

Using Assurance Points and Integration Rules for Recovery in Service Composition

by

Rajiv Shrestha, B.S.

A Thesis

In

COMPUTER SCIENCE

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Approved

Dr. Susan D. Urban

Chairperson of the Committee

Dr. Michael Shin

Dr. Susan Mengel

Fred Hartmeister

Dean of the Graduate School

May, 2010

Copyright 2010, Rajiv Shrestha

Texas Tech University, Rajiv Shrestha, May 2010

ii

ACKNOWLEDGMENTS

I am deeply grateful to my academic advisor, Dr. Susan Urban for her

guidance and support at all times. Her advice and comments have been significant for

the completion of this thesis.

I would like to thank Dr. Michael Shin and Dr. Susan Mengel for their helpful

advice and assistance. Also, I would like to thank our research group members and all

my other friends for being supportive.

This work is dedicated to my parents.

Texas Tech University, Rajiv Shrestha, May 2010

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. II

ABSTRACT .. V

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

CHAPTER I ... 1

INTRODUCTION .. 1

CHAPTER II .. 5
RELATED WORK .. 5

2.1 BPEL .. 5
2.1.1 Fault, Compensation and Event Handlers of BPEL .. 6
2.1.2 BPEL’s Shortcomings ... 8

2.2 Research on Fault and Exception Handling ... 10

2.3 Events for Handling Failures and Exceptions .. 15
2.4 Aspect-Oriented Workflows .. 16

2.5 Conclusion ... 17

CHAPTER III .. 18
OVERVIEW OF SERVICE COMPOSITION AND RECOVERY MODEL WITH ASSURANCE

POINTS ... 18
3.1 Overview of Service Composition and Recovery Model 18
3.2 Extending the Model with Assurance Points and Rules 20

3.3 Online Shopping Example ... 23
3.4 Summary .. 27

CHAPTER IV .. 28
A PROTOTYPE OF ASSURANCE POINTS, INTEGRATION RULES, AND RECOVERY

ACTIONS ... 28
4.1 Specification of Assurance Points and Integration Rules 28

4.1.1 PML Overview ... 29
4.1.2 AP and Integration Rule Syntax .. 29

4.2 Process Execution Architecture ... 34
4.3 Process Wrapper... 40
4.4 AP Wrapper .. 45

4.5 Sample Scenarios ... 49
4.5.1 Recovery Actions for Pre and Post Conditions ... 49

Texas Tech University, Rajiv Shrestha, May 2010

iv

4.5.2 Recovery Actions for Execution Errors ... 53
4.6 Execution History Generation .. 54
4.7 Summary .. 58

CHAPTER V .. 59

EVALUATION OF ASSURANCE POINTS ... 59
5.1 Comparison to BPEL ... 59

5.1.1 Problems in BPEL ... 60
5.1.2 Comparison Criteria .. 62
5.1.3 Concurrent Issues for Assurance Points ... 65

5.2 Comparison to Aspect-Oriented Workflows .. 67

CHAPTER VI .. 69

SUMMARY AND FUTURE RESEARCH ... 69

REFERENCES .. 71

APPENDIX I .. 77
XML SCHEMA DEFINITION FOR PML WITH ASSURANCE POINTS 77

APPENDIX II ... 82
XML SCHEMA DEFINITIONS FOR RULES ... 82

APPENDIX III ... 84
PROCESS DEFINITION FOR THE ONLINE SHOPPING EXAMPLE 84

APPENDIX IV.. 87
RULE DEFINITIONS FOR THE ONLINE SHOPPING EXAMPLE 87

Texas Tech University, Rajiv Shrestha, May 2010

v

ABSTRACT

This research defines the concept of Assurance Points (APs) together with the

use of integration rules to provide a more flexible way of checking constraints and

responding to execution errors in processes formed through service composition. An

AP is a combined logical and physical checkpoint, providing an execution milestone

that stores critical data and interacts with rules, known as integration rules, to alter

program flow and to invoke different forms of recovery depending on the recovery

mode and execution status. During normal execution, APs store execution state and

invoke integration rules that check pre-conditions, post-conditions, and other

application rule conditions. If a condition fails, recovery modes can be invoked that

involve retry, rollback, and cascaded contingency. When execution errors occur, APs

are also used as rollback points for backward recovery using compensation as well as

forward recovery through rechecking preconditions before retry attempts and

contingent procedures. This thesis describes the semantics of APs, integration rules,

and the different forms of recovery actions, illustrating the functionality of the AP

approach through the development of a prototype execution environment. The

research is also evaluated through a comparison of the AP functionality for constraints

and recovery to the BPEL fault and exception handling capability, as well as other

relevant work with checkpointing and aspect-oriented programming. The primary

contribution of this research is found in the definition of a service composition and

recovery model with explicit support for user-defined constraints, contingency, and

compensation that is embedded in well-defined recovery actions that make use of the

execution state supported by assurance points to provide flexibility in the recovery

process.

Texas Tech University, Rajiv Shrestha, May 2010

vi

LIST OF TABLES

Table 1. AP Structure in the Online Shopping Process ... 26

Table 2. Activities .. 30

Table 3. File Structure for the AP Project .. 36

Table 4. Comparison of Recovery Semantics (BPEL VS. AP) 64

Texas Tech University, Rajiv Shrestha, May 2010

vii

LIST OF FIGURES

Figure 1. An Abstract View of a Sample Process(Xiao and Urban 2009) 19

Figure 2. Integration Rule Structure... 22

Figure 3. Basic Use of AP and Integration Rules .. 23

Figure 4. Online Shopping Process with APs .. 25

Figure 5. AP Specification Syntax ... 31

Figure 6. Rule Specification Syntax .. 32

Figure 7. Process Sample ... 33

Figure 8. Rules Sample .. 34

Figure 9. The Execution Engine Architecture... 35

Figure 10. Configuration of XMLBeans in NetBeans ... 37

Figure 11. Class diagram of the Process XML Schema... 39

Figure 12. Class diagram of the Rule XML Schema ... 39

Figure 13. Code for binding a Process XML document .. 39

Figure 14. Class diagram of activity wrappers... 40

Figure 15(a). Execution of a Composite Group ... 42

Figure 15(b). Execution of a Composite Group (Continued) 42

Figure 16. Compensation Implementation ... 44

Figure 17. Contingency Implementation.. 45

Figure 18. Code for binding an XML Rule Document .. 45

Figure 19(a). AP Wrapper Implementation ... 47

Figure 19(b). AP Wrapper Implementation (Continued) ... 47

Figure 20. Generic Process for Recovery Actions ... 49

Figure 21. Process Metadata and Runtime Information ... 55

Figure 22: Compensation Sequence Demonstration .. 61

Figure 23. Sample Process ... 66

Texas Tech University, Rajiv Shrestha, May 2010

1

CHAPTER I

INTRODUCTION

As Internet use is growing in this evolving Web era, more online businesses

are emerging, thus increasing the use of Web Services and Service-Oriented

Architectures (SOA) to enhance business-to-business and business-to-consumer

transactions. Service-Oriented computing and Web Services ease the accessibility,

availability, scalability, and reusability of software components. The work in

(Papazoglou and Heuvel 2007) describes services as an exposed piece of functionality

with three essential properties: (1) self-contained, as it maintains its own state, (2)

platform independent with services running on different platforms that are

independent and autonomous, and (3) dynamically located, invoked and (re-)

combined. Web Services therefore allow customers as well as business partners to

easily access the service without disrupting their own business processes.

Furthermore, new services and processes can be created from the composition of other

services. As a result, service composition is a key to the generation of new internet-

based distributed applications.

Since Web Services and service-oriented computing are becoming more

widely used for business-to-business integration, there is a need for providing better

support for service composition, especially with respect to execution correctness and

recovery. In the past several years, prevalent techniques such as the Unified Modeling

Language (UML) (Engels et al., 2005), the Business Process Modeling Notation

(BPMN) (White 2004), and Event-Driven Process Chains (Scheer, Thomas, and Adam

2005) have been widely adopted for process modeling at the conceptual level, with

execution engines based on standards such as the Business Process Execution

Language (BPEL) (Jordan et al., 2007) providing a framework for execution of

conceptual process designs. Service composition for business integration, however,

creates challenges for traditional process modeling techniques, especially considering

the increasing use of events and rules to create greater execution flexibility through

Texas Tech University, Rajiv Shrestha, May 2010

2

event-driven applications. Modeling extensions have been introduced to many of these

tools to provide support for responding to events, handling exceptional conditions, and

using events and rules as a way to control process flow. Most of these extensions,

however, are still too rigid to support the type of flexibility that is needed for service-

oriented environments.

In a service execution environment, a process must be flexible enough to

respond to different types of events that represent errors, exceptions, and interruptions.

Backward and forward recovery mechanisms (Lee et al., 1990) can be used to respond

to such events. For example, a compensation handler is a backward recovery

mechanism that performs a logical undo operation. Contingency is a forward recovery

mechanism that provides an alternative execution path to keep a process running.

Nevertheless, most service composition techniques do not provide flexibility with

respect to the combined use of compensation and contingency. This absence of

flexibility hampers the efficiency of exception handling and often does not do enough

to keep processes running in a forward manner. Furthermore, most process modeling

techniques for service composition do not make adequate use of pre-conditions, post-

conditions, and other constraint checking techniques that can be used to validate the

correctness of execution, especially considering that most processes execute in an

environment that does not support traditional transaction processing. Service

composition models need to be enhanced with features that allow processes to assess

their execution state to support more dynamic ways of responding to failures, while at

the same time validating correctness conditions for process execution.

The research presented in this thesis defines the concept of Assurance Points

(APs) together with the use of integration rules to provide a more flexible way of

checking constraints and responding to execution failures. The research is a

subcomponent of a larger project addressing decentralized data dependency analysis

and concurrently executing processes, where distributed execution units communicate

about process failures, identify processes that are dependent on a failed process, and

invoke the recovery procedure on dependent processes (Urban, Ziao, and Le 2009).

Texas Tech University, Rajiv Shrestha, May 2010

3

The research in this thesis is focused in enhancing the constraint checking and

recovery procedures for individual processes with the goals of 1) strengthening the

specification of user-defined correctness conditions, and 2) increasing the use of

forward recovery when failure occurs.

In this thesis, APs are defined as an extension to the service composition and

recovery model in (Xiao and Urban 2009). An AP is a combined logical and physical

checkpoint, providing an execution milestone that stores critical data and interacts

with integration rules to alter program flow and invoke different forms of recovery

depending on the execution status. During normal execution, APs invoke integration

rules that check pre-conditions, post-conditions, and other application conditions.

Failure of a pre or post-condition can invoke several different forms of recovery,

including backward recovery of the entire process, backward recovery to a specific AP

for retry attempts, or a dynamic backward recovery process, known as cascaded

contingency, in an attempt to find a previous AP that can be used to invoke contingent

procedures or alternate execution paths. When failures occur, APs are also used as

rollback points for rechecking preconditions and determining whether to invoke

further forward or backward recovery actions.

This thesis describes the semantics of APs, integration rules, and the different

forms of recovery actions. The functionality of the AP concept is illustrated using an

online shopping example as well as other generic test cases that illustrate APs,

integration rules, and recovery actions in the context of different nested composition

scenarios. This thesis also outlines a prototype execution environment that has been

developed to test the AP and integration rule concept in a BPEL-like execution

environment. Finally, the research is also evaluated through a comparison of the AP

functionality for constraints and recovery to the BPEL fault and exception handling

capability as well as other relevant work with checkpointing and aspect-oriented

programming. The primary contribution of this research is found in the definition of a

service composition and recovery model with explicit support for user-defined

constraints, contingency, and compensation that is embedded in well-defined recovery

Texas Tech University, Rajiv Shrestha, May 2010

4

actions that make use of the execution state supported by assurance points to provide

flexibility in the recovery process.

The remainder of this thesis is organized as follows. Chapter 2 gives an

overview of the related work. Chapter 3 provides an overview of the service

composition and recovery model with extended functionalities for APs and integration

rules. Chapter 4 describes a prototype implementation of assurance points. Chapter 5

presents an evaluation of the assurance point concept. The thesis concludes in Chapter

6 with a summary and discussion of future research directions.

Texas Tech University, Rajiv Shrestha, May 2010

5

CHAPTER II

RELATED WORK

This chapter presents related work. Section 2.1 provides an overview of BPEL

with a focus on fault, compensation, and exception handling capabilities. Section 2.2

outlines additional research related to fault and exception handling in workflows.

Section 2.3 presents the related work that uses events and rules in workflow for

handling failures and exceptions. Section 2.4 highlights research in aspect-oriented

workflows to provide flexible and adaptable workflows. The chapter concludes in

Section 2.5 with a comparison of the research in this thesis to related work.

2.1 BPEL

The interoperability of services by using standard protocols is necessary for

consistency and advancement in Web services. Web service for Business Process

Execution Language (WS-BPEL or BPEL) defines a model and a grammar for

describing the behavior of a business process based on interactions between the

process and its partners (Jordan et al., 2007). BPEL 2.0 is an Organization for the

Advancement of Structured Information Standards (OASIS) standard, a high-level

language for composing Web Services for modeling and executing workflows of

business processes. Since BPEL is an officially approved standard for workflow

language, it is desirable to compare the assurance points concept with BPEL and its

advanced fault, compensation, and event handling features. BPEL fulfills the key

requirements for a workflow language since it represents the business logic of the

process, has the ability to provide asynchronous and synchronous invocations of Web

services, supports long running transactions (LRTs), and manages failures, exceptions

and recovery (Ezenwoye and Sadjadi 2006a).

BPEL consists of basic and structured activities to describe business process

flow steps. Basic activities are primitive constructs for general tasks such as invoke for

invoking Web services, receive for receiving a request, assign for operating on

variables, wait for waiting for a time period, reply for generating a response, and

Texas Tech University, Rajiv Shrestha, May 2010

6

terminate for terminating the whole process. These basic activities which are used for

standard simple tasks can be combined with the help of structured activities to

generate more complex processes. Structured activities like flow for allowing activities

in parallel, pick to select one of the options, and while for loops are used for the

combination of basic constructs and helps in asynchronous execution. A Scope in

BPEL defines the collection of activities which has its own variables, partner links,

message exchanges, event handlers, fault handlers, and compensation handlers. A

scope can successfully or unsuccessfully terminate after execution of a business

process, and in case of unsuccessful termination, it can reverse the activities, while at

the same time other parts of the process can keep running. A partner represents both a

consumer of a service provided by the business process and a provider of a service to

the business process. The definition of properties creates a unique name for a WS-

BPEL process definition and associates it with an XML Schema type.

2.1.1 Fault, Compensation and Event Handlers of BPEL

For any transaction to be safe and correct there must be some way to guarantee

the integrity of the transactions. In traditional database systems, atomicity,

consistency, isolation and durability (ACID) properties are used to guarantee the

reliability of database transactions. Atomicity guarantees that all the tasks of a

transaction are either committed or aborted. Consistency ensures the database remains

in a consistent state through checking the changes in data values. The isolation

property is required during concurrent transactions where execution of one transaction

should not affect the execution of another transaction. Durability guarantees that once

committed, a transaction persists and cannot be undone.

Even though these ACID properties are fundamental for traditional databases,

they are not suitable for long running transactions during service composition. Each

service in a process is autonomous and platform independent. The commit of a service

execution is controlled by the residing service instead of the global process. As a

result, distributed processes composed of services do not execute as traditional

transactions. The concept of serializability is too strong for concurrently executing

Texas Tech University, Rajiv Shrestha, May 2010

7

services to conform to global transaction semantics as one process. As a result, ACID

properties and traditional concurrency control mechanisms are not generally suitable

for this environment, since a process cannot afford to block individual services to

ensure a commit of the global process (Mikalsen, Tai, and Rouvellou 2002). Hence,

dirty writes and dirty reads are inevitable since a service can commit before a process

completes which can cause data inconsistency problems. Therefore, undoing the

transaction or finding an alternative solution is crucial in such situations. To address

this issue in a service environment, BPEL has defined the role of fault, event, and

compensation handlers.

A fault handler helps to undo the partial job done within a scope when an

exception occurs during run-time. Faults can be explicitly generated through the throw

activity. A catch construct is used to catch a specific fault and a catchAll constructs to

handle all other faults not caught by a catch fault handler. There are three kinds of

faults in BPEL (Jordan et al., 2007). The first one is application/service faults which

are generated by services invoked by the process. Another fault type is process defined

faults which are generated by the throw activity. The third type of fault is system faults

which are generated by the process engine. We can add fault handlers to the process

(global) or to a scope within the process (local). Once the fault occurs at the process or

scope level, the scope is terminated and the corresponding fault handler takes control.

In such case, the scope is said to be faulted and is not qualified for compensation. If

the faults are not handled in the current scope or the fault handler cannot resolve a

fault, then it is re-thrown by rethrow to the parent scope. If any nested scope is already

completed without a fault being thrown or re-thrown, then it qualifies for

compensation as backward recovery.

The work in (Ezenwoye and Sadjadi 2006b) points out the limitations of fault

handling in BPEL, where in case of system faults, which are common in service-

oriented architecture (e.g. unavailability of Web services), the catchAll can catch these

faults in BPEL, but it cannot recognize the difference between faults. Knowing the

Texas Tech University, Rajiv Shrestha, May 2010

8

different system faults is necessary to take corresponding related action, thus such an

approach in BPEL is not desirable for providing good quality of service.

Compensation provides execution semantics with the relaxed notion of

undoing a successfully completed activity in the scope or process level of a business

process. Every scope of the BPEL process has a compensation handler which can

revert its effects in the reverse order of the execution of activities. The compensate and

compensateScope activities are used within the fault handler, compensation handler, or

termination handler to invoke the compensation handlers where compensate causes

execution of compensation of all completed and not compensated child scopes in

default order, whereas compensateScope causes execution of compensation of one

specified successfully completed child scope.

The event handler in BPEL specifies logic to deal with events. Event handlers

are associated with a whole process or scopes where activity is invoked concurrently

when the corresponding event occurs. Two kinds of events are available in BPEL:

Message Events and Alarm Events. Alarm events are useful if the process needs to

wait for certain period of time since Web services are not always available in loosely

coupled service oriented architecture. A message event is useful when the business

process needs to wait for several multiple messages. Therefore, events can be helpful

for activities that cannot be scheduled, like a customer cancelling a flight in the middle

of the process. Event handlers are a normal part of the BPEL process, unlike fault and

compensation handlers.

2.1.2 BPEL’s Shortcomings

Even though faults, compensation, and event handlers give a very basic

recovery mechanism, WS-BPEL provides these three as a standard mechanism and

leaves the rest up to the designer about any other task specification when the handler is

fired (Modafferi and Conforti 2006). Although it gives power to the designer, a lot of

effort is required if the designer wants to specify advanced recovery procedures. Also,

BPEL does not have any distributed coordination in regard to multiple concurrent

Texas Tech University, Rajiv Shrestha, May 2010

9

services (Gannod, Burge, and Urban 2007). BPEL offers the above standard features

to support transactional integrity, but lack of formal semantics makes it hard to

implement and guarantee that a BPEL process behaves correctly (Breugel and

Koshkina 2006). Moreover, transactions are long running, therefore, it is more

difficult to analyze such transactions without formal semantics.

Formalizing BPEL will lead to several benefits. Several formal approaches

have been researched and implemented to formalize BPEL, such as Petri-Nets (Desel

2005) and π-calculus (Sangiorgi and Walker 2001). The work in (Kovács, Varró, and

Gönczy 2007) presents a formal modeling technique for BPEL workflows with model

checking. BPELfct is a formalization of BPEL focused only on fault, compensation and

termination (FCT) handling (Eisentraut and Spieler 2009). In (Rouached, Perrin, and

Godart 2006), the authors propose an event-driven approach for formalizing and

verifying Web service composition expressed in BPEL. The work offers the

consistency checking of a business process in three cases: static verification (before

running process), dynamic verification (runtime), and non-functional requirements.

The framework is still under development. The work in (Kuhne et al., 2008) presents a

prototype of a modeling tool that uses graph-based rules to find problems in business

process models. Several ongoing research projects are based on self-healing BPEL to

overcome the lack of formal semantics and to provide automatic service composition

and adaptation (Breugel and Koshkina 2006), (Kovács, Varró, and Gönczy 2007).

In (Modafferi and Conforti 2006), the authors provide three options to

overcome BPEL’s limitations for the support of recovery actions. The first option is to

define a totally new workflow language and engine. Another option is to define an

extended BPEL and the corresponding extended engine, as in (Modafferi, Mussi, and

Pernici 2006) and (Dialani et al., 2002), which gives the designer the option of

advance recovery mechanisms with very few changes to the current technology. The

last option is to use the concepts of annotation and preprocessing for enhancing BPEL

at design time without modifying the workflow engine as in (Baresi, Guinea, and

Pasquale 2007) and (Wang, Bandara, and Pahl 2009).

Texas Tech University, Rajiv Shrestha, May 2010

10

2.2 Research on Fault and Exception Handling

A fault is an abnormal condition or defect at the component or sub-system

level which may lead to failure (Chan et al., 2006), whereas exceptions are facts or

situations that are raised to signal errors, faults, failures, and other deviations which

depend on what we want and what we can achieve (Luo et al., 2000). One of the major

issues in distributed service-oriented applications is fault management. There is no

guarantee that a composition of even good services will always work (Chan et al.,

2006). Run-time strategies which check whether the composition behaves correctly

and reactive strategies to detect and recover from errors can be used to ensure the

correctness of the composition. Several mechanisms are being developed to discover

and recover from faults automatically (Modafferi, Mussi, and Pernici 2006) (Friese,

Muller, and Freisleben 2005) (Baresi, Guinea, and Pasquale 2007). The standard

orchestration language BPEL provides mechanisms like fault handlers, exception

handler, termination handlers, and compensation handlers for managing recovery

activities as described in Section 2.2. This section highlights the current research in

fault tolerance mechanisms in Web Service composition.

The research in (Brambilla et al., 2005) recognizes three types of exceptions to

clarify the conditions under which failures occur: behavioral exceptions, which are

user-generated due to improper execution order of process activities, semantic or

application exceptions, which are due to unsuccessful logical outcomes of activity

execution, and system exceptions, which are caused by malfunctioning of the Web

application at the client and server side, such as network failure or system breakdown.

The work in (Eder and Liebhart 1996) highlights the sources of failures in workflow

that can be from i) workflow engine failures, ii) activity failures, or iii) communication

failures between scheduler and activities. Common ways of handling these failures are

rollback and compensation for backward recovery, contingency for forward recovery,

re-try, undo, timeout, safe termination, executing alternative activities, or even human

interactions (Greenfield et al., 2003). However, in service-oriented architectures, a

single process may be part of multiple applications due to data dependency during

Texas Tech University, Rajiv Shrestha, May 2010

11

concurrent execution; thus, rollback does not always help to recover from the failures

(Dialani et al., 2002). Compensation is also not always enough to handle and recover

failures during LRTs (Greenfield et al., 2003). Therefore, more strong and dynamic

ways of handling errors are required for fault tolerant systems.

Many efforts have been made to enhance the standard BPEL’s fault and

exception handling capabilities. BPEL4Job (Tan, Fong, and Bobroff 2007) is an

extended BPEL for fault-handling design for job flow management in distributed

computing environments which has cleanup, task level re-try, and flow re-submit

policies with the novel idea of migrating flow instances between different flow

engines for scalable failure recovery. Moreover, it uses a job proxy to facilitate the

asynchronous nature of job submission and notification which helps to extend the re-

try policy with advance schemes, like for example to alter the input parameters. Since

there is an increasing complexity of processes and autonomous agents in workflow,

self-healing mechanisms are necessary for automatic recovery during run-time. The

work in (Modafferi and Conforti 2006) proposes mechanisms like external variable

setting, future alternative behavior, rollback and conditional re-execution of the flow,

timeout, and redo mechanisms for enabling recovery actions using the standard BPEL

language. These sophisticated recovery strategies can be used for developing a self-

healing engine. The work in (Modafferi, Mussi, and Pernici 2006) presents the

architecture of SH-BPEL engine, a Self-Healing plug-in for BPEL engines. SH-BPEL

augments the fault recovery capabilities in BPEL with mechanisms like annotation,

pre-processing, and extended recovery. Moreover to support self-healing execution of

business processes, (Friese, Muller, and Freisleben 2005) provides the middleware

framework called Robust Execution Layer (REL) that acts as a transparent,

configurable add-on to any BPEL engine to support the peer-to-peer communication

failure during interaction with business process engines in distributed environment.

Dynamo (Baresi, Guinea, and Pasquale 2007) adds recovery capabilities to BPEL

processes to create self-healing BPEL compositions using two special languages:

Texas Tech University, Rajiv Shrestha, May 2010

12

WSCol for specifying constraints and WSRel for executing state recovery strategies

when constraints are violated.

Failures are not always easily detectable in Web services, thus methods are

required to automatically detect failures in a self-healing environment such as in

(Baresi, Ghezzi, and Guinea 2004) which proposes two methods for dynamic detection

of failures. One method is Defensive Process Design, in which services are designed

to cope with failures. Another method is service run-time monitoring where external

monitoring tools are used to check violations of functional and non-functional

properties. Other ways of detecting faults are by using monitoring and verifying tools

such as the ASTRO toolset (Trainotti et al., 2005), WSAT (Web Service Analysis

Tool) (Fu, Bultan, and Su 2004), SPIN (Holzmann 2004), and BPELCheck (Fischer,

Majumdar, and Sorrentino 2008) which provides execution monitoring facilities that

check the predefined properties like pre-condition and post-condition of the processes

and give feedback in the event of a failure, thus it helps to check the consistency of the

BPEL processes. However, these monitoring and verifier tools do not suffice since

some services may be outside the control of the developer (Ezenwoye and Sadjadi

2006b). The more dynamic approach of monitoring BPEL-processes and embedding

the monitored process into a WS-BPEL engine is given in (Baresi and Guinea 2005).

Promises (Jang, Fekete, and Greenfield 2007) is a model for Web service

applications that addresses the situation of lack of isolation mechanisms in LRTs by

providing assurance that the resources are available and not violated during a certain

period of time. A Promise is an agreement between a client and the resource owner

which helps to maintain the integrity constraints in the workflow so that operations

can be completed successfully. The Promise system has three components: a Promise

Manager for recording all active promises in the promise table, an Application for

processing the activities requested by the Promise Manager, and a Resource Manager

for storing and updating the state of the system. Here, the most important task is

guaranteeing the validity of promises, thus the promise system has different ways of

checking and validating or updating promises as described in (Jang, Fekete, and

Texas Tech University, Rajiv Shrestha, May 2010

13

Greenfield 2007). The Promise system helps to handle the concurrent processes in

Web-service applications.

Checkpointing techniques are helpful to increase the efficiency of the system

in case of failure. In checkpointing, consistent execution states are saved to obtain

checkpoints during the process flow. During failures and exceptions, the activity can

be rolled back to the closest consistent checkpoint, resuming the execution from that

point (Luo 2000) rather than the whole process, which can consume extra resources

and reduce the efficiency of the system. The checkpointing method can be used with

events and rules, where the state of the execution can be used to determine the

responsible action towards application events, exceptions, and faults. The work in

(Marzouk et al., 2009) presents the periodic checkpointing-based approach which can

be used as a self-healing mechanism to recover from stopped process instances due to

failure in the workflow. The work in (Dialani et al., 2002) provides the fault tolerant

architecture for Web services to detect the faults and to recover by means of

checkpointing and rollback. The AP concept presented in this thesis also stores critical

execution data that can be used for constraint checking and passing parameters to rules

that invoke different types of recovery actions.

In addition to above techniques to handle faults and exceptions in workflows,

several formalization and validating techniques (Desel 2005) (Sangiorgi and Walker

2001) (Kovács, Varró, and Gönczy 2007) as described in Section 2.3 can be used to

guarantee the correctness, to avoid ambiguities and inconsistencies, and to also

monitor failures. Moreover, semantics can be added to more dynamically recover from

failures. A Semantic Web Service is “a means for providing service specifications

with rich semantic annotations that facilitate flexible dynamic discovery, invocation

and composition of services” (Wiesner et al., 2008). The Ontology Web Language for

Services (OWL-S) (Martin et al., 2005) brings semantics to Web services, which can

support automation and dynamism during service composition by providing

declarative descriptions to Web service. The work in (Vaculín, Wiesner, and Sycara

2008) gives the exception handling and recovery mechanisms in OWL-S by

Texas Tech University, Rajiv Shrestha, May 2010

14

introducing constraint violation handlers (CV-handlers) and combining them with

event handlers. Moreover, (Wiesner et al., 2008) adds semantic annotation to these

existing methods to generate more dynamic, flexible and adaptive ways of handling

and recovering from failures. Methods like ReplaceByEquivalent and Advanced Back

and Forward Recovery actions help to dynamically find alternatives to erroneous

state, whereas as Automatic Compensation method uses the semantic information to

undo the completed processes. Therefore, semantic web services can be a key solution

for achieving dynamism with reliable and adaptable service executions.

Earlier work with fault and exceptional handling in transactional workflow can

be found in work such as the ConTract model (Wächter and Reuter 1992) and the

CREW project (Kamath and Ramamritham 1998). The ConTract Model supports the

correct execution of non-atomic, long-lived applications with application-dependent

consistency constraints. The model provides a mechanism for grouping transactions

into a multi-transaction activity. A ConTract consists of a set of predefined actions

(steps) and an explicitly specified execution plan (script). The ConTract Model

provides compensation for backward recovery, and user-defined consistency through

the specification of pre-conditions or post-conditions for steps. After the execution of

each step, the ConTract Model will release locks and if failure occurs, the ConTract

Model will semantically undo the effect of completed steps. The pre-/post-condition

guarantees the user-defined way of specifying correctness criteria. In the Correct and

Reliable Execution of Workflows (CREW) project (Kamath and Ramamritham 1998),

the correctness requirements and other constraints are specified for workflow

executions based on the earlier work on transactional workflows such as ConTract

model. A workflow executes in multiple steps, where a step is triggered by the

completion of one or more previous steps, or the occurrence of specific events. The

rules, events or conditions predefined will be used to dynamically generate the rule

sets to manage the execution of workflows. A mechanism is proposed for the handling

of failures to eliminate unnecessary compensations and re-execution of steps.

Depending on whether the previous execution of steps is acceptable, complete

Texas Tech University, Rajiv Shrestha, May 2010

15

compensation and re-execution, or partial compensation and incremental re-execution

is used to undo the effects. Therefore, CREW makes the execution of workflows more

dynamic by the use of dynamic rule sets. The handling of failures and exceptions can

be better managed during execution.

Most of these projects do not fully utilize pre and post conditions or other

constraint checking mechanisms integrated with a variety of recovery actions to

support more dynamic and flexible ways of reacting to failures. The research

described in this thesis demonstrates the viability of variegated recovery approaches

within a BPEL-like execution environment.

2.3 Events for Handling Failures and Exceptions

An important aspect of business processes is to integrate them with business

events and rules, which can enforce business policies and constraints during the

execution of a business process. Event driven architectures provide an approach for

designing and creating applications where events trigger certain actions in real-time

(Michelson 2006). An event is a notable thing that may signify a problem or

implement a problem, an opportunity, a threshold, or a deviation (Michelson 2006). A

rules-based event processing agent may be used to listen to incoming events. Also,

events can be used with rules for failure and recovery of activities. Rules provide a

more dynamic way to react to events, providing an alternative to the normal flow of

execution and creating more reactive and dynamic systems. Since there is an

increasing occurrence of complex events, event-driven applications, and business

activity monitoring, the use of rules in business process modeling is an increasing

necessity.

Events can be classified into application-oriented events, application

exceptions, and system faults associated with service execution (Gannod, Burge, and

Urban 2007). There are three general ways of processing the events (Michelson 2006):

simple, stream, and complex. Events and rules can be used to control the flow of

execution as wells as handling failures and exceptions that affect the normal flow of

Texas Tech University, Rajiv Shrestha, May 2010

16

execution. Active rules have been used to extend traditional database systems which

are able to monitor and react to specific circumstances of relevance to an application

by using the Event Condition Action (ECA) rules (Paton and Díaz 1999). Rules can be

used to automatically execute actions in the case of an event, provided that the

condition holds. Details about the benefits, challenges, and limits of using ECA rules

for business processes can be found in (Bry et al., 2006). ECA rules are useful for

efficient and convenient exception handling, since exceptions can be easily expressed

as events. Even though some languages may only use ECA rules for controlling

workflow, as in XChange (Bailey et al., 2005), workflow can be easily extended and

implemented to handle failures and events using ECA rules. ECA rules have been

successfully implemented for exception handling in (Brambilla et al., 2005) (Liu et al.,

2007). The work in (Liu et al., 2007) uses ECA rules to handle faults and then

integrate ECA rules with normal business logic to generate reliable and fault-tolerant

BPEL processes to overcome the limited fault handling capability in BPEL. Thus the

use of rules increases the productivity and reusability by separating fault handling

logic from normal business logic. Their future work is to use semantics for more

efficient fault handling. In (Luo et al., 2000), justified ECA (JECA) rules are used to

handle exceptions. In addition, a case-based reasoning (CBR) system is introduced

which can provide a method to understand the exceptions and retrieve similar prior

exception handling cases. The system can reuse the exception handling experiences

captured in case of new circumstances.

2.4 Aspect-Oriented Workflows

Aspect-oriented programming (AOP) is another way of modularizing and

adding flexibility to service composition through dynamic and autonomic composition

and runtime recovery. In AOP, aspects are weaved into the execution of a program

where join points are specified. Join points are well-defined points in the execution of

the program. The behavioral code specified in the join point is known as advice. The

advice code can be executed before, after, or instead of the join points (Charfi and

Mezini 2007). The work in (Charfi and Mezini 2006) illustrates the application of

Texas Tech University, Rajiv Shrestha, May 2010

17

aspect-oriented software development concepts to workflow languages to provide

flexible and adaptable workflows. AO4BPEL is presented in (Charfi and Mezini 2007)

as an aspect-oriented extension to BPEL, where aspects can be plugged into the

composition during runtime. The system uses AspectJ, which provides control flow

adaptations such as insertion of a new activity to the process or replacement of an

activity by another (Kiczales et al., 2001). AO4BPEL enhances the limited capabilities

of BPEL in terms of modularity and dynamic adaptability. Aspects are written in

XML in different files, helping to minimize the need for changing the composition

during runtime. Business rules can also be used to provide more flexibility during

service composition. Currently business rules are not well modularized in BPEL

process specifications, thus AO4BPEL successfully addresses such issues. APs as

described in this paper are similar to the concept of join points, with a novel focus on

using APs to access process history data in support of constraint checking as well as

flexible and dynamic recovery techniques.

2.5 Conclusion

In this related work section, we have described several past and ongoing

research projects that support dynamic Web service composition with respect to fault

and exception handling. Due to the distributed nature of services, the service

composition is often inflexible and highly vulnerable to errors. Even BPEL, the de-

facto standard for composing Web services, still lacks sophistication with respect to

handling faults and events as described in BPEL shortcomings in Section 2.3. The

research in this thesis is different than the related work by providing comprehensive

support for user-defined constraints with the use of pre, post, and conditional rules. In

addition, the AP model integrates the rules with different recovery actions as well as

user-defined compensation and contingency. Thus, our model attempts to provide

more flexible recovery process semantics with a focus on user-defined constraints,

which is a combination of features that are not available in current or past research.

Texas Tech University, Rajiv Shrestha, May 2010

18

CHAPTER III

OVERVIEW OF SERVICE COMPOSITION AND RECOVERY MODEL WITH

ASSURANCE POINTS

The research described in this thesis is an extension of the service composition

and recovery model described in (Xiao and Urban 2009). The model is based on

BPEL, with a nested composition structure and support for compensation and

contingency. The model was originally defined to support a more flexible environment

for research involving data dependency analysis and recovery procedures between

concurrent processes (Xiao and Urban 2007), (Xiao and Urban 2008). This chapter

gives an overview of the model in Section 3.1. Section 3.2 then presents assurance

points, integration rules, and recovery actions supported by APs. An online shopping

example is presented in Section 3.3 to illustrate the concepts.

3.1 Overview of Service Composition and Recovery Model

In (Xiao and Urban 2009), a process is defined as a top-level execution entity

that is composed of other execution entities. A process is denoted as pi, where p

represents a process and the subscript i represents a unique identifier of the process.

An operation represents a service invocation, denoted as opi,j, such that op is an

operation, i identifies the enclosing process pi, and j represents the unique identifier of

the operation within pi. Compensation (copi,j) is an operation intended for backward

recovery, while contingency (topi,j) is an operation used for forward recovery.

An atomic group and a composite group are logical execution units that enable

the specification of processes with complex control structure, facilitating service

execution failure recovery by adding scopes within the context of a process execution.

An atomic group (denoted agi,j) contains an operation, an optional compensation, and

an optional contingency. A composite group (denoted cgi,k) may contain multiple

atomic groups, and/or multiple composite groups that execute sequentially or in

parallel. A composite group can have its own compensation and contingency as

optional elements. A process is essentially a top-level composite group.

Texas Tech University, Rajiv Shrestha, May 2010

19

Figure 1 shows an abstract view of a sample process definition. The process p1

is the top-level composite group cg1. The process p1 is composed of two composite

groups cg1,1 and cg1,2, and an atomic group ag1,3. Similarly, cg1,1 and cg1,2 are composite

groups that contain atomic groups. Each atomic and composite group can have an

optional compensation plan and/or contingency plan. Some operations, such as op1,4,

can also be marked as non-critical, meaning that the failure of the operation does not

invoke any recovery activity and that the process can proceed even if the operation

fails.

Figure 1. An Abstract View of a Sample Process (Xiao and Urban 2009)

Contingency is always tried first upon the failure of a group. Compensation

will only be invoked if there is no contingency or if the contingency fails. For example

in Figure 1, if op1,6 fails, top1,6 will be executed. If top1,6 fails, cg1,2 and cg1,1 will be

compensated in that order.

Compensation is a recovery activity that is only applied to completed atomic

and composite groups. Shallow compensation involves the execution of a

compensating procedure attached to an entire composite group, while deep

compensation involves the execution of compensating procedures for each group

op1,1

cop1,1

top1,1

ag1,1,1

op1,2

cop1,2

op1,3

top1,3

cg1,1

cg1,1.cop

cg1,1.top

op1,4 (non-critical)

op1,5

cop1,5

cg1,2.top

op1,6

cop1,6

top1,6

ag1,3

cg1.cop

cg1.top

p1 = cg1

cg1,2

ag1,1,2

ag1,1,3

ag1,2,1

ag1,2,2

Texas Tech University, Rajiv Shrestha, May 2010

20

within a composite group. As an example in Figure 1, if the contingent procedure for

op1,6 fails, the recovery process will first try to compensate cg1,2. Since cg1,2 does not

have a compensating procedure for the entire group (i.e., no shallow compensation

procedure), deep compensation will be invoked by executing cop1,5. Note that op1,4 is

non-critical and does not require compensation. After deep compensation of cg1,2, cg1,1

will be compensated. In this case, cg1,1 provides cg1,1.cop as a shallow compensation

process. After compensating cg1,1, the contingent procedure for the top-most composite

group (i.e., cg1.top) will be executed. The reader should refer to (Xiao and Urban 2009)

for a formal presentation of the recovery semantics.

In the service composition and recovery model, more intelligent and automated

compensation and contingency procedures are necessary for dynamic service

composition. The goal of the AP concept is to create a more dynamic approach to the

combined use of compensation and contingency procedures through the use of

checkpointing and rules that can examine the execution state. Also in current

DeltaGrid recovery procedures, faults are detected only during run-time. This can be

significantly improved by adding pre-conditions and post-conditions, thus we can

detect faults in advance and avoid failures by executing other likely successful

alternatives. The details of the integration of APs and rules with the composition

model are illustrated in next section.

3.2 Extending the Model with Assurance Points and Rules

Our work has extended the model described in the previous section with the

concept of assurance points. An AP is a process execution correctness guard. Given

that concurrent processes do not execute as traditional transactions in a service-

oriented environment, inserting APs at critical points in a process is important for

checking consistency constraints and potentially reducing the risk of failure or

inconsistent data. An AP also serves as a milestone for backward and forward

recovery activities. When failures occur, APs can be used as rollback points for

backward recovery, rechecking pre-conditions relevant to forward recovery. In the

Texas Tech University, Rajiv Shrestha, May 2010

21

current version of our work, we assume that APs are placed at points in a process

where they are only executed once, and not embedded in iterative control structures.

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?, IRcond*>, where:

- apID is the unique identifier of the AP

- apParameters is a list of critical data items to be stored as part of the AP,

representing the current status of the process execution.

- IRpre is an integration rule defining a pre-condition to be checked prior to the

execution of an atomic or composite group.

- IRpost is an integration rule defining a post-condition to be checked after the

execution of an atomic or composite group.

- IRcond is an integration rule defining additional application rules that invoke

conditional actions that run in parallel with the main flow of execution.

In the above notation, "*" indicates 0 or more occurrences, while "?" indicates an

optional occurrence that can be either zero or one.

IRpre, IRpost, and IRcond are expressed as Event-Condition-Action (ECA) rules

using the format shown in Figure 2, which is based on previous work with using

integration rules to interconnect software components (Urban et al., 2001), (Jin 2004).

An IR is triggered by a process reaching a specific AP during execution. Upon

reaching an AP, the condition of an IR is evaluated. The action specification is

executed if the condition evaluates to true. For IRpre and IRpost, a constraint C is always

expressed in a negative form (not(C)). The action (action 1) is therefore invoked if the

pre or post condition is not true, invoking a recovery action or an alternative execution

path. If the specified action is a retry activity, then there is a possibility for the process

to execute through the same pre or post condition a second time. In such a case, action

2 is invoked rather than action 1, to invoke a different recovery action.

When pre and post conditions fail (not(C) = True), recovery actions are invoked.

In its most basic form, a recovery action simply invokes an alternative process.

Recovery actions can also be one of the following actions:

Texas Tech University, Rajiv Shrestha, May 2010

22

- APRollback: APRollback is used when the entire process needs to be abandoned,

which means that the execution engine compensates its way back to the start of the

process according to the semantics of the service compensation model.

- APRetry: APRetry is used when the running process needs to be backward

recovered using compensation to a specific AP. By default, the backward recovery

process will go to the first AP reached as part of the shallow or deep compensation

process within the same scope. After backward recovery to the AP, the pre-

condition defined in the AP is re-checked. If the pre-condition is satisfied, the

process execution is resumed from that AP by re-trying the recovered operations.

Otherwise, the action of the pre-condition rule is executed. The APRetry command

can optionally specify a parameter indicating the AP that is the target of the

backward recovery process.

- APCascadedContingency (APCC): APCC is a hierarchical backward recovery

process that searches for a possible contingent procedure. During the APCC

backward recovery process, when an AP is reached, the pre-condition defined in

the AP will be re-checked before invoking any contingent procedures for forward

recovery.

CREATE RULE ruleName::{pre | post | cond}

EVENT apId(apParameters)

CONDITION rule condition specification

ACTION action 1

[ON RETRY action 2]

Figure 2. Integration Rule Structure

The most basic use of an AP together with integration rules is shown in Figure

3, which shows a process with three composite groups and an AP between each

composite group. The shaded box shows the functionality of an AP using AP2 as an

example. Each AP serves as a checkpoint facility, storing execution status data in a

checkpoint database (AP Data in Figure 3). When the execution reaches AP2, IRs

associated with the AP are invoked. The condition of an IRpost is evaluated first to

Texas Tech University, Rajiv Shrestha, May 2010

23

validate the execution of cg2. If the post-condition is violated, the action invoked can

be one of the pre-defined recovery actions as described above. If the post-condition is

not violated, then an IRpre rule is evaluated to check the pre-condition for the next

service execution. If the pre-condition is violated, one of the pre-defined recovery

actions will be invoked. If the pre-condition is satisfied, the AP will check for any

additional, conditional rules (IRcond) that may have been expressed. IRcond rules do not

affect the normal flow of execution but provide a way to invoke additional parallel

activity based on application requirements. Note that the expression of a pre-condition,

post-condition or any additional condition is optional.

Service Composition with AP

Cg1

Cg2

Cg3

AP1

AP2

IRpost

F

T

F

Conditional Operation

T

F
AP Data

Recovery Actions

APRetry

APRollback

APCC

Alternative

Process

T

AP2

IRpre

IRcond

Figure 3. Basic Use of AP and Integration Rules

3.3 Online Shopping Example

This section provides a specific example of assurance points, integration rules,

and conditional rules using an online shopping application. A typical online shopping

process contains several phases such as selecting goods; paying the bill; shipping

goods, and delivering goods. Based on these phases, a process example using APs is

presented in Figure 4. All atomic and composite groups are shown in the solid line

Texas Tech University, Rajiv Shrestha, May 2010

24

rectangles, while optional compensations and contingencies are shown in dash line

rectangles denoted as cop and top, respectively. APs are shown as ovals between

composite and/or atomic groups. To simplify the case for illustration of the concepts,

several suppositions are made:

a) If the transaction amount is greater than $1000, the system will automatically send

an SMS notice to the customer after the money is charged successfully.

b) The customer pays an extra shipping fee for UPS overnight delivery. If UPS fails

to deliver the item overnight, the extra shipping fee will be refunded.

c) The order will be open for cancellation (return) for 30 days after the delivery date.

Then the order will be closed.

The available AP identifiers and parameters for the online shopping process

are shown in Table 1, which corresponds to Figure 4. Also, Table 1 shows the

integration rules and conditional rules associated with the APs in Figure 4. Below, the

components of an assurance point are explained using the APs in Figure 4 and the

rules in Table 1.

Component 1 (AP Identifiers and Parameters): The AP identifier defines the current

execution status of a process instance. Each AP may optionally specify parameters that

store critical data when the process execution reaches the AP. The data can then be

examined in the conditions of rules associated with the AP. For example, the first AP

is orderPlaced, which reflects that the customer has finished placing the shopping

order. The parameter is orderId (the identifier of the order), which is used in the rules

associated with the AP as described in Component 2 below.

Component 2 (Integration Rules): An integration rule is optionally used as a transition

between logical components of a process to check pre and post conditions. In Table 1,

the orderPlaced AP has a pre-condition that guarantees that the store must have enough

goods in stock. Otherwise, the process invokes the backOrderPurchase process. The

CreditCardCharged AP has a post-condition that further guarantees the in-stock quantity

must be in a reasonable status after the decInventory operation.

Texas Tech University, Rajiv Shrestha, May 2010

25

Add to cart

Select shipping method

Payment information input

Place an order

cg1
ag11

ag12

ag13

ag14

Charge credit card

Dec inventory

cg2
ag21

ag22

CreditCardCharged (orderId, cardNumber, amount)

UPS shipping USPS shipping

UPS USPS

UPSShipped(orderId,

UPSShippingDate)
USPSShipped (orderId)

Deliver order

cg3

ag31 ag32

ag4

Today < deliveredDate + 30

Order Close

Y

Nag5

Check next day

automatically

cg1.cop

(AbortOrder)

ag21.cop(creditBack)

ag22.cop(incInventory)

ag21.top(eCheckPay)

cg3.top

(Fedex

shipping)

Delivered(orderId, shippingMethod, deliveryDate)

OrderPlaced (orderId)

Figure 4. Online Shopping Process with APs

Texas Tech University, Rajiv Shrestha, May 2010

26

Table 1. AP Structure in the Online Shopping Process

Assurance Point

Identifiers and Parameters
Integration Rule Conditional Rule

OrderPlaced (orderId, itemID, N)

orderId is the identifier of the

order

itemID is the ID number of the

goods;

N is a number which represents

the order quantity.

create rule QuantityCheck::pre

event: OrderPlaced (orderId)

condition: exists(select L.itemId
from Inventory I, LineItem L where
L.orderId=orderId and
L.itemId=I.itemId and
L.quantity>I.quantity)
action:

backOrderPurchase(orderId)

CreditCardCharged (orderId,

cardNumber, amount)

cardNumber is the card to be

charged

amount is a number which

represents the shipping charge.

create rule QuantityCheck::post

event: CreditCardCharged

(orderId, cardNumber, amount)
condition: exists(select L.itemId
from Inventory I, LineItem L where
L.orderId=orderId and
L.itemId=I.itemId and I.quantity<0)
action1: APRetry

action2: APRollback

create rule Notice::cond

event: CreditCardCharged

(orderId, cardNumber , amount)
condition: amount > $1000

action:

highExpenseNotice(cardNumbe

r)

UPSShipped(orderId,

UPSShippingDate)

UPSShippingDate is the date on

which the UPS gets the item.

USPSShipped (orderId)

Delivered(orderId,

shippingMethod, deliveryDate)

shippingMethod is either UPS or

USPS;

deliveryDate is the delivery date.

create rule

ShippingRefund::cond

event: Delivered (orderId,

shippingMethod, deliveryDate)

condition: shippingMethod =

UPS && deliveryDate !=

UPSShipped.UPSShippingDate+1

action:

refundUPSShippingCharge(orderId
)

Texas Tech University, Rajiv Shrestha, May 2010

27

Component 3 (Conditional Rule): In Table 1, the CreditCardCharged AP has a

conditional rule associated with the Delivered AP that sends a text message

notification for large charges. After the execution of ag4, the Delivered AP is reached.

Since no pre or post condition is specified, only the conditional rule shippingRefund is

evaluated. Assume the delivery method was overnight through UPS with an extra

shipping fee. If UPS has delivered the item on time, then the Delivered AP is complete

and execution continues. Otherwise, the conditional action refundUPSShippingCharge is

invoked to refund the extra fee and the process execution continues. If backward

recovery with retry takes place, it is possible that the process will execution the same

conditional rule a second time. The action of the rule will only be executed during the

retry process if the action was not executed the first time through.

3.4 Summary

As demonstrated through the online shopping process, we have enhanced

previous work with a service composition and recovery model with addition of user-

defined constraints and different recovery actions to provide more flexible options for

recovering a process. In the next chapter, a prototype of the AP model is presented

with algorithms that illustrate the semantics of different recovery actions with generic

sample scenarios.

Texas Tech University, Rajiv Shrestha, May 2010

28

CHAPTER IV

A PROTOTYPE OF ASSURANCE POINTS, INTEGRATION RULES, AND

RECOVERY ACTIONS

To illustrate the feasibility of the AP model, this research has prototyped an

execution environment to demonstrate the extended service composition and recovery

model with APs and integration rules. BPEL was not used for the prototype since the

broader scope of the research is addressing techniques for decentralized data

dependency among distributed Process Execution Agents (PEXAs) (Urban, Ziao, and

Le 2009), where PEXAs execute processes, communicate about process failures,

identify processes that are dependent on a failed process, and invoke recovery

procedures on dependent processes. Existing BPEL engines do not provide the

flexibility needed to experiment with this form of decentralized communication

among process execution engines. The process specification framework, however, is

based on BPEL using the Process Modeling Language (PML) described in (Ma et al.,

2005). This work therefore demonstrates the feasibility of extending or modifying

BPEL in the future to support assurance points and the recovery capabilities described

in this thesis.

The following sections provide details of the implementation of APs and rules.

Section 4.1 explains the structure and syntax design of APs and integration rules.

Section 4.2 discusses the implementation of the execution engine using XMLBeans.

Section 4.3 and Section 4.4 presents algorithms and recovery action semantics with

the use of generic examples in Section 4.5. Section 4.6 presents the execution history

generation feature. Section 4.7 provides a summary of the prototype.

4.1 Specification of Assurance Points and Integration Rules

This section presents a framework for the specification of assurance points and

integration rules. Section 4.1.1 gives an overview of the existing PML. Section 4.1.2

introduces the syntax for the APs and integration rules with supporting examples that

were extended to support APs and rules.

Texas Tech University, Rajiv Shrestha, May 2010

29

4.1.1 PML Overview

The PML described in (Ma et al., 2005) is an XML-based modeling language

for defining processes using the basic functionalities from BPEL, such as invoke as

well as different forms of control flow specification. An XML format is desirable for

the language specification since XML is extensible and platform-independent. The

activities supported by the PML are invoke, assign, sequence, flow, switch, and while

activities. Support for exception handling and failure recovery was used initially in

(Lao 2005) to enhance the PML with the features that support the use of compensation

and contingency plans during execution of processes. The enhanced version in (Lao

2005) added elements for the specification of atomic groups, composite groups,

contingency plan, and compensation plans. The work in (Xiao and Urban 2009)

provides state diagrams that define the semantics of the model for the use of

compensation and contingency. An initial overview of the semantics of the model was

presented in Section 3.1. This section demonstrates how PML has been extended to

incorporate the AP concept with integration rules and the recovery actions outlines in

Chapter 3.

4.1.2 AP and Integration Rule Syntax

The process specification framework uses a minimal set of activities, such as

assign, invoke, and switch to illustrate the functionality of APs and the different forms

of recovery. We have added the capabilities to define atomic groups and composite

groups, with features to express compensation and contingency. Table 2 shows the list

of activities supported by our process modeling language to illustrate the AP model.

There are two activity categories: atomic activities and complex activities. The atomic

activities consist of invoke for service invocation, assign for changing variable values,

ag for atomic group, cg for composite group, top for contingency, cop for

compensation, and ap for assurance points. The complex activities category includes

switch to define alternate control flow. As a simplifying assumption in this initial stage

of the research, we have omitted looping and parallel constructs to clearly demonstrate

Texas Tech University, Rajiv Shrestha, May 2010

30

the functionality of APs and recovery actions. Future research directions will address

support for these features.

Table 2. Activities

Activity Type Activity Description

Atomic assign Changes the value of a property

 invoke Performs or invokes an operation involving the

exchange of input and output messages

 ag Atomic Group containing a single invoke activity

with an optional contingency plan or

compensation plan

 cg Composite Group which containing one or more

atomic or composite groups with an optional

contingency plan or compensation plan

 top Contingency plan for executing an alternate

action

 cop Compensation plan for executing a logical

rollback

 ap

Assurance points for invoking integration rules

and recovery activity

Complex switch
Executes activities from one of multiple sets,

based on a Boolean value

The following notation guidelines will help to read the scripts used in this thesis:

- "?" indicates an optional occurrence that can be either zero or one,

- "*" means 0 or more occurrences, and

- "+" specifies 1 or more occurrences.

An XML Schema is provided as a formal definition of the language features.

The XML Schema with support for APs is shown in Appendix I, with the XML

schema definition for integration rules in Appendix II.

Texas Tech University, Rajiv Shrestha, May 2010

31

An AP definition contains an AP name together with zero or more variables as

parameters, indicated by apDataIn. The actual variable refers to global process

variables defined in the variables section of the process definition. The apDataIn

variable should be one of the variables defined in the variable element. The following

figure shows the general structure of how an AP and its parameters are defined. The

name of the first AP parameter is variable1. For an AP, there can be more than one

parameter or no parameters at all.

Figure 5. AP Specification Syntax

An integration rule definition supports the list of events, conditions, and

actions that can be correlated with a named AP in the process specification. Figure 6

shows the general structure of how an integration rule with its events, conditions, and

actions are defined. The rules construct can contain zero or more events, where each

event is associated with an AP name. The event element can contain zero or one pre-

condition rule, zero or one post-condition rule, or zero or more conditional rule

definitions. Each of these must have one condition and one or more actions defined.

The condition element must have an invoke construct which allows a process to invoke a

request-response operation on a Port Type offered by a Web Service. The details of the

invoke construct is described in (Ma et al., 2005). The actions elements can have one or

more actions, where each action can be APRetry, APRollback, APCC, or the name of a

Web Service that can be used to invoke an alternate execution path.

Figure 7 shows a sample process in XML to illustrate the syntax for defining

atomic (<ag …>) and composite (<cg …>) groups with compensating (<cop …>) and

contingent (<top …>) procedures. The syntax for APs and their parameters are also

<process>
 . . .
 <ap name= “APName”> *
 <apDataIn variable=“variable1” /> *
 </ap>
 . . .
<process>

Texas Tech University, Rajiv Shrestha, May 2010

32

illustrated (<ap …>). This syntax is used to illustrate the XML grammar of the

language structure using the Online Shopping Process as described in Section 3.1.

Figure 6. Rule Specification Syntax

Figure 8 shows the XML rule specification associated with the orderPlacedAP

in Figure 7. Each rule indicates the event (i.e., assurance point) that triggers the rule

(<event ap = …>), whether the rule is a pre (<pre>) or post (<post>) condition or a

conditional (<cond>) rule, as well as the condition (<condition …>) and action (<action

…>) of the rule, where rule conditions are implemented in web services. In Figure 7,

composite group cg0 has two APs defined: orderPlacedAP and creditCardChargedAP.

When the execution reaches orderPlacedAP during normal execution, it checks the

corresponding pre-condition, i.e., QuantityCheck as described in Figure 8. If the

condition is not satisfied, the corresponding action is invoked, i.e., backOrderPurchase

<rules>
<event ap=”APName”> *
 <pre> ?
 <ecaRule>
 <condition name=“conditionName”>

<invoke serviceName="ncname" portType="qname”
operation="ncname" inputVariable="ncname"?
outputVariable="ncname"?>

</invoke>
 </condition>
 <actions>

<action name=“actionName”> +
<invoke serviceName="ncname" portType="qname”
 operation="ncname" inputVariable="ncname"?
 outputVariable="ncname"?>?
</invoke>

</action>
 </actions>

 </ecaRule>

 </pre>

.

.

.
</event>

</rules>

Texas Tech University, Rajiv Shrestha, May 2010

33

procedure is called. Otherwise, the AP and process execution continues (as defined in

this chapter). The complete process definitions for the online shopping process are

presented in Appendix III with the corresponding rule definitions in Appendix IV.

Figure 7. Process Sample

<cg name= “cg0”>
 . . .
 <ap name= “OrderPlacedAP”>
 <apDataIn variable=“orderId” />
 </ap>

 <ag name = “ag02”

<invoke name=“makePayment” serviceName=“creditCard1”
 portType=“cc:CreditCardPortType” operation=“makePayment”
 inputVariable = “makePaymentInput”
 outputVariable = “makePaymentOutput” />

<top name=“top02”>
 <invoke name=“makePayment” serviceName=“creditCard2”
 portType=“cc:CreditCardPortType” operation=“makePayment”
 inputVariable = “makePaymentInput”

 outputVariable=“makePaymentOutput” />
</top>

<cop name=“cop02”>
 <invoke name=“makeRefund” serviceName=“creditCard1”
 portType=“cc:CreditCardPortType” operation=“ makeRefund”
 inputVariable = “makePaymentInput”

 outputVariable= “makeRefundOutput” />
</cop>

 </ag>

 <ap name= “creditCardChargedAP”>
 <apDataIn variable=“orderId” />
 <apDataIn variable=“cardNumber” />
 <apDataIn variable=“amount” />
 </ap>

 . . .
<cg>

Texas Tech University, Rajiv Shrestha, May 2010

34

Figure 8. Rules Sample

4.2 Process Execution Architecture

The parser in charge of the XML Java binding process has been implemented

in the execution engine using XMLBeans. The XML Java binding process fully

utilizes the XML Schema definition for unmarshalling and validating XML input

documents. XML schema defines the language syntax and is used for document

validation. The execution engine uses NetBeans IDE. After parsing a process defined

in XML, XMLBeans creates the Java types that represent schema types, which makes

it easier to access the instances of the schema through get and set methods. The

processor initializes variables and begins executing the activities defined in the input

XML script. For each activity defined, a wrapper class has been developed that

implements the semantics of the activity. The processor keeps track of nested

execution layers for supporting the different recovery options. AP data is also stored in

a db40 object-oriented database (db4objects 2006).

<rules>
 . . .

<event ap="orderPlacedAP">
 <pre>
 <ecaRule>
 <condition name=“QuantityCheck”
 <invoke name="checkQuantity" serviceName="ruleConditions"
 portType=“rule:ruleConditionsPortType” operation="checkQuantity1"
 inputVariable="quantity" outputVariable="result" />
 </condition>

 <actions>

 <action name=“backOrderPurchase”>
 <invoke name="backOrderPurchase" serviceName="shopping"
 portType=“sho:ShoppingPortType” operation="BackOrderPurchase"
 inputVariable="orderId" outputVariable="result" />

 </action>
 </actions>
 </ecaRule>
 </pre>
</event>

 . . .
</rules>

Texas Tech University, Rajiv Shrestha, May 2010

35

Figure 9 shows a revised version of the execution engine originally presented

in (Ma et al., 2005). The execution engine consists of three components: the XML

parser, the XML processor, and the History Manager.

Execution Engine

Processor
<xsd>

…

…

</xsd>

Process Modeling

Language Definition

XML Java Binding

History Manager

XML Script for

Application Process

Definition

...

<process>

…

…

</process>

Web

Service

Web

Service

DB4O

Figure 9. The Execution Engine Architecture

The XML parser converts an XML document to a Java representation. The

process is also called XML Java data binding, which allows a simple and direct way to

use XML in applications. With data binding, an application can largely ignore the

actual structure of XML documents and work directly with the data content of each

document. In the XML Java binding process, marshalling is the process of generating

an XML representation for a Java object in memory. Unmarshalling is the reverse

process, building a Java object (and dependent objects) in memory from an XML

representation. XML Java binding can be achieved by code generation, which builds

classes that reflect the XML document structure and provides a convenient approach

to start working with documents quickly.

After the parsing process, the XML processor initializes process parameters,

service provider information, and variable information and starts executing activities.

The XML processor is the core component in the execution engine and is also in

Texas Tech University, Rajiv Shrestha, May 2010

36

charge of Web service invocation. The processor utilizes and integrates other

components to provide all functionalities supported by the execution engine.

The history of the process execution includes metadata and runtime execution

information. Process metadata can be extracted by querying a process specification

described in an XML format. At runtime, the execution history, including the

information of the process, and Web service invocations are created during the process

execution and written to an object oriented database.

The execution engine has been implemented using NetBeans, an open source

extensible integrated development environment. The APProject NetBeans project was

created which contains all the java binding process files, implementation files, and

execution history generation files. The file structure is shown in Table 3.

Table 3. File Structure for the AP Project

File or Folder Content

build.xml The build file for the xmlbeans project that contains all

tasks for the binding process.

/src

└─/impl

└─/org.ap.pml

└─/org.ap.eca

└─/org.ap.db4o

Contains Java source file folder:

-Folder impl includes the source code for the execution

engine,

- pml and eca folders contains the Java class files generated

by XMLbeans during Java binding process,

-db4o contains the database files and other execution

history generating implementation Java files.

/file

└─/test

Contains input files

Test input files, including XML scripts

/lib The libraries used in this project, including the xmlbeans.jar.

/build The class file folder containing all Java sources.

/schemas XML Schema folder containing: pml.xsd, rule.xsd

Texas Tech University, Rajiv Shrestha, May 2010

37

The XML Java binding process has been implemented in the AP project using

XMLBeans (XMLBeans 2005). The XML Java binding process can be done by

running the default task defined in the build file. Before running the build task, the

XML Schema, named pml.xsd and rules.xsd has to exist in the /schemas directory. A

Java representation of the schema (a jar file) is created for use by the execution engine.

The actual binding process consists of two steps: 1) the XMLBeans compiler

generates a Java representation of the XML Schema. This representation is a set of

generic Java classes and interfaces that represent the structure and constraints of the

schema, and 2) an actual XML instance document, the XML process script that

conforms to the above schema, is bound to the instances of the Java classes and

interfaces generated in Step 1. The binding process involves using the XMLBeans API

to access the data in the actual XML instance document in an object-oriented manner.

XMLBeans performs the code generation for each of the elements of the XML

schema into the source tree of the project using the Ant task named xmlbean defined in

the build.xml as shown in Figure 10. The standard build process of the project compiles

those sources. In this way, we can make sure that any schema changes are reflected in

the generated code on the next compile. More details of the Ant Task with XMLBeans

can be found in (Xmlbean Ant Task 2010).

Figure 10. Configuration of XMLBeans in NetBeans

<taskdef name="xmlbean"
 classname="org.apache.xmlbeans.impl.tool.XMLBean"
 classpath=" lib/xbean.jar" />
<target name="-pre-compile">
 <antcall target="gen-schema"/>
</target>
<target name="gen-schema">
 <xmlbean srconly="true"
 verbose="true" srcgendir="src"
 failonerror="true" download="true"
 classgendir="${build.dir}"
 classpath="${classes.path}"
 destfile="APSchema.jar">
 <fileset dir="schema/" includes="**/*.xsd"/>
 </xmlbean>
</target>

Texas Tech University, Rajiv Shrestha, May 2010

38

Figure 11 shows the class diagram of the actual Java interfaces generated for the

process XML Schema file. The XMLBeans generates an interface for each type

defined in the schema, such as the process type (ProcessType) and the activity type

(ActivityType). Each interface contains get and set methods to retrieve and modify

attribute information. The get and set methods are shown for the ActivityType interface.

All interfaces of the activity (invoke, assign, cop, top, ag, cg, ap) extend a generic

interface ActivityType. Similarly, Figure 12 shows the class diagram for the rule XML

Schema file. The interface for each type defined in the schema such as the event type

(EventType), condition type (ConditionType), and the actions type (ActionsType) are

generated by XMLBeans with get and set methods to retrieve and modify attribute

information. This generic activity interface abstracts all activities which can be

executed by the execution engine to provide an object-oriented design hierarchy.

Figure 13 shows how to bind an incoming XML document instance to the

ProcessType interface described above in Step 2. This code creates a method that

receives a file representing the XML process instance. The XML document containing

the root element and its children is bound to the ProcessDocument interface generated

in Step 1 by calling the ProcessDocument.Factory.parse method. The ProcessDocument

interface provides a factory class with which to create a new process document

instance. The factory class provides various versions of the parse method, each

receiving XML source as a different Java type (file, input stream, or URL). Once the

ProcessDocument object is created, the process definition is easily obtained by calling

the getProcess method on the document object.

The code generated by XMLBeans only contains the static information defined

in an XML file. The actual behavior of each activity has been implemented by the

activity wrappers in the AP project. The AP project files are integrated with the

XMLBeans-generated files as shown in Table 3. There are nine activity wrappers

implemented in the execution engine corresponding to the activities listed in Table 2.

The high level wrapper class hierarchy is shown in Figure 14.

Texas Tech University, Rajiv Shrestha, May 2010

39

+isSetName() : Boolean

+getName() : String

+setName() : void

+unsetName() : void

«interface»

ActivityType

«interface»

ProcessType

«interface»

ProcessParamsType

«interface»

InvokeType
«interface»

AssignType

«interface»

AGType

«interface»

CGType

«interface»

COPType

«interface»

ServiceProviderType

«interface»

VariablesType

«interface»

VariableType

«interface»

CopyType

«interface»

APType

Figure 11. Class diagram of the Process XML Schema

«interface»

ECARuleType

«interface»

PostType

«interface»

PreType

«interface»

CondType

«interface»

RulesType

«interface»

ActionsType

«interface»

EventType

«interface»

ConditionType

«interface»

ActionType

Figure 12. Class diagram of the Rule XML Schema

Figure 13. Code for binding a Process XML document

public static org.ap.pml.ProcessType createIpmlProcess(File file) {
 org.ap.pml.ProcessDocument pDoc = null;
 try {
 pDoc = ProcessDocument.Factory.parse(file);
 } catch (XmlException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return pDoc.getProcess();

 }

Texas Tech University, Rajiv Shrestha, May 2010

40

AssignWrapperInvokeWrapper

ProcessWrapper

COPWrapper TOPWrapper APWrapperAGWrapper CGWrapper

+run() : void

+execute() : void

+Executable Activity()

+getRunLayer() : string

+setRunLayer() : string

ExecutabkeActivity

-run_layer : string

SwitchWrapper

Figure 14. Class diagram of activity wrappers

As shown in Figure 14, an abstract class ExecutableActivity is defined as the

super class for the eight activity wrappers. This class provides the basic common

functions that are supported by the activity wrappers. Two important methods are

defined in the ExecutableActivity class. The first method is called execute. The second

method is an abstract method, named run, called by the execute method. The abstract

run method is the place where the execution uniqueness of each activity is defined.

Each concrete subclass has to implement the run method. In addition, all activities will

have private member variables called run_layer. This variable helps to differentiate the

layers that each activity is running on so that the semantics of AP recovery actions can

be executed successfully. The explanation of the process wrapper and AP wrapper

with recovery algorithm details are presented in the following two sub-sections.

4.3 Process Wrapper

The ProcessWrapper is the wrapper class for the top-level process. The class

maintains all of the defined variables and service provider information. Variables and

service instances are managed in a hash table in the process wrapper. The key to the

variable hash table is the variable name and the value is the variable object. The key to

the service hash table is the instance name defined in XML instance file.

Texas Tech University, Rajiv Shrestha, May 2010

41

The process starts by executing a composite group, since the top layer process

is itself a composite group with no higher enclosing construct. Therefore, the logical

flow of the activities starts with the execution of the CompositeWrapper class, which

implements how each activity inside the composite group should be handled. Figures

15(a) and 15(b) show the logic of executeCG. Each composite group can have several

other activities and each of these activities can be executed or skipped based on the

semantics of the recovery actions mode. There are three process boolean variables,

which are used to indicate the invoked recovery actions as defined in Section 3.2:

APROLLBACK, APRETRY, and APCC. These variables are saved in the variables hash

table with other variables.

When the process begins, the recovery mode variables are set to false as a

default value to indicate that no recovery action has been set. However, when an

internal error occurs or when certain rule conditions are not satisfied, then any one

mode may be turned on at one time by setting the variable to true instead of false. Also,

after executing or skipping an activity, the state of the process is checked. If there is an

error in any one operation, the process immediately tries to find the contingency for

the corresponding atomic group. If the contingency succeeds, the process continues,

but if the contingency fails or does not exist, then the process goes into APCC mode.

Even if there is no error, the recovery mode may have been set to true due to failure to

satisfy a rule condition. In this case, if the mode is APRETRY or APROLLBACK, then

either the composite or atomic group is compensated. For the APCC mode, the

semantics are more complex. If an activity is a composite group where the APCC mode

is set, then the compensation begins to recover inside the scope of the composite

group. When the process reaches the outside layer of the composite group after

running compensation the process checks if there is an AP immediately preceding the

activity in the same scope. If there is, then the process goes back to the previous AP to

check the pre-condition before trying to execute the contingency of atomic or

contingency group. If there is no AP specified, the process assumes that the pre-

condition is satisfied and tries to continue the process by executing the contingent

Texas Tech University, Rajiv Shrestha, May 2010

42

Figure 15(a). Execution of a Composite Group

void executeCG(org.ap.pml.CGType cgTypeObj) {
// For Each Activity in composite group
for(int i=0; cgTypeObj.getActivityArray().length > i; i++) {

// if the process is the top most layer and No more Previous Activity Exists during backward recovery
if ((i<0) && (this.getRunLayer().equalsIgnoreCase("0"))) {

 if ((Boolean) ProcessWrapper.variables.get("APCC")) { //check if the process is in APCC
Mode

 success = findContingency(this.cgTypeObj); //invoke contingency if available
 }
 break; //break for For Loop and end of recovery
 }

Cases if Activity is
AG: //AG is of type org.ap.pml.AGType
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode

error = ExecuteActivity (AGWrapper);
 break; //break for Case
CG: //CG is of type org.ap.pml.CGType
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode

ExecuteActivity (CGWrapper); //CG is of type org.ap.pml.CGType
 If (APCC && (Reached Outside Layer)) { // reaches parent scope during backward
recovery
 boolean checkAPPrev = checkAPPrevious(); //Check if Previous Activity is AP

if (!checkAPPrev) { //No AP is found
findTOP (CG) //find contingency assuming precondition is satisfied

Succeeds
 setAPCC(false); //continue forward execution
Fails
 //still under APCC mode

}
 }
 break; //break for Case
AP: //AP is of type org.ap.pml.APType
 If (!APCC && !APRetry && !APRollback) //None of the Recovery mode is on -Default Mode
 ExecuteActivity (APWrapper, getAPRules(APName));

else If (!APRollBack && (APCC || APRetry)) {
If (APRetry && ((APDefined = APName) || (APDefined = null)))
 ExecuteActivity (APWrapper, getAPRules(APName));

 else if (APCC && Reached Outside Layer)
ExecuteActivity (APWrapper, getAPRules(APName));

}
break; //break for Case

Assign: //Assign is of type org.ap.pml.AssignType
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode

ExecuteActivity (AssignWrapper);
 break; //break for Case
Switch: //Switch is of type org.ap.pml.SwitchType

ExecuteActivity (SwitchWrapper);
break; //break for Case

End Case //end of executing activity

Texas Tech University, Rajiv Shrestha, May 2010

43

Figure 15(b). Execution of a Composite Group (Continued)

Cases after Executing/Skipping Activity
error: //Internal Error

findTOP (AG)
Succeeds

setAPCC(false); //continue forward execution
Fails

setAPCC(true);
i = i - 2; //go to previous activity

break;
APCC:

If (!CheckAPPrev) {
If (Activity = AP) && (Reached Outside Layer while Recovering) {

i = i + 1; //Go to Next Activity, i.e. AG/CG
findTOP (AG/CG)

Succeeds
//Continue to Next Activity

Fails
 i = i - 2; //go to previous activity to continue APCC mode

}
else If (Activity = AG/CG) && (Not Reached Outside Layer while Recovering) {

findCOP (AG/CG); // Deep or Shallow compensation for CG
i = i - 2; //go to previous activity to continue APCC mode

 }
else

i = i - 2; //go to previous activity to continue APCC mode

}
else {

 i = i - 2; //go to previous activity to continue APCC mode
 checkAPPrev = false; //reset the variable

}
break;

APRollBack || APRetry:
If (Activity = AG/CG)

 findCOP (AG/CG); //can be Deep or Shallow for CG
i = i - 2; //go to previous activity to continue APRollBack || APRetry mode
break;

Default:
 //continue to forward execution

break; //running on normal mode, i.e. No Recovery mode is on or No error has
occurred

End Case
 }
}

Texas Tech University, Rajiv Shrestha, May 2010

44

procedure.

The contingency and compensation procedures follows the same semantics for

the atomic and composite groups as described in (Xiao and Urban 2007). In this thesis,

we’ve simplified the compensation and contingency procedure as shown in Figure 16

and Figure 17, respectively. The findCompensation procedure will execute the

compensation activity if it is available for a completed atomic or composite group. If

the compensation is not available for the atomic group, it is assumed to be non-critical

and execution continues with compensation of other activities. But if the

compensation is not available for the composite group, then the procedure will look

for nested atomic or composite groups and execute the available compensation activity

in a recursive way. Sometimes the compensation activity might not be executed

successfully for a composite group. In such a case, the recursive procedure will look

for nested atomic or composite group and compensates accordingly. The

findContingency procedure is straightforward, where the contingency activity is

executed if it is available and returns true if successfully completed, otherwise it will

return false. Also, in case of unavailability of a contingency procedure, it will return

false.

Figure 16. Compensation Implementation

void findCompensation(org.ap.pml.ActivityType activityType) {

Cases if activityType is
 AG: //AG is of type org.ap.pml.AGType
 If AG has cop

Execute AG.cop;
 CG: //CG is of type org.ap.pml.CGType
 If CG has cop

Execute CG.cop; //shallow compensation
Suceeds

Continue
 Failure
 For Each subGroup //in reverse order
 findCompensation(AG/CG)
 else
 For Each subGroup //in reverse order
 findCompensation(AG/CG)

 }

Texas Tech University, Rajiv Shrestha, May 2010

45

Figure 17. Contingency Implementation

4.4 AP Wrapper

The APWrapper is the wrapper class that contains the AP logic. The AP

wrapper implements the functionalities of an ap activity with the use of integration

rules. Before executing the ap activity, the rules are initialized based on the AP name

defined in the rule and XML scripts. Figure 18 shows the code for binding an XML

rule file which is similar to the description of Figure 12 for process rule documents.

Figure 18. Code for binding an XML Rule Document

public org.ap.eca.RulesType setRules(File file) {
 org.ap.eca.RulesDocument rulesDoc = null;
 try {
 rulesDoc = org.ap.eca.RulesDocument.Factory.parse(file);
 } catch (XmlException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return rulesDoc.getRules();
 }

boolean findContingency(org.ap.pml.ActivityType activityType) {

Cases if activityType is
 AG: //AG is of type org.ap.pml.AGType
 If AG has top

return Execute AG.top;
 else
 return False;
 CG: //CG is of type org.ap.pml.CGType
 If CG has top

return Execute CG.top;
 else
 return False;

}

Texas Tech University, Rajiv Shrestha, May 2010

46

The ap activity can be executed in two ways:

1) Normal: when the particular AP is reached for the first time, there has been no

error during execution, and none of the recovery actions have been specified.

2) Revisit: when the particular AP has been reached again during the recovery

process, since an error might have occurred or one of the recovery actions has been

specified.

The pseudo code in Figures 19(a) and 19(b) presents the logic of AP execution.

During normal AP execution, the post condition is checked first. If the post-condition

is not violated then the pre-condition is evaluated. Similarly, if the pre-condition is

satisfied, the conditional rules are evaluated. During the course of condition

validation, the AP calls the integrationRule function, where the condition is evaluated

through the evaluateCondition method. This method invokes the operation by calling a

Web service for the corresponding condition as specified in the rule file. If the

condition is not violated then the method returns false, else the method looks for the

action. For the sake of simplicity, we have assumed that the rule file can specify at

most two actions, even though it can be manipulated with more actions as necessary.

The global integer variable countHerebefore, keeps track of whether the process has

reached a certain AP before. If the process execution reaches an AP for the first time,

then the first action is executed. If during RETRY mode the process reaches the same

AP again, the second action is executed. Moreover, there might be chances of calling

APRETRY again for three or more times. In this case, the default APROLLBACK mode is

turned on. The executeAction function is invoked to execute the action to turn on one of

the recovery modes. The action can invoke a procedure through a Web service, which

is accomplished by invokeAction function.

During the revisit of an AP, the revisitAP procedure is called which has

semantics similar to normalAP. The main difference is that it does not have a post-

condition check since we are retrying the process from a certain AP point by looking

through contingencies. Thus we want to check the pre-condition again. Also, when

Texas Tech University, Rajiv Shrestha, May 2010

47

revisiting the AP, a conditional rule is evaluated only if the action has not been

executed the first time through.

Figure 19(a). AP Wrapper Implementation

void execute(org.ap.pml.APType apObjectType, org.ap.eca.RulesType rulesType) {

If (APRetry || APCC)
revisitAP();

 else
 normalAP();
}

void normalAP() {

 if (PostConditionRule Exists)
 integrationRule (PostConditionRuleType) ;
 if (PostCondition does not Exists) || (PostCondition is Satisfied)) {
 if (PreConditionRule Exists)
 integrationRule (PreConditionRuleType)

 if (PreConditionRule does not Exists) || (PreCondition is Satisfied)) {
 if (ConditionalRule Exists)

 for (int i=0; i< eventTypeObj.getCondArray().length; i++) {
 if (condRule(eventTypeObj.getCondArray(i)))
 // Conditional Rule Violated
 }
}

 }
}

void revisitAP() {

 if (PreConditionRule Exists)
 integrationRule (PreConditionRuleType)

 if (PreConditionRule does not Exists) || (PreCondition is Satisfied)) {

 if (ConditionalRule Exists) && (Action for Conditional Rule Not Executed Before) {
 for (int i=0; i< eventTypeObj.getCondArray().length; i++) {

 if (condRule(eventTypeObj.getCondArray(i)))
 // Conditional Rule Violated

 }
 }
 }

}

Texas Tech University, Rajiv Shrestha, May 2010

48

Figure 19(b). AP Wrapper Implementation (Continued)

boolean integrationRule(ecaRuleType) {
boolean executeAction = evaluateCondition(ecaRuleType. getCondition())
if (!executeAction)

return false; //condition is not violated
else {
 if (countHereBefore(APName) = 1) //check if the execution flow has been in this
AP before {
 If (isActionTypeNormal(getActionArray(0)))

executeAction(getActionArray(0).getName(),
getActionArray(0).getTargetAP());

else
 invokeAction(getActionArray(0));

 }
 else if (countHereBefore(APName) = 2) {

 if (second Action Exists) {
 If (isActionTypeNormal(getActionArray(1)))

executeAction(getActionArray(1).getName(),
getActionArray(1).getTargetAP();

else
 invokeAction(getActionArray(1));

 }
 else
 executeAction("APRollback", null);
}
else
 executeAction("APRollback", null);

 return true; //condition is violated
}

}

void executeAction(String action, String targetAP) {
 if (action = APRetry) {
 if ((targetAP = null) || (targetAP.length() <= 0))
 setAPRetry(true);
 else
 setAPRetry(true, targetAP);
 }
 else if (action = APCC)
 setAPCC(true);
 else if (action = APRollback)
 setAPRollback(true);
 }

Texas Tech University, Rajiv Shrestha, May 2010

49

4.5 Sample Scenarios

This section illustrates the semantics of the APRollback, APRetry, and APCC

recovery actions using the generic sample process in Figure 20 as well as the Online

Shopping example in Figure 4. In the following, assume that each AP in Figure 20 has

an IRpre and an IRpost rule. These sample scenarios follow the algorithms presented in

the previous section.

cg0

ag031

cg03.top

cg03

AP2 AP4

ag031.cop

AP1 AP3

cg0.top

ag032

(non-critical)

ag011

cg01.cop

cg01

ag011.cop

ag012

(non-critical)

ag021

cg02

ag021.cop

ag022

ag021.top

ag022.cop

ag04

ag05

(non-critical)
cg02.top

cg02.cop

ag04.cop

Figure 20. Generic Process for Recovery Actions

4.5.1 Recovery Actions for Pre and Post Conditions

Recall that APRollback is used logically to reverse the current state of the

entire process using shallow and deep compensation as described in Section 3.1.

Scenario 1 (APRollback):

Assumption: IRpost condition fails at AP4
Action1 of IRpost at AP4: APRollback
Execution trace: ag04.cop

 ag031.cop

 cg02.cop

 cg01.cop

Since the post-condition fails at AP4 in Figure 20 and the action of IRpost is

APRollback, the process compensates all completed atomic and/or composite groups

as describe in Section 3.1. Here, the process invokes ag04.cop to compensate ag04. The

Texas Tech University, Rajiv Shrestha, May 2010

50

APRollback process will then invoke deep compensation ag031 by invoking ag031.cop

since

1) no shallow compensation for cg03 exists and

2) ag032 is non-critical and therefore has no compensating procedure

 APRollback then invokes shallow compensation cg02.cop, with no specific action to

ag01 since it is non-critical.

APRetry is used to recover to a specific AP and then retry the recovered

atomic and/or composite groups. If the AP has an IRpre, then the pre-condition will be

re-examined. If the pre-condition fails, the action of the rule is executed, which either

invokes an alternate execution path for forward recovery or a recovery procedure for

backward recovery. Otherwise, the relevant section of code is re-executed. By default

APRetry will go to the most recent AP. APRetry can also include a parameter to

indicate the AP that is the target of the recovery process.

Scenario 2 (APRetry-default):

Assumption: IRpost condition fails at AP4
Action1 of IRpost at AP4: APRetry
Execution trace: ag04.cop

 ag031.cop
 IRpre Condition succeeds at AP2

 cg03

 IRpost Condition fails at AP4
ag04.cop

 ag031.cop

 cg02.cop

 cg01.cop

Since the post-condition fails at AP4 in Figure 20 and the action of IRpost is

APRetry, this action compensates to the most recent AP within the same scope by

default. APRetry first invokes ag04.cop to compensate ag04. The process then deep

compensates cg03 by executing ag031.cop. At this point, AP2 is reached and the pre-

condition of IRpre is re-evaluated. If the pre-condition fails, the process executes the

recovery action of IRpre. If the pre-condition is satisfied or if there is no IRpre, then

Texas Tech University, Rajiv Shrestha, May 2010

51

execution will resume again from cg03. In this case, the process will reach AP4 a

second time, where the post-condition is checked once more. If failure occurs for the

second time, the second action defined on the rule is executed rather than the first

action. If a second action is not specified, the default action will be APRollback.

Therefore, the execution process will now be the same as in Scenario 1.

Scenario 3 (APRetry-parameterized):

Assumption: IRpost condition fails at AP4
Action1 of IRpost at AP4: APRetry(AP1)
Execution trace: ag04.cop

 ag031.cop
 cg02.cop

IRpre condition succeeds at AP1

 cg02
cg03

 ag04

 ag05

Now assume that the action of the pre-condition for AP4 is parameterized as

APRetry(AP1), indicating that the retry activity should rollback to AP1. The process will

then compensate the procedure back to the point of AP1 for the retry process, ignoring

all APs in between. Then the execution continues until the end if no error occurs or no

condition is violated.

Scenario 4 (APRetry-Default):

Assumption: IRpost condition fails at AP3
Action1 of IRpost at AP3: APRetry
Execution trace: ag031.cop
 IRpre condition succeeds at AP2

cg03

 ag04

 ag05

Since the post-condition fails at AP3 in Figure 20 and the action of IRpost is

APRetry without parameter, this action compensates to the most recent AP within the

same scope by default. APRetry first invokes ag031.cop to compensate ag031. Now, the

process exits the cg03 group to reach AP2 activity in the parent group cg0 without

Texas Tech University, Rajiv Shrestha, May 2010

52

discovering any previous AP within the same group. Therefore, the process will reach

retry from AP2 where the pre-condition of IRpre is re-evaluated. If the pre-condition

fails, the process executes the recovery action of IRpre. If the pre-condition is satisfied

or if there is no IRpre, then execution will resume again from cg03. In this case, the

process will reach AP3 for a second time, where the post-condition is checked once

more. If failure occurs for the second time, the second action defined on the rule is

executed rather than the first action. If a second action is not specified, the default

action will be APRollback.

The APCascadedContingency process, or APCC, provides a way of searching

for contingent procedures in a nested composition structure, searching backwards

through the hierarchical process structure. When a pre or post condition fails in a

nested composite group, the APCC process will compensate its way to the next outer

layer of the nested structure. If the compensated composite group has a contingent

procedure, it will be executed. Furthermore, if there is an AP with a pre-condition

before the composite group, the pre-condition will be evaluated before executing the

contingency. If the pre-condition fails, the recovery action of IRpre will be executed

instead of executing the contingency. If there is no contingency or if the contingency

fails, the APCC process continues by compensating the current composite group back

to the next outer layer of the nested structure and repeating the process described

above.

Scenario 5 (APCC):

Assumption: IRpost condition fails at AP4
Action1 of IRpost at AP4: APCC
Execution trace: ag04.cop

 ag031.cop
 cg02.cop

 cg01.cop
 cg0.top

Assume that the post-condition fails at AP4 in Figure 20 and that the IRpost

action is APCC. As soon as APCC is invoked, the process starts compensating until it

reaches the parent layer. In this case, the process will reach the beginning of cg0 after

Texas Tech University, Rajiv Shrestha, May 2010

53

compensating the entire process through deep or shallow compensation. Since there is

no AP before cg0, then cg0.top is invoked.

Scenario 6 (APCC):

Assumption: IRpost condition fails at AP3
Action1 of IRpost at AP3: APCC
Execution trace: ag031.cop

IRpre condition succeeds at AP2
cg03.top

Here the post-condition fails at AP3 in Figure 20 and the IRpost action is APCC.

Since AP3 is in cg03, which is nested in cg0, the APCC process will compensate back to

the beginning of cg03, executing ag031.cop. The APCC process finds AP2 with an IRpre

rule for cg03. As a result, the pre-condition will be evaluated before trying the

contingency for cg03. If there is no pre-condition or if the pre-condition is satisfied,

then cg03.top is executed and the process continues. Otherwise, the recovery action of

IRpre for AP2 will be executed. If cg03.top fails then the process will still be under APCC

mode, where the process will keep compensating until it reaches the cg0 layer, where

cg0.top is executed.

4.5.2 Recovery Actions for Execution Errors

When process execution encounters an internal error, the running operation

first tries the most immediate contingency, as defined in Section 3.1. If the

contingency succeeds, the recovery is complete and the execution continues. If the

contingency fails or if there is no immediate contingency, then the execution goes into

APCC mode as described in Section 4.3.

Scenario 6 (Failure at ag031):

Assumption: Internal error at ag031
Execution trace: IRpre condition succeeds at AP2

cg03.top

In Figure 20, as soon as an internal error occurs at ag031, the process looks for

the contingency for this group. Since there is no contingency specified, the process

Texas Tech University, Rajiv Shrestha, May 2010

54

goes into APCC mode where it backward recovers to AP2. The process will evaluate

IRpre before executing the cg03.top (as in Scenario 5).

 Scenario 7 (Online Shopping Example - Failure at ChargeCreditCard):

Returning to the Online Shopping Example of Figure 4, assume the process

fails while executing chargeCreditCard. The process then executes the contingency

ag21.top (eCheckPay). If ag21.top fails, then APCC process begins, during which the

process reaches the orderPlaced AP, where the pre-condition of the AP is re-checked

(rule QuantityCheck in Table 1). If the pre-condition is violated, the action backOrder is

invoked, which means there are not enough goods in stock.

Scenario 8 (Online Shopping Example – Failure at UPShipping):

From Figure 4, assume the process fails on the operation UPSShipping. Since

there is no immediate contingency, the process invokes the APCC process, rolling

back to the CreditCardCharged AP at the outer level. Since there is no pre-condition

defined at the CreditCardCharged AP, the contingency cg3.top (FedexShipping) will be

executed. If cg3.top fails, the process will be still under APCC mode, compensating its

way back to the beginning of the transaction.

4.6 Execution History Generation

The AP data storage layer contains a process runtime information repository.

This section illustrates the storage structure of AP data and parameters along with

other process information, and how this information is entered into the data storage. In

our implementation, we use the db4o object-oriented database (db4objects 2006) to

store the process runtime information as well as AP data. Since process runtime and

AP data information are represented by object relationships, it is better to store them in

an object-oriented way. Moreover, db4o provides easy and efficient access to store

objects. The process execution history consists of the metadata information and the

run-time execution information as shown in Figure 21.

Texas Tech University, Rajiv Shrestha, May 2010

55

The process runtime information repository stores process execution context.

Figure 21 presents the metadata that can be retrieved from existing process definitions.

Also, the figure shows the runtime process instance information. At runtime, a process

-ruleId : int

-apId : int

-ruleType : string

-sTime : Date

-eTime : Date

-reTryParam : string

-action : string

IRule

-apId : int

-apName : string

-parentId : int

-processId : int

-sTime : Date

-eTime : Date

-status : string

AP

0..* 1

1
0..*

-paramId : int

-paramName : string

-apId : int

APParameters

0..*
1

-apName : string

AP

-ruleType : string

-reTryParam : string

-condOp : string

-action : string

IRule

1

1..*

1

0..*

0..*

1

1

1 Condition Check Operation

Alternate Action

-paramName : string

APParameters

1

0..*

1

1

1

1

-gName : string

-runType : int

-parentGroup : string

Group

-gId : int

-parentId : int

-processId : int

-sTime : Date

-eTime : Date

-status : String

Group

-vId : int

-vName : string

-processId : int

-value : Object

-type : string

Variable

-invokeId : int

-parentId : int

-name : String

-sTime : Date

-eTime : Date

-runType : int

-status : string

-portType : string

-operationName : string

Invoke

-pName : string

Process

-processId : string

-pName : string

-sTime : Date

-eTime : Date

-status : string

Process

-vName : string

-type : Object

Message

-operationName : string

Operation

PortType

Metadata

Runtime

*

1

1

*

invoke

1

*

1

*

1

*

1
3

1
0..2 0..2

1

0..*

1

0..2

1

0..2

1

1

0..*

0..*

1

Figure 21: Process Metadata and Runtime Information

Texas Tech University, Rajiv Shrestha, May 2010

56

is instantiated and its execution information such as instances of groups (atomic or

composite), invoke status, variables, APs, and rules are recorded as the runtime

information associated with each process instance. The metadata also describes that a

Web service can provide multiple operations packaged in different Port Types. A

process may invoke multiple operations on different services. A process or an

operation can have an input and/or an output parameter defined through a unique

message type. The AP also has the capability of invoking an operation to evaluate the

rule condition or to invoke the action specified in the rule. The details associated with

each message type can be extracted by querying the WSDL file associated with a Web

service. In addition to these information stored, the history manager also identifies the

process to which an invoke operation or a group belongs and also, the nested group

relationship can be established through their corresponding parent identifier.

The following classes are added to define the history of execution in the

src/org/ap/db4o folder as shown in Table 3:

1. Process(processed, pName, sTime, eTime, status): defines the process history with a

unique indenfier (processId) for each process instance with the name of the

process (pName), the process start time (sTime), end time (eTime), and the process

execution status (status), which can be success or failure.

2. Group(gId, parented, processId, sTime, eTime, status): defines the execution

information for an atomic or a composite group. A group has a unique identifier

(gId), and an identifier to its immediate parent group (parentId). The processId

identifies which process instance it belongs to. Also, the GroupInfo class has the

group start time (sTime), end time (eTime), and its execution status (status).

3. Invoke(invokeId, parented, sTime, eTime, status, operationName, portType, runType):

defines the invoke activity history. Each invoke activity has a unique attribute

called invokeId with name of invoke (name), start time (sTime), end time (eTime),

and execution status. A group identifier (parentId) is used to identify the atomic

group that calls the operation. Moreover, the operationName and portType of the

Texas Tech University, Rajiv Shrestha, May 2010

57

service on which the invocation is called are also stored and these attributes map

to an Operation and PortType classes in the metadata. For any operation, the

runType attribute can be original for the original primary operation, or

compensation for primary operation’s compensation plan, or contingency for

primary operation’s contingency plan, or conditionCheck for condition

evaluation of an integration rule, or alternateAction for invoking an alternate

action which can be defined in an integration rule

4. Variable(vId, vName, processId, value, type): defines the history of process variables

that consists of process parameters, invocation, or AP input/output parameters. A

process, an invoke activity, and an AP can contain variables. Thus the variable

information is included in the execution history. In the VariableInfo class definition,

its instance can have a primary key (vId) and a variable name (vName), its value

which is stored as a Java object and the type (input or output) are included. This

variable can be associated with an invoke activity as either an input variable or an

output variable. Also the variable can be associated with AP parameters. The

message type associated with this Variable class instance can be found through the

metadata associated with the corresponding APParameters or Invoke instance.

5. AP(apId, apName, parentId, sTime, eTime, status): stores the runtime AP information

which is uniquely identified by apId. Also the name of the AP (apName), start

time (sTime) and end time (eTime) are stored for each AP. The parent group

identifier (parentId) is also stored. The status of AP indicates whether the AP is run

as normal or as revisit as described in Section 4.4. Each APInfo instance will have a

APParameters instance which stores the variable information used by AP.

6. APParameters(paramId, paramName, apId): stores the AP parameters for each AP.

The paramId unique identifies each AP parameter with its parameter name

(paramName) and its APs identifier (apId). Each APInfo instance can be associated

multiple number of APParameters class since each AP can have several parameters

where each parameter are associated with message type.

Texas Tech University, Rajiv Shrestha, May 2010

58

7. IRule(ruleId, apId, ruleType, sTime, eTime, retryParam, action): stores the integration

rules information for each AP if available. Each rule is uniquely identified by

ruleId and the ruleType can be one of the integration rule IRpre, IRpost, or IRcond which

corresponds to AP by apId. Also the rule information contains the start time

(sTime) and end time (eTIme), and the action specified by the rule which can be

one of the recovery actions: APRollback, APRetry, or APCC. These rules also have

capability to invoke a Web service for the condition evaluation as well as to

invoke an action other than recovery actions.

In addition to above classes, the following classes were added for the ease of

accessibility to db4o database:

 Util: stores the static variables such as db4o file name and location, execution

status. Also it has the operations that can get the list of results from the database.

 DB4oAccess: used for setting up database and accessing the database with

operations such as openDB(), getDB(), commitDB(), and accessDb4o().

4.7 Summary

This chapter has provided a comprehensive view of a prototype design and

architecture of an AP Model with integration rules to extend an existing service

composition and recovery model. This extended model has provided a way to specify

APs in the workflow and incorporate these APs with integration rules defined in a

different XML file. Also, in addition to compensation and contingency plan utilization,

we have presented three recovery modes during process recovery: APRollback,

APRetry, and APCC. Incorporating these new features, the service composition and

recovery model is much more flexible by invoking different recovery actions during

situations such as internal errors or during violation of pre, post, or conditional rules.

This research has prototyped the initial version of the AP model.

Texas Tech University, Rajiv Shrestha, May 2010

59

CHAPTER V

EVALUATION OF ASSURANCE POINTS

This section presents an evaluation of the AP concept developed as part of this

research. The evaluation compares APs, integration rules, and recovery algorithms

with other recovery mechanisms and semantics. Our goal is to demonstrate that

recovery approach of the AP model can be used to improve existing workflow

languages such as in BPEL with better flexibility and modularity.

This chapter is organized as follows. Section 5.1 gives the comparison analysis

with the recovery semantics provided in BPEL. Section 5.2 compares APs with fault-

tolerant capabilities in Aspect-Oriented Workflows. Section 5.3 compares the AP

logic with workflows that implement checkpointing concepts for recovery. The

chapter concludes in Section 5.4 with a summary of the evaluation.

5.1 Comparison to BPEL

WS-BPEL 2.0 is the standard for orchestrating Web service composition. As

described in Section 2.1.1, BPEL uses fault, compensation, and termination handlers

to guarantee transactional integrity during LRTs. Moreover, Section 2.1.2 highlighted

several shortcomings of BPEL with respect to recovery issues. Unlike BPEL, the AP

logic allows designers to have a clear notion of how the recovery actions can take

place and at the same time provide flexibility with the option of different recovery

actions depending upon the status of execution and integration rules. Additional

considerations arise during concurrent execution of activities. The flow construct in

BPEL allows the process to execute activities in parallel. In BPEL, if one of the

branches is faulted, then the compensation policy for concurrent processes forces all

branches to compensate at the same time. If a control link is specified, then all

available compensation handlers are run for immediately enclosed scopes in the

reverse order. Recall that a scope in BPEL is a set of activities that is grouped

together, which is comparable to a composite group in the AP model. However, for

parallel scopes the compensation takes place in arbitrary order. Moreover, the

Texas Tech University, Rajiv Shrestha, May 2010

60

termination handler is run before the compensation handler to terminate all the

activities in the running scope.

Even though the initial AP model implementation does not support concurrent

execution within a process, this section outlines AP compatibility with concurrent

execution with a comparison to BPEL’s recovery semantics. Section 5.1.1 summarizes

relevant issues for BPEL’s recovery semantics. Section 5.1.2 provides a comparison of

our recovery model concept with the recovery semantics used in BPEL. Section 5.1.3

discusses how the AP model can support faults during concurrent execution and also

compares our approach with the way BPEL handles such concurrent issues.

5.1.1 Problems in BPEL

In BPEL, when a fault occurs, the fault handler attached to a scope catches the

fault. The aim of the fault handler is to continue the process execution, which might

require undoing certain actions already completed in the current scope. Since the

compensation handler defines the semantics of undoing such changes, the fault

handler may start the compensation handler (Khalaf, Roller, and Leymann 2009).

Similar to our approach of deep or shallow compensation in service composition and

recovery model (see Section 3.1), the compensate activity does the compensation of the

completed activities in the nested scopes, whereas, the compensateScope activity

causes compensation of one single completed scope. If any of the handlers are not

specified, then the default handler is assigned to each scope. Default compensation

invokes the installed compensation handlers for all the inner scopes. When the default

compensation is applied to a scope, the compensation handlers are executed in reverse

order of completion of the scopes.

The work in (Khalaf, Roller, and Leymann 2009) highlights the two main

problems with the fault and compensation mechanism in the current BPEL standard:

1) compensation order can violate control link dependencies if control links cross the

scope boundaries, 2) high complexity of default compensation order due to default

handler behavior. Figure 22 shows a modified version of a figure from (Khalaf,

Texas Tech University, Rajiv Shrestha, May 2010

61

Roller, and Leymann 2009) which illustrates the fault and compensation mechanisms

of BPEL. This figure is used below to illustrate BPEL anomalies.

Figure 22: Compensation Sequence Demonstration

(Khalaf, Roller, and Leymann 2009)

The outer scope G in Figure 22 is still running with its fault and termination

handlers active. Inside scope G are scopes F and D, where F is still running with fault

and termination handlers active. Scope D is already completed and therefore, the

compensation handler is active. Scope F has two scopes, A and B, which are both

completed with its compensation handlers active. Scope F also has a non-scope

activity C which is still running. The arrows (solid and dashed) in Figure 22 show

control links between activities. In BPEL, a control link specifies that a target activity

must not start until the source activity is completed. In Figure 22, the solid arrow

represents control links between peer scopes within the same scope F. The dashed line

represents a control link among non-peer scopes.

D

F TC

F TC

F TC

A

F TC

B

F TC

E

I C
F

G

Key:

F – Fault handler (Shaded if Activated)

C – Compensation handler (Shaded if Activated)

T – Termination handler (Shaded if Activated)

Shaded Box – Completed Scope

Black Circle – Faulted Non-scope activity

Dotted Line – Added features

Texas Tech University, Rajiv Shrestha, May 2010

62

Assume a fault occurs at activity E. The termination handler of scope G aborts

all the running non-scope activities, such as activity I. BPEL will deactivate the fault

handler of scope F and activate the termination handler which tries to terminate the

running activities inside the scope F. Therefore, non-scope activity C is terminated.

Since there is control link between the completed scope A and B, the compensation

order honors the control link and B is compensated before A. If scope A and B were

still running, the termination handler of either A or B can be invoked first.

Consider the control link that exists between scope B and D (shown by the

dashed arrow), where scope D is outside of the parent scope of scope B. In this case,

BPEL compensation takes place from scope B to A to D. This order violates the

reverse control dependencies where the completed scope D should be compensated

before the completed scope B does. Therefore, a wrong compensation sequence is

followed. This simple example demonstrates the confusion that can be caused by lack

of consistent and clear semantics regarding BPEL fault handling capability. Moreover,

the research in (Khalaf, Roller, and Leymann 2009) explains how the default

compensation order leads to complication in the compensation process due to what is

called the zigzag behavior of compensation. Zigzag behavior is caused by the way

scopes get compensated at different nesting levels with no clear direction of

compensation order. To support the solution to these problems, (Khalaf, Roller, and

Leymann 2009) offers way of calculating the compensation order graph by eliminating

the default handlers and still honoring the control links.

Interested readers are advised to go through the (Khalaf, Roller, and Leymann

2009), (Coleman 2005), (Koenig 2006) for details of BPEL’s limitations and issues in

fault, compensation, and termination handler.

5.1.2 Comparison Criteria

This section provides a comparison between the AP model and BPEL’s

recovery semantics. Table 4 shows the comparison between BPEL and AP’s recovery

semantics with respect to the criteria below:

Texas Tech University, Rajiv Shrestha, May 2010

63

Criteria 1 (Control Link Support): BPEL honors the control link during compensation

of peer scopes as shown in Figure 22 with the control link between scope A and scope

B. But sometimes the notion of control link reversal during compensation procedure is

violated when the control link is present between non-peer scopes (Khalaf, Roller, and

Leymann 2009); i.e., when an activity in one flow is dependent on an activity in

another flow, such as in Figure 22 (control link between scope B and scope D). Like

BPEL, the AP recovery model allows both deep and shallow compensation, where

deep compensation is executed by default if shallow compensation is not present (see

Section 3.1). The AP model also honors the control links between peer-scopes. Unlike

BPEL, the order of compensation is clear since the AP approach does not support

control links between non-peer scopes, making the semantics of compensation in the

AP approach unambiguous, without any surprises in the compensation order as in

BPEL. In addition, the AP model supports a hierarchical structure during

compensation as promoted in (Khalaf, Roller, and Leymann 2009).

Criteria 2 (Compensation for Constraint Violations): In general, the notion of

compensation should also be capable of handling constraint violations (Coleman

2005). Since BPEL’s compensation handling mechanism through the <compensate>

activity can only be called inside a fault handler, this limits the ability to call

compensation outside a fault handling. Thus, a fault has to occur to invoke a

compensation procedure. In the case of AP model, compensation can be invoked

during normal execution (no error has yet occurred) when integration rules are not

satisfied. This allows a flexible way to recover the process through compensation in

response to constraint violations.

Criteria 3 (Behavior of Recovery Procedures): In BPEL, the designer is responsible for

handling complex fault handling logic and, in addition, BPEL’s default compensation

procedure increases the potential for unexpected errors as described in Criteria 1,

causing confusion about the flow of BPEL compensation order. The AP concept

provides well-defined recovery actions with hierarchical structure. When an execution

error occurs, a process goes into APCC mode as described in Section 4.3. Also when a

Texas Tech University, Rajiv Shrestha, May 2010

64

process reaches an AP, an integration rule can trigger any of the recovery actions

where the semantics of the recovery actions are clearly defined and the designer is

involved in defining how and when to apply different recovery actions.

Criteria 4 (Contingency Procedure): Currently, BPEL currently does not explicitly

support contingency other than through fault, exception, and termination handlers. A

fault handler can be used for forward recovery. In contrast, our recovery strategy

encourages the use of contingency activities so that forward recovery is possible rather

than always rolling back. The contingency procedure increases the possibilities of

recovering the process through alternate procedures and thus, saves time and resources

that may be wasted through compensation as a rollback procedure.

Criteria 5 (Rules Support): The integration of rules with workflow languages helps to

modularize the process execution engine. BPEL does not provide any such rule

mechanisms for the specification of constraints, thus every time the business logic

changes, the designer has to change the logic of the workflow. In the AP approach,

rules that are associated with execution correctness are specified separate from the

main logic and integrated into the workflow engine through AP’s. Thus, when

business logic changes, we can change the rule definition files without significant

changes to the main process flow. APs therefore provide a more modular approach to

the specification of execution constraints.

Table 4. Comparison of Recovery Semantics (BPEL VS. AP)

No. Comparison Criteria BPEL AP

1
Support for Control Links between

Non-Peer Scopes
Yes No

2 Compensation for Constraint violations No Yes

3 Behavior of Recovery procedures Zigzag Hierarchical

4 Explicit contingency procedure No Yes

5 Rules support No Yes

Texas Tech University, Rajiv Shrestha, May 2010

65

In addition to the comparison in Table 4, the ability to access the process

execution state is an important feature required for triggering appropriate recovery

procedures. The compensation handler in the older version of BPEL did not have

access directly to the current status of the process (Coleman 2005), BPEL 2.0 version

does provide such a feature (Khalaf, Roller, and Leymann 2009). The AP model also

provides access to the state of the current process. In BPEL, however, compensation is

based on the notion of a scope, which allows the scope to compensate as a whole. The

compensation notion in the AP model is similar to BPEL during APCC mode, where it

rolls back the scope as a whole. But during APRetry mode, the process may reach an

AP within same scope during compensation. As a result, compensation in the AP

model can be based on AP markers in addition to scope boundaries.

5.1.3 Concurrent Issues for Assurance Points

The AP model can be extended to support parallel execution with a fork

construct, such as in the flow activity of BPEL. In this section, we will illustrate

different situations for the integration of APs with the parallel activities using the

diagram in Figure 23. Extending the AP model with parallel activities is a direction for

future work.

 Figure 23 shows a process that starts with cg0 as the top-most process. The

process starts with atomic activity ag01 and then reaches AP1. After successfully

checking the constraints through AP1, the flow activity is reached where cg02 and cg03

are executed simultaneously. As the execution goes through these parallel activities,

there are chances that an error can occur or that integration rule conditions can be

violated. In this case, it is desirable to handle the error in the faulted group through

forward recovery, while the other parallel groups continue to execute. But there will

be situations where the faulted group cannot be recovered and in such a case we might

have to rollback through terminating the running parallel activity and compensating

the completed activities.

Texas Tech University, Rajiv Shrestha, May 2010

66

cg0

ag031

cg03.top

cg03

AP3

ag031.cop

AP1

AP2

cg0.top

ag032

(non-critical)

ag01

ag01.cop

ag021

cg02

ag021.cop

ag022

ag021.top

ag022.cop

ag04

cg02.top

cg02.cop

ag04.cop

Figure 23. Sample Process

Below are the list of situations described for how AP recovery action can be

extended to concurrent execution:

Internal error: As soon as an internal error occurs in one of the parallel activities, the

group goes under APCC recovery mode while the other activity might be still running

or completed. The faulted group initially tries to recover through the contingency

procedures. If the forward recovery is unsuccessful, then the process has to recover

back to a previous activity which might be beyond the flow construct. At that time, the

other parallel activity is also rolled back to the same previous activity. For example

assume that an internal error occurs at ag031 in Figure 23. As soon as the error occurs at

ag031, the process goes under APCC mode since there is no contingency. The APCC

semantics is followed so that the forward recovery is possible for cg03 through cg03.top.

If cg03.top succeeds, then the process continues as if nothing has happened. Otherwise,

the other parallel activity running inside cg02 is terminated and cg02 rolls back through

Texas Tech University, Rajiv Shrestha, May 2010

67

compensation until it reaches AP1. Now, IRpre condition at AP1 is checked and the

process either continues or recovers as defined in the AP.

Violation of Rule Condition: There are chances of violating the rule conditions at an

AP during the execution of parallel activities, such as in AP2 of Figure 23. In such a

case, the recovery depends upon the recovery actions. If the action defined is:

 APRollback: The process stops executing all parallel activities and each composite

group backward recovers all the way up to the top-most group through

compensation.

 APRetry: The group cg03 looks for a previous or specified AP in the same scope. If

one is found, the retry activity proceeds without any affect on the parallel group.

Since no other AP defined before AP2 within its scope, the process keeps rolling

back to its parent scope until an AP in the parent scope is encountered. The

semantics are similar to the case described in Section 4.5. But if during recovery

the process reaches an AP outside the flow activity, parallel activities are

terminated and compensated back to the same AP. The whole process is now

under APRetry mode. One way to make APRetry semantics unambiguous for

designer is by providing a list of options to choose APRetry parameter as AP

identifier.

 APCC: the semantic is similar as described above for internal error where the

faulted group looks for contingency until it reaches the activity before flow

construct.

5.2 Comparison to Aspect-Oriented Workflows

Section 2.4 in related work has briefly described the aspect-oriented

programming (AOP) concept. The aspect notion can be used by workflows languages

in order to modularize the process specification with respect to crosscutting concerns

which are the functions that affect the entire workflow and thus should be centralized

into one location. The examples of crosscutting concerns are exception management,

business rules, logging, authentication, and persistence. Typically, the code for these

Texas Tech University, Rajiv Shrestha, May 2010

68

concerns is scattered all over the system and requires expensive code management

when changes are necessary. Therefore AOP provides a more modularized

implementation with clear separation of the core concerns and the cross cutting

concerns (Domokos and Majzik 2007). In (Charfi and Mezini 2007), the idea of AOP

was implemented in BPEL to create an aspect-oriented extension to BPEL

(AO4BPEL). A separate XML file defines the aspect activities with pointcut and

advice declarations.

Similar to the idea of integrating aspects into BPEL in AO4BPEL, the AP

model also has a separate XML rule file for checking constraints. Our approach is

more focused on the integration of the checkpointing concept with integration rules to

support recovery actions. AOP has not yet focused on recovery issues. Also, even with

the advantages of AOP, most programming languages haven’t really evolved in the

aspect-oriented direction (Manolescu 2002). Future research should investigate the

integration of the AP approach with AOP concepts to support recovery activity.

5.3 Comparison to Workflows using the Checkpointing Concept

Section 2.2 of the related work section discussed the checkpointing concept.

Most checkpointing techniques are concepts used for storing states, rolling back to a

previous state as in (Luo 2000), and mobilizing orchestrated services for portability in

the system as in (Marzouk et al., 2009). The AP model supports the traditional

checkpointing concept through storing states of a process and rolling back, but

enhances checkpointing capabilities by providing more flexible recovery mechanisms

through constraint checking using integration rules and implementing different types

of recovery actions. Therefore, our work differs from previous research work done in

checkpointing mainly due to the fact that the APs and integration rules defined will

also have access to the information collected during processing, thus enabling the

system to make more prudent decisions for the next processing action. Moreover, the

main goal of this work is to improve fault handling and constraint checking through

APs, integration rules, and recovery actions rather than to improve the portability of

the system.

Texas Tech University, Rajiv Shrestha, May 2010

69

CHAPTER VI

SUMMARY AND FUTURE RESEARCH

The research in this thesis has defined the concept of assurance points and

illustrated how assurance points can be used together with integration rules and

recovery actions to 1) provide a way of expressing user-defined constraints for process

execution and 2) provide greater flexibility for use of forward and backward recovery

options when constraints are not satisfied or execution fails. This is especially

important considering that concurrent processes often execute with relaxed isolation

assumptions between the service executions of a process. Assurance points enhance

traditional work with checkpointing, providing logical points for backward recovery

with semantics that increase the potential for forward recovery by rechecking pre-

conditions, retrying services, and looking for contingencies. Planning for failure and

recovery should be an important part of every process specification. The assurance

point, integration rule, and recovery option functionality demonstrated in this thesis

provides a more flexible way to address failure and recovery issues.

There are several directions for future work. One direction involves the

integration of the AP concept into a BPEL processor, with performance studies to

address the overhead associated with the AP functionality. Another direction involves

formalization of the assurance point concept with Petri net and model checking.

Methodological issues for the specification of APs, integration rules, and recovery

procedures should also be addressed in the context of more extensive application

scenarios. In addition, external events that are interruptions from the external

application environment can be integrated into the AP model to provide more dynamic

event handling capabilities. While the research mainly focused on the AP and

integration rule language syntax design and incorporation of recovery actions, there

are several other situations that need to be considered to fully integrate the AP model

with the DeltaGrid environment, such as concurrent execution within a group and Grid

Services support.

Texas Tech University, Rajiv Shrestha, May 2010

70

Another research direction involves the integration of invariant conditions with

the use of assurance points. In the context of the AP model, an invariant is a data

condition that must be true from one AP to another when data cannot be locked over

across several service invocations. Techniques can be developed to monitor data

changes and to inform a process with invariant conditions are violated. The strength of

the invariant technique is that it provides a way to monitor data consistency in an

environment where the coordinated locking of data items across multiple service

executions is not possible, thus providing better support for reliability and

maintenance of user-defined correctness conditions among concurrent processes.

Future research should also investigate the integration of the assurance point concept

with current work on decentralized data dependency analysis (Urban, Ziao, and Le

2009) in Process Execution Agents (PEXAs), where PEXAs communicate about data

dependencies so that when one process fails and recovers, other data dependent

processes can be notified of potential data inconsistencies. The AP concept can be

used to enhance decentralized PEXAs with greater flexibility for process recovery

options.

Texas Tech University, Rajiv Shrestha, May 2010

71

REFERENCES

Bailey, J., F. Bry, M. Eckert, and P. L. Patranjan. (2005). Flavours of XChange, A

Rule-based Reactive Language for the (Semantic) Web. In Proc. Intl. Conf. on

Rules and Rule Markup Languages for the Semantic Web, Springer.

Baresi, L., Ghezzi, C., and Guinea, S. (2004). Towards Self-Healing Service

Compositions. Proceedings of the First Conference on the Principles of

Software Engineering, 11-20.

Baresi, L. and S. Guinea. (2005). Towards Dynamic Monitoring of WS-BPEL

processes. Proceedings of the 3rd International Conference on Service

Oriented Computing (ICSOC2005), Springer, Amsterdam.

Baresi, L., Guinea, S., and Pasquale, L. (2007). Self-Healing BPEL Processes with

Dynamo and the JBoss Rule Engine. International workshop on Engineering

of software services for pervasive environments: in conjunction with the 6th

ESEC/FSE joint meeting, 11-20.

Breugel, F. V., and Koshkina, M. (2006). Models and Verication of BPEL.

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf (September 2006).

Brambilla, M., Ceri, S., Comai, S., and Tziviskou, C. (2005). Exception handling in

Workflow-Driven Web Applications. Proceedings of the 14th international

conference on World Wide Web, 170-179.

Bry, F., Eckert, M., Patranjan, P., and Romanenko, I. (2006). Realizing Business

Processes with ECA Rules: Benefits, Challenges, Limits. In Proc. Int.

Workshop on Principles and Practice of Semantic Web, Springer.

Chan, K. S. M., Bishop, J., Steyn, J., Baresi, L., and Guinea, S. (2006). A Fault

Taxonomy for Web Service Composition. In Proceedings of The Workshop on

Engineering Service-Oriented Applications: Analysis, Design and Composition

(WESOA’ 2007), Vienna, Austria.

Charfi, A. and Mezini, M. (2006). Aspect-Oriented Workflow Languages. In CoopIS

2006 Proceedings.

Charfi, A. and Mezini, M. (2007). AO4BPEL: An Aspect-Oriented Extension to

BPEL. World Wide Web Journal, 10, no. 3: 309-344.

Coleman, J. (2005). Examining BPEL’s Compensation Construct. In: Workshop on

Rigorous Engineering of Fault-Tolerant Systems, REFT.

db4objects, Inc. (2006). Db4objects. Website: http://www.db4o.com.

Texas Tech University, Rajiv Shrestha, May 2010

72

Desel, J. (2005). Process Modeling using Petri Nets. Process-Aware Information

Systems: Bridging People and Software through Process Technology: 147-177.

Dialani, V., Miles, S., Moreau, L., De Roure, D., and Luck, M. 2002. Transparent

Fault Tolerance for Web Services based Architectures. Proceedings of the 8th

International Euro-Par Conference on Parallel Processing (August 27-30,

2002),889-898.

Domokos, P. and Majzik, I. 2007. Aspect-Oriented Modelling and Analysis of

Information Systems. Periodica Polytechnica, Electrical Engineering 51, no.

1-2: 21-31.

Eder, J. and Liebhart, W. 1996. Workflow recovery. Proceedings of the First IFCIS

International Conference on Cooperative Information Systems. 124-134.

Eisentraut, C. and Spieler, D. 2008. Fault, Compensation and Termination in WS-

BPEL 2.0 - A Comparative Analysis. Web Services and Formal Methods: 5th

International Workshop (September 4-5, 2008), Milan, Italy, 107-126.

Engels, G., Förster, A., Heckel, R., and Thöne, S. 2005. Process Modeling using

UML. Process-aware Information Systems: Bridging People and Software

through Process Technology. Hoboken, New Jersey, Wiley, 85-117.

Ezenwoye, O. and Sadjadi, S. 2006(a). Composing Aggregate Web Services in BPEL.

Proceedings of the 44th annual Southeast regional conference. 458-463.

Ezenwoye, O. and Sadjadi, S. 2006(b). Enabling robustness in existing bpel

processes. In Proceedings of the 8th International Conference on Enterprise

Information Systems., 95-102.

Fischer, J., Majumdar, R., and Sorrentino, F. 2008. The consistency of web

conversations, Proceedings of the 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, 415-418.

Friese, T., Muller, J., and Freisleben, B. 2005. Self-Healing Execution of Business

Processes based on a Peer-to-Peer Service Architecture. In Proceedings of the

18th Int. Conf. on Architecture of Computing Systems (ARCS ’05), 108–123.

Fu, X., Bultan, T., and Su, J. 2004. WSAT: A Tool for Formal Analysis of Web

Services. In Proc. 16th Int. Conf. on Computer Aided Verification, 3114: 510-

514.

Gannod, G. C., Burge, J., and Urban, S. 2007. Issues in the Design of Flexible and

Dynamic Service-Oriented Systems, Proceedings of the International

Texas Tech University, Rajiv Shrestha, May 2010

73

Workshop on Systems Development in SOA Environments, Minneapolis,

Minnesota.

Greenfield, P., Fekete, A., Jang, J., and Kuo, D. 2003. Compensation is not Enough. In

7th Int. Conf. on Enterprise Distributed Object Computing, 232.

Holzmann, G. J. 2004. The Spin Model Checker: Primer and reference manual:

Addison-Wesley Professional.

Jang, J., Fekete, A., and Greenfield, P. 2007. Delivering Promises for Web Services

Applications. IEEE International Conference on Web Services, 599-606.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., et al. (2007).

Web services Business Process Execution Language version 2.0. OASIS

Standard, 11.

Jin, Y. 2004. An architecture and execution environment for component integration

rules: Ph.d Dissertation, Arizona State University, Department of Computer

Science and Engineering.

Kamath, M. and Ramamritham, K. 1998. Failure handling and coordinated execution

of concurrent workflows, Proceedings of the Fourteenth International

Conference on Data Engineering, 334-341.

Khalaf, R., Roller, D., and Leymann, F. 2009. Revisiting the behavior of Fault and

Compensation handlers in WS-BPEL, In Proceedings of the Confederated

international Conferences, Coopis, Doa, Is, and ODBASE 2009 on on the

Move To Meaningful internet Systems: Part I, 286-303.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.

2001. An Overview of AspectJ. In Proceedings of the 15th European

Conference on Object-Oriented Programming, 327-353.

Koenig, Dieter. 2006. R26: Default Compensation Order Conflict. http://www.oasis-

open.org/committees/download.php/21303/WS_BPEL_review_issues_list.htm

l.

Kovács, M., D. Varró, and L. Gönczy. 2007. Formal modeling of BPEL workflows

including fault and compensation handling, In Proceedings of the 2007

Workshop on Engineering Fault Tolerant Systems, 1.

Kuhne, S., Kern, H., Gruhn, V., and Laue, R. 2008. Business process modelling with

continuous validatio, 1st International Workshop on Model-Driven

Engineering, 37.

Texas Tech University, Rajiv Shrestha, May 2010

74

Lao, Ning. (2005). The extended GRIDPML design and implementation, Masters

Report, Arizona State University, Department of Computer Science and

Engineering.

Lee, P. A., Anderson, T., Laprie, J. C., Avizienis, A., and Kopetz, H. (1990). Fault

tolerance: Principles and practice: Springer-Verlag New York, Inc. Secaucus,

NJ, USA.

Liu, A., Li, Q., Huang, L., and Xiao, M. (2007). A declarative approach to enhancing

the reliability of bpel processes, In Proceedings of International Conference

on Web Services, 272-279.

Luo, Z., Sheth, A., Kochut, K., and Miller, J. (2000). Exception handling in workflow

systems. Applied Intelligence 13, no. 2: 125-147.

Luo, Z. W. 2000. Checkpointing for workflow recovery, In Proceedings of the 38th

Annual on Southeast Regional Conference, 79-80.

Ma, H., Urban, S. D., Xiao, Y., and Dietrich, S. W. (2005). Gridpml: A process

modeling language and history capture system for grid service composition,

Proceedings of the International Conference on e-Business Engineering,

Beijing, China, 433-440.

Manolescu, D. A. 2002. Workflow enactment with continuation and future objects, In

Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, Seattle, Washington,

40-51.

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,

D., Parsia, B., Payne, T., Sabou, M., and Solanki, M. 2005. Bringing

Semantics to Web Services: The OWL-S approach. In Proceedings of the 1st

International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC), 3387: 26-42.

Marzouk, S., Maalej, A. J., Rodriguez, I. B., and Jmaiel, M. 2009. Periodic

checkpointing for strong mobility of orchestrated web services, In Proceedings

of the 2009 Congress on Services - I (July 06 - 10, 2009), 203-210.

Michelson, B. M. 2006. Event-driven architecture overview. Patricia Seybold Group.

Mikalsen, T., Tai, S., and Rouvellou, I.. 2002. Transactional attitudes: Reliable

composition of autonomous web services, In Proceedings of the Workshop on

Dependable Middleware-based Systems.

Texas Tech University, Rajiv Shrestha, May 2010

75

Modafferi, S. and Conforti, E. 2006. Methods for enabling recovery actions in ws-

bpel, In Proc. of Int. Conf. on Cooperative Information Systems (CoopIS),

Montpellier, France, 4275: 219.

Modafferi, S., Mussi, E., and Pernici, B. 2006. SH-BPEL: A self-healing plug-in for

ws-bpel engine, In Proceedings of the 1st Workshop on Middleware For

Service Oriented Computing (MW4SOC 2006),48-53.

Pagen, F. G. 1981. Formal specifications of programming language: A panoramic

primer: Prentice Hall PTR Upper Saddle River, NJ.

Papazoglou, M. P. and Heuvel, W. J. van den. 2007. Service oriented architectures:

Approaches, technologies and research issues. The International Journal on

Very Large Data Bases 16, no. 3: 389-415.

Paton, N. W. and Díaz, O. 1999. Active database systems. ACM Computing Surveys

31, no. 1.

Rouached, M., Perrin, O., and Godart, C. 2006. Towards formal verification of web

service composition. Lecture Notes in Computer Science, In Forth

International Conference on Business Process Management, 4102: 257.

Sangiorgi, D. and Walker, D. 2001. The Pi-calculus: A theory of mobile processes.

Cambridge University Press.

Scheer, A. W., Thomas, O., and Adam, O. 2005. Process modeling using event-driven

process chains. Process-aware Information Systems: Bridging People and

Software through Process Technology. Hoboken, New Jersey: Wiley: 119-145.

Tan, W., Fong, L., and Bobroff, N. 2007. BPEL4JOB: A fault-handling design for job

flow management, Proceedings of the 5th international conference on Service-

Oriented Computing, 4749: 27-42.

Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli,

P., and Traverso, P. 2005. Astro: Supporting composition and execution of

web services. Lecture notes in computer science, In Service Oriented

Computing -- ICSOC 2005, Third International Conference, Amsterdam, The

Netherlands (December 12-15, 2005), Springer, 3826: 495.

Urban, S. D., Dietrich, S. W., Na, Y., Jin, Y., Sundermier A.,, and Saxena, A. 2001.

The irules project: Using active rules for the integration of distributed software

components. Proceedings of the 9th IFIP Working Conference on Database

Semantics: Semantic Issues in E-Commerce Systems:265-286.

Texas Tech University, Rajiv Shrestha, May 2010

76

Urban, S. D., Liu, Z., Gao, L. (2009). Decentralized data dependency analysis for

concurrent process execution. Proceedings of the IEEE EDOC Workshops:

MIddleware for Web Services, Auckland, New Zealand, 74-83.

Vaculín, R., Wiesner, K., and Sycara, K. (2008). Exception handling and recovery of

semantic web services, In Proceedings of the Fourth international Conference

on Networking and Services (March 16 - 21, 2008), 217-222.

Wang, M. X., Bandara, K. Y., and Pahl, C. (2009). Constraint integration and

violation handling for bpel processes, In Proceedings of the 2009 Fourth

international Conference on internet and Web Applications and Services (May

24-28, 2009), 337-342.

White, S. A. (2004). Business process modeling notation (BPMN). URL: http://www.

bpmi. org/bpmi-downloads/BPMN-V1. 0. pdf.

Wiesner, K., Vaculin, R., Kollingbaum, M., and Sycara, K. (2008). Recovery

mechanisms for semantic web services, In 8th IFIP WG 6.1 International

Conference, DAIS 2008 Distributed Applications and Interoperable Systems,

Oslo, Norway, 5053: 100-105.

Wächter, H., and Reuter, A. (1992). The contract model. Database transaction models

for advanced applications 7,. 4: 219-263.

Xiao, Y., and S. D. Urban. (2008). Process dependencies and process interference

rules for analyzing the impact of failure in a service composition environment,

Journal of Information Science and Tec Appendix I2), 21-45.

Xiao, Y., & Urban, S. D. (2009). The DeltaGrid Service Composition and Recovery

Model. International Journal of Web Services Research, 6(3), 35-66.

Xiao, Y., & Urban, S. D. (2008a). Using Data Dependencies to Support the Recovery

of Concurrent Processes in a Service Composition Environment, Proceedings

of the International Conference on Cooperative Informatio Systems,

Monterrey, Mexico, 139-156.

Xmlbean Ant Task. Website: http://xmlbeans.apache.org/docs/2.0.0/guide/

antXmlbean.html.

XMLBeans. Apache XMLBeans. 2005. Website: http://xmlbeans.apache.org.

Texas Tech University, Rajiv Shrestha, May 2010

77

APPENDIX I

XML SCHEMA DEFINITION FOR PML WITH ASSURANCE POINTS

<?xml version="1.0" encoding="utf-8" ?>

<!--

 ** AP XML Schema Definition **

 -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:ipml="http://ap.org/pml/" targetNamespace="http://ap.org/pml/" elementFormDefault="qualified">
 <annotation>

 <documentation>This is the XML Schema definition for the AP</documentation>

 </annotation>
 <import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="http://schemas.xmlsoap.org/wsdl/"/>

 <element name="process" type="ipml:ProcessType"/>

 <!--
 ==============================

 = Process

 ==============================
 -->

 <complexType name="ProcessType">

 <sequence>
 <!--<element name="processParams" type="ipml:processParamsType" minOccurs="0" maxOccurs="1"/>

 <element name="serviceProvider" type="ipml:ServiceProviderType"
 minOccurs="1" maxOccurs="unbounded"/>-->

 <element name="variables" type="ipml:VariablesType" minOccurs="0" maxOccurs="1"/>

 <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/>
 </sequence>

 <attribute name="name" type="NCName" use="required"/>

 <attribute name="targetNamespace" type="anyURI" use="required"/>
 </complexType>

 <!--

 ==============================

 = Process Parameter

 ==============================

 <complexType name="processParamsType">

 <sequence>

 <element name="processParam" type="ipml:processParamType" maxOccurs="unbounded"/>
 </sequence>

 </complexType>

 <complexType name="processParamType">
 <attribute name="name" type="NCName" use="required"/>

 <attribute name="type" type="ipml:ParamIOType" use="required"/>

 </complexType>
 -->

 <!--
 ==============================

 = Service Provider

 ==============================

 <complexType name="ServiceProviderType">

 <annotation>
 <documentation>Service provider type definition</documentation>

 </annotation>

 <sequence>
 <element name="locator" minOccurs="1" maxOccurs="1">

 <complexType>

 <attribute name="type" type="ipml:ServiceInstanceType" use="required"/>
 <attribute name="handle" type="anyURI" use="required"/>

 </complexType>

Texas Tech University, Rajiv Shrestha, May 2010

78

 </element>

 </sequence>
 <attribute name="name" type="NCName" use="required"/>

 <attribute name="type" type="NCName" use="required"/>

 </complexType>
 -->

 <!--
 ==============================

 = Variables

 ==============================
 -->

 <complexType name="VariablesType">

 <sequence>
 <element name="variable" type="ipml:VariableType" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <!--

 ==============================
 = Variable

 ==============================

 -->
 <complexType name="VariableType">

 <sequence>

 <element name="variableValue" type="ipml:ValueType" minOccurs="0"/>
 </sequence>

 <attribute name="name" type="NCName" use="required"/>
 <attribute name="messageType" type="QName" use="optional"/>

 <attribute name="type" type="QName" use="optional"/>

 </complexType>

 <!--

 ==============================
 = Activity

 ==============================

 -->

 <element name="activity" type="ipml:ActivityType"/>

 <complexType name="ActivityType" abstract="true">

 <attribute name="name" type="NCName"/>
 </complexType>

 <!--
 ==============================

 = Invoke

 ==============================
 -->

 <element name="invoke" type="ipml:InvokeType" substitutionGroup="ipml:activity"/>

 <complexType name="InvokeType">
 <complexContent>

 <extension base="ipml:ActivityType">

 <attribute name="serviceName" type="NCName" use="required"/>
 <!--<attribute name="serviceId" type="int" use="required"/>-->

 <attribute name="portType" type="QName" use="optional"/>

 <attribute name="operation" type="NCName" use="required"/>
 <attribute name="inputVariable" type="NCName" use="optional"/>

 <attribute name="outputVariable" type="NCName" use="optional"/>

 <attribute name="instance" type="NCName" use="optional"/>
 </extension>

 </complexContent>

 </complexType>

 <!--

 ==============================
 = Assign

 ==============================

Texas Tech University, Rajiv Shrestha, May 2010

79

 -->

 <element name="assign" type="ipml:AssignType" substitutionGroup="ipml:activity"/>
 <complexType name="AssignType">

 <complexContent>

 <extension base="ipml:ActivityType">
 <sequence>

 <element name="copy" type="ipml:CopyType" minOccurs="1" maxOccurs="unbounded"/>

 </sequence>
 </extension>

 </complexContent>

 </complexType>
 <complexType name="CopyType">

 <sequence>

 <element ref="ipml:from"/>
 <element ref="ipml:to"/>

 </sequence>

 </complexType>
 <element name="from" type="ipml:FromType"/>

 <complexType name="FromType">

 <attribute name="variable" type="NCName"/>
 <attribute name="expression" type="string"/>

 <attribute name="part" type="NCName"/>

 </complexType>
 <element name="to">

 <complexType>

 <complexContent>
 <restriction base="ipml:FromType">

 <attribute name="expression" type="string" use="prohibited"/>
 </restriction>

 </complexContent>

 </complexType>
 </element>

 <!--
 ==============================

 = Derived Simple Type

 ==============================

 -->

 <simpleType name="ParamIOType">

 <restriction base="token">
 <enumeration value="input"/>

 <enumeration value="output"/>

 </restriction>
 </simpleType>

 <simpleType name="ServiceInstanceType">

 <restriction base="token">
 <enumeration value="factory"/>

 <enumeration value="persistence"/>

 </restriction>
 </simpleType>

 <!--
 =========================

 = Contingency

 ==============================
 -->

 <element name="top" type="ipml:TopType"/>

 <complexType name="TopType">
 <complexContent>

 <extension base="ipml:ActivityType">

 <sequence>
 <!--<element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/>-->

 <element name="invoke" type="ipml:InvokeType"/>

 </sequence>
 </extension>

 </complexContent>

Texas Tech University, Rajiv Shrestha, May 2010

80

 </complexType>

 <!--

 ==============================

 = Compensation
 ==============================

 -->

 <element name="cop" type="ipml:CopType"/>
 <complexType name="CopType">

 <complexContent>

 <extension base="ipml:ActivityType">
 <sequence>

 <!--<element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/>-->

 <element name="invoke" type="ipml:InvokeType"/>
 </sequence>

 </extension>

 </complexContent>
 </complexType>

 <!--
 ==============================

 = Data Input for Ap (Variables as Parameters)

 ==============================
 -->

 <complexType name="apDataInType">

 <attribute name="variable" type="string" use="required"/>
 </complexType>

 <!--

 ==============================

 = Assurance Points
 ==============================

 -->

 <element name="ap" type="ipml:APType" substitutionGroup="ipml:activity"/>
 <complexType name="APType">

 <complexContent>

 <extension base="ipml:ActivityType">

 <sequence>

 <!--<element ref="ipml:activity" minOccurs="0" maxOccurs="unbounded"/>-->

 <!--<element name="invoke" type="ipml:InvokeType"/>-->
 <element name="apDataIn" type="ipml:apDataInType" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </extension>
 </complexContent>

 </complexType>

 <!--

 ==============================

 = Atomic Group
 ==============================

 -->

 <element name="ag" type="ipml:AGType" substitutionGroup="ipml:activity"/>
 <complexType name="AGType">

 <complexContent>

 <extension base="ipml:ActivityType">
 <sequence>

 <element name="invoke" type="ipml:InvokeType"/>

 <element name="cop" type="ipml:CopType" minOccurs="0" maxOccurs="1"/>
 <element name="top" type="ipml:TopType" minOccurs="0" maxOccurs="1"/>

 </sequence>

 </extension>

 </complexContent>
 </complexType>

Texas Tech University, Rajiv Shrestha, May 2010

81

 <!--

 ==============================
 = Composite Group

 ==============================

 -->
 <element name="cg" type="ipml:CGType" substitutionGroup="ipml:activity"/>

 <complexType name="CGType">

 <complexContent>
 <extension base="ipml:ActivityType">

 <sequence>

 <element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/>
 <element name="cop" type="ipml:CopType" minOccurs="0" maxOccurs="1"/>

 <element name="top" type="ipml:TopType" minOccurs="0" maxOccurs="1"/>

 </sequence>

 </extension>

 </complexContent>
 </complexType>

 <!--
 ==============================

 = Switch

 ==============================
 -->

 <element name="switch" type="ipml:SwitchType" substitutionGroup="ipml:activity"/>

 <complexType name="SwitchType">
 <complexContent>

 <extension base="ipml:ActivityType">
 <sequence>

 <element name="case" maxOccurs="unbounded">

 <complexType>
 <sequence>

 <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/>

 </sequence>
 <attribute name="condition" type="string" use="required"/>

 </complexType>

 </element>

 <element name="otherwise" minOccurs="0" maxOccurs="1">

 <complexType>

 <sequence>
 <!--<element ref="ipml:activity" minOccurs="0" maxOccurs="unbounded"/>-->

 <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/>

 </sequence>
 </complexType>

 </element>

 </sequence>
 </extension>

 </complexContent>

 </complexType>

</schema>

Texas Tech University, Rajiv Shrestha, May 2010

82

APPENDIX II

XML SCHEMA DEFINITIONS FOR RULES

<?xml version="1.0" encoding="utf-8" ?>

<!--

 **AP ECA rules (Integration Rules) Schema Definition **

 -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:eca="http://ap.org/eca/" targetNamespace="http://ap.org/eca/" elementFormDefault="qualified">

 <import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="http://schemas.xmlsoap.org/wsdl/"/>

 <element name="rules" type="eca:rulesType"/>

 <complexType name="rulesType">
 <sequence>

 <element name="event" type="eca:eventType" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>
 </complexType>

 <complexType name="eventType">
 <sequence>

 <element name="pre" type="eca:preType" minOccurs="0" maxOccurs="1"/>
 <element name="post" type="eca:postType" minOccurs="0" maxOccurs="1"/>

 <element name="cond" type="eca:condType" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>
 <attribute name="ap" type="string" use="required"/>

 </complexType>

 <!--
 ==============================

 = Pre-Condition

 ==============================

 -->

 <complexType name="preType">

 <sequence>
 <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/>

 </sequence>

 </complexType>
 <!--

 ==============================

 = Post-Condition
 ==============================

 -->

 <complexType name="postType">
 <sequence>

 <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/>

 </sequence>
 </complexType>

 <!--

 ==============================

 = Conditional Rule

 ==============================

 -->
 <complexType name="condType">

 <sequence>

 <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/>
 </sequence>

 </complexType>

 <complexType name="ecaRuleType">

 <sequence>

Texas Tech University, Rajiv Shrestha, May 2010

83

 <element name="condition" type="eca:conditionType" minOccurs="1" maxOccurs="1"/>

 <element name="actions" type="eca:actionsType" minOccurs="0" maxOccurs="1"/>
 </sequence>

 </complexType>

 <complexType name="conditionType">

 <sequence>

 <element name="invoke" type="eca:invoke" minOccurs="1" maxOccurs="1"/>
 </sequence>

 <attribute name="name" type="string" use="required"/>

 </complexType>

 <complexType name="actionsType">

 <sequence>
 <element name="action" type="eca:actionType" minOccurs="1" maxOccurs="2"/>

 </sequence>

 </complexType>

 <complexType name="actionType">

 <sequence>
 <element name="invoke" type="eca:invoke" minOccurs="0" maxOccurs="1"/>

 </sequence>

 <attribute name="name" type="string" use="required"/>
 <attribute name="targetAP" type="string" use="optional"/>

 </complexType>

 <!--
 ==============================

 = Invoke Condition as Service
 ==============================

 -->

 <complexType name = "invoke">
 <attribute name="name" type="NCName" use="required"/>

 <attribute name="serviceName" type="NCName" use="required"/>

 <!--<attribute name="portType" type="QName" use="required"/>-->
 <attribute name="operation" type="NCName" use="required"/>

 <attribute name="inputVariable" type="NCName" use="optional"/>

 <attribute name="outputVariable" type="NCName" use="optional"/>

 <attribute name="instance" type="NCName" use="optional"/>

 </complexType>

</schema>

Texas Tech University, Rajiv Shrestha, May 2010

84

APPENDIX III

PROCESS DEFINITION FOR THE ONLINE SHOPPING EXAMPLE

<?xml version="1.0" encoding="utf-8"?>

<!--

 ** Online Shopping Checkout Process Definition **

-->

<process xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://ap.org/pml/

file:/C:/Documents%20and%20Settings/rshresth/My%20Documents/NetBeansProjects/APProject/src/org/ap/schema/APSchema.

xsd"
 xmlns:tns="urn:checkoutService"

 xmlns:sho="http://www.ap.org/service/Shopping"

 xmlns:cc="http://www.ap.org/service/CreditCard"
 xmlns:echk="http://www.ap.org/service/ECheck"

 xmlns:inv="http://www.ap.org/service/Inventory"

 xmlns:shi="http://www.ap.org/service/Shipping"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns="http://ap.org/pml/" name="checkout" targetNamespace="urn:checkoutService">

 <variables>

 <!--input -->
 <variable name="orderId" type="xsd:string"/>

 <variable name="loginName" type="xsd:string"/>

 <!--shopping variables -->
 <variable name="getCustomerInfoInput" messageType="sho:getCustomerInfo"/>

 <variable name="getCustomerInfoOutput" messageType="sho:getCustomerInfoResponse"/>

 <variable name="getProductListInput" messageType="sho:getProductList"/>
 <variable name="getProductListOutput" messageType="sho:getProductListResponse"/>

 </variables>

 <cg name="cg0">

 <assign name="cg0_assign1">

 <copy>
 <from variable="loginName"/>

 <to variable="getCustomerInfoInput" part="loginName"/>

 </copy>
 <copy>

 <from variable="loginName"/>

 <to variable="getProductListInput" part="loginName"/>
 </copy>

 <copy>

 <from variable="orderId"/>
 <to variable="getProductListInput" part="orderID"/>

 </copy>

 </assign>

 <cg name="cg01">

 <ag name="ag011">

 <invoke name="getCustomerInfo" serviceName="shopping"

 portType="sho:ShoppingPortType" operation="getCustomerInfo"

 inputVariable="getCustomerInfoInput" outputVariable="getCustomerInfoOutput"/>
 </ag>

 <ag name="ag012">
 <invoke name="selectShipper" serviceName="shopping"

 portType="sho:shoppingPortType" operation="selectShipper"

 inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/>
 <top name = "top_ag012">

 <invoke name="selectShipper" serviceName="shopping"

Texas Tech University, Rajiv Shrestha, May 2010

85

 portType="sho:shoppingPortType" operation="selectShipper"

 inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/>
 </top>

 </ag>

 <cop name = "cop_cg01">

 <invoke name="selectShipper" serviceName="shopping"

 portType="sho:shoppingPortType" operation="selectShipper"
 inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/>

 </cop>

 <top name = "top_cg01">
 <invoke name="selectShipper" serviceName="shopping"

 portType="sho:shoppingPortType" operation="selectShipper"

 inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/>
 </top>

 </cg>

 <ap name ="orderPlacedAP">

 <apDataIn variable= "orderId"/>

 </ap>

 <cg name="cg02">

 <ag name="ag021">
 <invoke name="chargeCreditCard" serviceName="creditCard"

 portType="cc:CreditCardPortType" operation="chargeCreditCard"

 inputVariable="chargeCreditCardInput" outputVariable="chargeCreditCardOutput"/>
 <cop name="cop_ag021">

 <invoke name="creditBack" serviceName="CreditCard"
 portType="cc:CreditCardPortType" operation="creditBack"

 inputVariable="creditBackInput" outputVariable="creditBackOutput"/>

 </cop>
 <top name="top_ag021">

 <invoke name="eCheckPay" serviceName="eCheckPay"

 portType="echk:ECheckPortType" operation="chargeECheckPay"
 inputVariable="eCheckPayInput" outputVariable="eCheckPayOutput"/>

 </top>

 </ag>

 <ag name="ag022">

 <invoke name="decInventory" serviceName="inventory"

 portType="inv:InventoryPortType" operation="decInventory"
 inputVariable="decInventoryInput" outputVariable="decInventoryOutput"/>

 <cop name="cop_ag022">

 <invoke name="incInventory" serviceName="inventory"
 portType="inv:InventoryPortType" operation="incInventory"

 inputVariable="incInventoryInput" outputVariable="incInventoryOutput"/>

 </cop>
 </ag>

 </cg>

 <ap name ="creditCardChargedAP">

 <apDataIn variable= "orderId"/>

 <apDataIn variable= "amount"/>
 </ap>

 <cg name="cg03">
 <assign name="assigncg03">

 <copy>

 <from variable="orderId"/>
 <to variable="loginName"/>

 </copy>

 </assign>

 <switch name="switch">

 <case condition="${shippingMethod} == USPS">
 <cg name="cg031_if">

 <ag name="ag0311_if">

Texas Tech University, Rajiv Shrestha, May 2010

86

 <invoke name="sendShippingRequest" serviceName="Shipping"

 portType="shi:ShippingPortType" operation="sendShippingRequest"
 inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/>

 </ag>

 <ap name="UPSShippedAP">
 <apDataIn variable= "orderId"/>

 <apDataIn variable= "UPSShippingDate"/>

 </ap>
 </cg>

 </case>

 <otherwise>
 <cg name="cg031_else">

 <ag name="ag0311_else">

 <invoke name="sendShippingRequest" serviceName="Shipping"
 portType="shi:ShippingPortType" operation="sendShippingRequest"

 inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/>

 </ag>

 <ap name="USPSShippedAP">

 <apDataIn variable= "orderId"/>
 <apDataIn variable= "USPSShippingDate"/>

 </ap>

 </cg>

 </otherwise>

 </switch>
 <assign name="assignShippingTop">

 <copy>
 <from variable="getCustomerInfoOutput" part="altShippingMethod"/>

 <to variable="sendShippingRequestInput" part="shippingMethod"/>

 </copy>
 </assign>

 <top name="shippingMethodTop">

 <invoke name="sendShippingRequest" serviceName="Shipping"
 portType="shi:ShippingPortType" operation="sendShippingRequest"

 inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/>

 </top>

 </cg>

 <ag name="ag04">

 <invoke name="deliverOrder" serviceName="shipping"
 portType="shi:ShippingPortType" operation="deliverOrder"

 inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/>

 </ag>
 <ap name ="deliveredAP">

 <apDataIn variable= "orderId"/>

 <apDataIn variable= "shippingMethod"/>
 <apDataIn variable= "deliveryDate"/>

 </ap>

 <ag name="ag05">
 <invoke name="OrderClose" serviceName="shopping"

 portType="sho:ShoppingPortType" operation="orderClose"

 inputVariable="OrderCloseInput" outputVariable="OrderCloseOutput"/>
 </ag>

 </cg>

</process>

Texas Tech University, Rajiv Shrestha, May 2010

87

APPENDIX IV

RULE DEFINITIONS FOR THE ONLINE SHOPPING EXAMPLE

<?xml version="1.0" encoding="utf-8"?>

<!--

 ** Integration Rule for Online Shopping **

-->

<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://ap.org/eca/

file:/C:/Documents%20and%20Settings/rshresth/My%20Documents/NetBeansProjects/APProject/src/org/ap/schema/rules.xsd"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://ap.org/eca/">

 <event ap="orderPlacedAP">
 <pre>

 <ecaRule>

 <condition name="quantityCheck">
 <invoke name="checkQuantity" serviceName="ruleConditions"

 operation="checkQuantity1"

 inputVariable="quantity"
 outputVariable="result"/>

 </condition>
 <actions>

 <action name="backOrderPurchase">

 <invoke name="backOrderPurchase" serviceName="shopping"
 operation="backOrderPurchase" inputVariable="orderId"

 outputVariable="result" />

 </action>
 </actions>

 </ecaRule>

 </pre>

 </event>

 <event ap="creditCardChargedAP">

 <post>
 <ecaRule>

 <condition name= "quantityCheck">

 <invoke name="checkInStockQuantity" serviceName="ruleConditions"
 operation="checkQuantity2"

 inputVariable="quantity"

 outputVariable="result"/>
 </condition>

 <actions>

 <action name="APRetry" targetAP= "orderPlacedAP"/>
 <action name="APRollback"/>

 </actions>

 </ecaRule>
 </post>

 <cond>

 <ecaRule>

 <condition name="notification">

 <invoke name="checkAmount" serviceName="ruleConditions"

 operation=" checkAmount"
 inputVariable="amount"

 outputVariable="result"/>

 </condition>
 <actions>

 <action name="highExpenseNotice">

 <invoke name="highExpenseNotice" serviceName="shopping"
 operation="highExpenseNotice" inputVariable="cardNumber"

 outputVariable="result" />

Texas Tech University, Rajiv Shrestha, May 2010

88

 </action>

 </actions>
 </ecaRule>

 </cond>

 </event>

 <event ap="deliveredAP">

 <post>
 <ecaRule>

 <condition name= "testSample">

 <invoke name="checkInStockQuantity" serviceName="ruleConditions"
 operation="testPostatDelivered"

 inputVariable="quantity"

 outputVariable="result"/>
 </condition>

 <actions>

 <action name="APRetry"/>
 </actions>

 </ecaRule>

 </post>
 <cond>

 <ecaRule>

 <condition name="ShippingRefund">
 <invoke name="ShippingRefund" serviceName="ruleConditions"

 operation="ShippingRefund"

 inputVariable="orderId"
 outputVariable="result"/>

 </condition>
 <actions>

 <action name="refundUPSShippingCharge">

 <invoke name="refundUPSShippingCharge" serviceName="shipping"
 operation="refundUPSShippingCharge" inputVariable="orderId"

 outputVariable="result" />

 </action>
 </actions>

 </ecaRule>

 </cond>

 </event>

 <event ap="USPSShippedAP">
 <post>

 <ecaRule>

 <condition name= "testSample">
 <invoke name="checkInStockQuantity" serviceName="ruleConditions"

 operation="testPostatDelivered"

 inputVariable="quantity"
 outputVariable="result"/>

 </condition>

 <actions>
 <action name="APCC"/>

 </actions>

 </ecaRule>
 </post>

 </event>

</rules>

