaded recovery process. We
use this as a worst-case scenario for constructing the full
process dependency graph. We will address extensions to
this simplification at the end of the paper when we discuss
future research directions for the use of user-defined
correctness conditions.

If the data changes for all active processes are in one
delta object schedule [22, 23], the construction of a global
process dependency graph is straightforward. The challenge
with multiple PEXAs is that the delta object schedule is
distributed among several PEXAs. As a result, a global view
of process dependencies must be discovered through PEXA
communication.

As an example, consider again the process execution
scenario in Fig. 1. Fig. 3 shows the interleaved execution
view of each process and operation from a data access point
of view when op12 fails at time t8. The global process
dependency graph for the four active processes is shown in
the upper right portion of Fig. 4, indicating that the process
dependency graph is p1←p2←p3←p4. The recovery process
is invoked when op12 fails at site D1 and invokes the
compensation of p1, which is controlled by PEXA 1. Fig. 3
and Fig. 4 illustrate that PEXA 1 can detect that p2 is
dependent on p1 due to modification of X1. PEXA 1 can also
detect that p4 is dependent on p3 due to modification of Y1,
but PEXA 1 cannot identify this dependency as part of the

P1 P2 P4P3

op11 op21 op12op33op41op32op31op22

Time t1 t2 t3 t4 t5 t6 t7 t8

D1

X 1

Y 1

Z 1

D2 X 2

D3 X 3

Figure 3. Data Access View of Interleaved Execution

graph for p1 due to the distributed nature of the execution.
As shown in Fig. 3, p3 is not dependent on p1, p2, or p4 based
on data access patterns at D1, but p3 is dependent on p2 based
on data accessed at D2. We refer to disconnected graphs
such as those in PEXA 1 of Fig. 4 as hidden dependencies.
Additional execution information must be recorded to link
together all distributed components of the graph and to
identify hidden dependencies within a single PEXA.

In particular, the runtime information about processes
must be extended to record information about the distributed
execution. When a service is executing at a PEXA, it is
important to record whether the service was invoked by an
internal or an external process. An internal process is a
process that is controlled by the PEXA where the service is
invoked. An external process is a process that is controlled
by a PEXA different from the one where the service is
invoked. For example, in Fig. 1, op21 executes at the site of
PEXA 1 but is invoked by a process running at PEXA 2. As
a result, p2 is marked as an external process (EX) in PEXA 1
within Fig. 4. Using the same rationale, p3 is marked as
external in PEXA 2 (because of op31) and also in PEXA 1
(because of op32).

In the opposite direction, a PEXA that controls a
process that invokes a service at a different site must create
a link object to record information about the site where the
service is executed. In Fig. 4, PEXA 2 creates a link object
to indicate that op21 of process p2 is executed at the site of
PEXA 1. PEXA 3 creates two link objects to record the fact
that op31 executes at PEXA 2 and op32 executes at PEXA 1.
Used in combination, link objects together with an
indication of internal or external process invocation can be
used to dynamically discover global, distributed process
dependency graphs. Section V elaborates on the algorithm
for constructing distributed process dependency graphs
among decentralized PEXAs.

V. DISTRIBUTED GRAPH CONSTRUCTION AND
RECOVERY PROCESS

The distributed graph construction and recovery
algorithm is invoked upon the failure of a service within a
process. The approach is to construct an initial process
dependency graph at the site of the failure by calling
findProcessDependencies(processId), where processId is the
identifier of the failed process. The graph is then used to 1)
recover local service executions and 2) find information
about external processes and link objects to communicate
with other PEXAs about propagation of recovery and graph
construction activities. Recall that link objects point to
services that are under the control of a process at the current
PEXA but were executed at a different PEXA, whereas
services marked as external (EX) have executed at the
current PEXA but are under the control of a process at a
different PEXA. In the following sections, we first address
process dependency graph construction. In the interest of
space, we do not present the details of the

Figure 4. Global, Distributed Process Dependency Graph

findProcessDependencies(processId) algorithm, but outline
relevant issues related to graph construction. We then
address the use of external processes and link objects and
demonstrate propagation of the recovery and graph
construction process using the execution scenario
introduced in Fig. 1.

A. Preliminary Issues for Graph Construction and
Analysis
Information about a service execution that was

requested by an external process is stored in the runtime
component of a PEXA. The structure of an entry in the
schedule is:

- pName (the process name)
- pId (the process identifier)
- opName (the operation name)
- opId (the operation identifier)
- oId (the object identifier)
- inOrEX (indicating internal or external process)
- degsId (DEGS identifier)
- PEXAId (the controlling PEXA identifier)
- status (the execution status of the process)
The inOrEx field distinguishes between service

execution requested by a local process and service execution
requested by an external process of another PEXA. This
information is queried during the graph construction process
to indicate that notifications must be sent to the
corresponding PEXA about propagation of the recovery and
graph construction process.

Link objects are created by a PEXA when a process
executing at the PEXA invokes a service at a remote site.
The structure of a link object is:

- processId (identifier of the controlling process)
- opName (name of the service)
- opId (service identifier)
- degsId (DEGS identifier)
- PEXAId (PEXA identifier)
- status (indicating successful or compensated)

Link objects are also needed for propagation of the recovery
and graph construction process.

A process dependency graph is created by
findProcessDependencies(processId) at the process execution
level rather than at the service execution level. Let opjk
represent a service invoked from process pj and opmn
represent a service invoked from process pm. If opmn is write
dependent (or potentially read dependent) on opjk, then pm is
identified as dependent on pj in a process dependency graph
for pj when pj fails.

In the graph, nodes represent processes and edges
represent dependencies. The graph is represented as a
hashmap that combines a key/value pair for fast retrieval,
where a process is a key and its value is a list to store all
processes that are immediately read and/or write dependent
on another process. Read and write dependencies are found
using procedures in [22] for querying a delta object schedule
together with the process execution context. After finding
immediate dependencies, transitive dependencies are
recursively found.

There can potentially be cycles in a process dependency
graph. For example, suppose the following cycle exists:
p1←p2←p3←p1, where p1 and p3 are dependent on each
other, but the dependency of p3 on p1 was created before the
dependency of p1 on p3. Since the graph is constructed to
control the order of the recovery process, cyclic information
is not needed in the graph. In the above example, p1 will be
recovered before p2 and p2 will be recovered before p3. As a
result, it is not necessary to enter the cycle in the graph since
p1 is recovered before p3. The difficulty with cycles is that
the graph is distributed. A PEXA must therefore be capable
of dealing with local and global cycles.

Local cycles can be detected using information in the
local delta object schedule. The method g.addVertex(pi) is
used to add nodes that represent processes (pi) to the graph
(g). The method g.addEdge(pi, pj) is used to create an edge in
g, indicating that pj is dependent on pi. To avoid local cycles,
the method g.addEdge(pi, pj) prevents cycles by first checking
to see if pj is already a parent of pi in the graph. If so, the
edge is not created to avoid a cycle.

The link object attribute inOrEx is used to address
distributed cycles. The attribute indicates the status of an
external operation as either successful or compensated. When
an external operation finishes executing successfully, it will
send its successful status back to the controlling process and
update the corresponding link object. If the service is later
compensated at the execution site, a notification will be sent
back to the controlling process to change its status to
compensated. This value is used in the propagation of the
recovery and graph construction process to avoid distributed
cycles (i.e., to prevent invoking compensation of procedures
that have already been compensated). The use of this value
will be illustrated in the following two subsections.

B. Recovery and Graph Propagation
Fig. 5 provides pseudocode for the recovery and graph

propagation process. The procedure is called after the
construction of the local process dependency graph and is
passed an ordered list of processes to be recovered. The list
is created by doing a breadth-first traversal of the local
process dependency graph.

The recover procedure examines each process in the list,
finds operations of the process that were executed locally,
and invokes compensating procedures for each process. For
internal processes (i.e., the IF part of the algorithm), the
algorithm then queries the link objects associated with the
process to find services of the process that were executed at
other sites. Notifications are then sent to the PEXAs of each
external process. Each PEXA that is notified will invoke
findProcessDependencies(processId) for the relevant process to
construct its own local dependency graph to continue the
recovery process at the new PEXA site. When receiving the
notification, the process will be checked to see whether it is
already in the graph. If it exists, the notification is ignored.

For a service invoked by an external process (i.e., the
ELSE part of the algorithm), a notification is sent to the

external PEXA to propagate the recovery and graph-
building process. The notification triggers the graph
construction in another site if the process from the
notification is not in the local graph, and then compensates
processes in the graph.

C. Execution Scenario
Fig. 6 uses the execution scenario from Fig. 1 to

illustrate the logic of the algorithm presented in Fig. 5.
When the execution of an external operation is completed,
the execution result is sent back to its controlling PEXA to
mark the status in its link object. This communication is
shown as solid lines between PEXAs in Fig. 6. Notifications
that are initiated by the sendNotification procedure in Fig. 5
are drawn as dashed lines in Fig. 6.
// recover dependent processes according to where they come from
public void recover(List list){

 //create a new list for operations from the lcoal schedule
 List tempList;

 FOR each processId in the list
 {
 //find operations from the local schedule
 tempList =
 (List)ProcessInfoAccess.getExecutedOperationList(processId);

 // there are operations to be compensated
 if(tempList!= null){
 compensate(tempList);
 }

 IF the process is initiated by the local PEXA
 {
 //find external operations of processId from the link objects table
 tempList=LinkObject.getExecutedOperationList(processId);

 //send notifications
 if(tempList!=null)
 {
 For each operationId in the tempList
 {
 //mark compensated operations
 LinkObject.updateOperation(operationId,
 "compensated");
 String pexaId=
 LinkObject.getExecutingPexa(operationId);
 sendNotification(processId, operationId, pexaId);
 }
 }
 ELSE //the process is initiated by a peer PEXA
 {
 //mark compensated process
 For each operationId in the tempList
 OperationInfo.updateOperation(operationId, "compensated");
 //send notification
 String pexaId=
 ProcessInfoAccess.getProcessInfo(processId).getPEXA();
 sendNotification(processId, pexaId);
 }
 }END FOR
}

Figure 5. The recover Procedure

P1

P2

P3

101 P1 op11 X1 In degs 1 PEXA 1

201 P2 op21 X1 EX degs 1 PEXA 2

302 P3 op32 Y1 EX degs 1 PEXA 3

P4401 P4 op41 Y1 In degs 1 PEXA 1

P1 102 P1 op12 Z1 In degs 1 PEXA 1

P2 202 P2 op22 X2 In degs 2 PEXA 2

P3

PEXA 1 DEGS 1

PEXA 2 DEGS 2

301 P3 op31 X2 EX degs 2 PEXA3

* change to compensated when the PEXA receives the
recovery notification
** change to compensated when the PEXA send the
recovery notification to another PEXA
Solid line: send the execution result(status in link objects
changed to successful)
Dashed line: send the recovery notification (status in link
objects changed to compensated)

PEXA 3
P3

--
link objects table

P2 op21 201 degs1 PEXA1 successful *
link objects table

P3 op31 301 degs2 PEXA2 Successful *

link objects table

P3 op32 302 degs1 PEXA1 Successful**

Notification

1

Notification

3

Notification

2

301 P3 op33 X2 In degs 3 PEXA3

Figure 6. Execution Scenario

The recovery process is initiated when op12 fails in

PEXA 1 and constructs a local process dependency graph.
Recall that link objects have already been created for each
process as a result of execution up to this point. In PEXA 1,
the local dependency graph is initially determined to be
p1 p2. In Fig. 6, the box to the left of each process node
shows the runtime information for the process, indicating
the service executed and the internal/external status of the
associated process. The recover procedure for the graph
compensates procedure op11, which is an internal service.
There are also no entries for p1 in the link object table,
indicating that all of p1’s services were executed at site D1.
As a result, tempList is null and no notifications are sent.
Since p2 is an external process, op21 is compensated at PEXA
1 and then a notification is sent to PEXA 2 (labeled as
notification 1 in Fig. 6), indicating that 1) op21 should be
marked as compensated in the link object table and 2) the
recovery and graph construction process should continue at
PEXA 2 using p2 as a root node (i.e., invoke
findProcessDependencies(p2)).

At PEXA 2, the graph p2 p3 is created from the local
delta object schedule. The algorithm in Fig. 5 is then
invoked to recover the operations associated with the graph.
The first iteration through the recover procedure determines

that p2 is an internal procedure, finding a local operation
(op22) and a remotely executed operation (op21). PEXA 2 will
compensate op22 and discover that op21 has already been
compensated. As indicated in the comment box in Fig. 6,
successful* is changed to compensated for op21 in the PEXA 2
link object table when notification 1 is received.

When p3 is processed, it is identified as an external
node. As a result, op31 is compensated and notification is
sent to PEXA 3 (notification 2 in Fig. 6) to propagate the
recovery and graph construction process, together with
information about changing the status of the link object for
op31 from successful* to compensated.

At PEXA 3, the graph contains only one node for p3,
which in an internal process. When the algorithm in Fig. 5 is
invoked, the IF part of the code is then executed. As a result,
op33 is compensated since it was executed at PEXA 3. Link
objects are then found for op31 and op32. Since op31 has
already been marked as compensated, the notification
message is only sent to PEXA 1 for the invocation of
findProcessDependencies(p3). The status of op32’s link object
is changed from successful** to compensated before sending
the notification, with the actual compensation to take place
at PEXA 1.

PEXA 1 constructs the graph p3 p4. Since p3 is an
external node, op32 is compensated at PEXA 1 and a
notification is sent back to PEXA 3 (not shown in Fig. 6).
PEXA 3 will be able to determine that all relevant services
for p3 have already been compensated and thus will not
continue to propagate the process (i.e., detects and
terminates a distributed cycle). PEXA 1 then compensates
op41 and terminates since there are no more notifications to
send.

Note that when the findProcessDependencies procedure
is called in each PEXA to construct a local process
dependency graph, the data items identified in the local
delta object schedule are locked, with compensating
procedures executing as nested transactions that inherit the
associated locks. This prevents other executing processes
from accessing the data involved in the recovery process
and creating further dependencies.

VI. CONCLUSIONS
This paper has provided an overview of our work with

Process Execution Agents for decentralized data
dependency analysis among concurrently executing
processes in a service-oriented environment. PEXAs
monitor the execution of processes and support the dynamic
discovery of data dependencies that can be used to enhance
recovery procedures by identifying processes that may be
affected by shared access to the data of failed procedures.
We have implemented the procedures described in this
paper and are currently developing a simulation
environment for the algorithms to conduct performance
studies and to address scalability issues. The approach
described in this paper represents a new way of integrating
existing transaction processing concepts with execution
platforms that can be used to address data consistency issues
for concurrent process execution in service-oriented
environments, providing more dynamic and intelligent ways
of monitoring failures, detecting dependencies, and
responding to failures and exceptional conditions.

The algorithm presented in this paper represents a lazy
approach to dependency analysis since the algorithm is not
invoked until a process fails. We are also developing an
eager approach to data dependency analysis, where the
dependency graph is constructed during process execution
and readily available when a failure occurs. Another
important issue for future research includes the investigation
of the fault tolerance of the data dependency algorithm in
the context of distributed communication failures.

In this initial stage of the research, we have assumed
that a failed process and its dependent processes implement
compensation as a recovery procedure. Future directions are
focused on integrating the decentralized data dependency
analysis algorithms with the service composition model that
in [24], integrating the PEXA concept with BPEL engines,
and addressing the impact of the approach on process
consistency. We are enhancing the model with formal
methods for user-defined specification of correctness

conditions and are investigating the manner in which these
specifications can be used with PEXAs to develop more
intelligent service-oriented execution environments for
addressing data consistency issues for concurrent processes.

ACKNOWLEDGMENT
This research has been supported by the National Science

Foundation under Grant No. CCF-0820152. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] "BPEL4WS V1.1 specification," URL

http://www.ibm.com/developerworks/library/specification/ws-bpel/,
2003.

[2] S. Bhiri, O. Perrin, and C. Godart, "Ensuring required failure
atomicity of composite web services," in Proc. of the 14th Int.
Conference on World Wide Web, 2005, pp. 138-147.

[3] L. Blake, “The Design and Implementation of Delta-enabled Grid
Services,” M.S. Thesis, Arizona State University, 2006.

[4] L. F. Cabrera, G. Copeland, T. Freund et al., "Web Services Business
Activity Framework (WS-BasinessActivity) ,”
ftp://www6.software.ibm.com/software/developer/library, WS-
BusinessActivity.pdf, 2005.

[5] J. Eder and W. Liebhart, "The workflow activity model WAMO," in
Proc. of the 3rd Int. Conference on Cooperative Information Systems
(CoopIs), 1995.

[6] H. Garcia-Molina and K. Salem, "Sagas," in Proc. of the ACM
SIGMOD Annual Conference on Management of Data, 1987, pp.
249-259.

[7] P. Greenfield, A. Fekete, J. Jang et al., "Compensation is not enough,"
in 7th Int. Conference on Enterprise Distributed Object Computing,
2003.

[8] M. Kamath and K. Ramamritham, "Failure handling and coordinated
execution of concurrent workflows," in Proc. of the IEEE Int.
Conference on Data Engineering, 1998.

[9] B. Limthanmaphon and Y. Zhang, "Web service composition
transaction management," in Proc. of the 15th Australasian Database
Conference, 2004, pp. 171-179.

[10] J. Paterson, S. Edlich, H. Hörning et al., The Definitive Guide to
db4o: Apress Berkely, CA, USA, 2006.

[11] P. F. Pires, M. R. F. Benevides, and M. Mattoso, "Building reliable
web services compositions," Lecture Notes in Computer Science, pp.
59-72, 2003.

[12] A. Rolf, W. Klas, and J. Veijalainen, Transaction management
support for cooperative applications: Kluwer Academic Publishers,
1998.

[13] M. P. Singh and M. N. Huhns, Service-oriented computing:
semantics, processes, agents: Wiley, 2005.

[14] F. Tartanoglu, V. Issarny, A. Romanovsky, and Nicole Levy,
"Coordinated forward error recovery for composite web services," in
Proc. of the IEEE Symposium on Reliable Distributed Systems, 2003,
pp. 167-176.

[15] F. Tartanoglu, V. Issarny, A. Romanovsky, Nicole Levy,
"Dependability in the Web services architecture," Lecture Notes in
Computer Science, pp. 90-109, 2002.

[16] M. Tumma, Oracle Streams: High Speed Replication and Data
Sharing: Rampant TechPress, 2004.

[17] S. D. Urban, Y. Xiao, L. Blake, and S. W. Dietrich, "Monitoring Data
Dependencies in Concurrent Process Execution through Delta-

Enabled Grid Services," International Journal of Web and Grid
Services, vol. 5, no. 1, 2009, pp. 85-106.

[18] K. Vidyasankar and G. Vossen, "A multilevel model for Web service
composition," in Proc. of the IEEE Int. Conference on Web Services,
2004, pp. 462-469.

[19] H. Wächter and A. Reuter, The contract model: Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1992.

[20] B. J. Wilson, Jxta: New Riders Boston, 2002.
[21] D. Worah and A. Sheth, "Transactions in transactional workflows,"

Advanced Transaction Models and Architectures, pp. 3-34, 1997.
[22] Y. Xiao, "Using deltas to analyze data dependencies and semantic

correctness in the recovery of concurrent process execution," PhD
Dissertation, Arizona State University, 2006.

[23] Y. Xiao and S. D. Urban, "Process Dependencies and Process
Interference Rules for Analyzing the Impact of Failure in a Service
Composition Environment," Journal of Information Science and
Technology, vol. 5, no. 2, 2008, pp. 21-45.

[24] Y. Xiao and S. D. Urban, "The DeltaGrid Service Composition and
Recovery Model," International Journal of Web Services Research,
vol. 6, no. 3 2009.

[25] Y. Xiao and S. D. Urban, “Using Data Dependencies to Support the
Recovery of Concurrent Processes in a Service Composition
Environment,” Proc. Of the Cooperative Information Systems
Conference, Monterrey, Mexico, Nov. 2008, pp. 139-156.

[26] W. Zhao, F. Kart, L. E. Moser, and P. M. Melliar-Smith, “A
Reservation-Based Extended Transaction Protocol for Coordination
of Web Services,” International Journal of Web Services Research,
vol. 19, no. 2, 2008, pp. 188-203.

	I. Introduction
	II. Related Work
	A. Advanced Transaction Models and Transactional Workflows
	B. The DeltaGrid Project

	III. Process Execution Agents (PEXAs)
	A. A PEXA Execution Scenario
	B. Internal PEXA Architecture

	IV. Decentralized Data Dependency Analysis
	V. Distributed Graph Construction and Recovery Process
	A. Preliminary Issues for Graph Construction and Analysis
	B. Recovery and Graph Propagation
	C. Execution Scenario

	VI. Conclusions
	Acknowledgment
	References

