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ABSTRACT 

This research defines the concept of Assurance Points (APs) together with the 

use of integration rules to provide a more flexible way of checking constraints and 

responding to execution errors in processes formed through service composition. An 

AP is a combined logical and physical checkpoint, providing an execution milestone 

that stores critical data and interacts with rules, known as integration rules, to alter 

program flow and to invoke different forms of recovery depending on the recovery 

mode and execution status. During normal execution, APs store execution state and 

invoke integration rules that check pre-conditions, post-conditions, and other 

application rule conditions. If a condition fails, recovery modes can be invoked that 

involve retry, rollback, and cascaded contingency. When execution errors occur, APs 

are also used as rollback points for backward recovery using compensation as well as 

forward recovery through rechecking preconditions before retry attempts and 

contingent procedures. This thesis describes the semantics of APs, integration rules, 

and the different forms of recovery actions, illustrating the functionality of the AP 

approach through the development of a prototype execution environment. The 

research is also evaluated through a comparison of the AP functionality for constraints 

and recovery to the BPEL fault and exception handling capability, as well as other 

relevant work with checkpointing and aspect-oriented programming. The primary 

contribution of this research is found in the definition of a service composition and 

recovery model with explicit support for user-defined constraints, contingency, and 

compensation that is embedded in well-defined recovery actions that make use of the 

execution state supported by assurance points to provide flexibility in the recovery 

process.   
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CHAPTER I 

INTRODUCTION 

As Internet use is growing in this evolving Web era, more online businesses 

are emerging, thus increasing the use of Web Services and Service-Oriented 

Architectures (SOA) to enhance business-to-business and business-to-consumer 

transactions. Service-Oriented computing and Web Services ease the accessibility, 

availability, scalability, and reusability of software components. The work in 

(Papazoglou and Heuvel 2007) describes services as an exposed piece of functionality 

with three essential properties: (1) self-contained, as it maintains its own state, (2) 

platform independent with services running on different platforms that are 

independent and autonomous, and (3) dynamically located, invoked and (re-) 

combined. Web Services therefore allow customers as well as business partners to 

easily access the service without disrupting their own business processes. 

Furthermore, new services and processes can be created from the composition of other 

services. As a result, service composition is a key to the generation of new internet-

based distributed applications.  

Since Web Services and service-oriented computing are becoming more 

widely used for business-to-business integration, there is a need for providing better 

support for service composition, especially with respect to execution correctness and 

recovery. In the past several years, prevalent techniques such as the Unified Modeling 

Language (UML) (Engels et al., 2005), the Business Process Modeling Notation 

(BPMN) (White 2004), and Event-Driven Process Chains (Scheer, Thomas, and Adam 

2005) have been widely adopted for process modeling at the conceptual level, with 

execution engines based on standards such as the Business Process Execution 

Language  (BPEL) (Jordan et al., 2007) providing a framework for execution of 

conceptual process designs. Service composition for business integration, however, 

creates challenges for traditional process modeling techniques, especially considering 

the increasing use of events and rules to create greater execution flexibility through 
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event-driven applications. Modeling extensions have been introduced to many of these 

tools to provide support for responding to events, handling exceptional conditions, and 

using events and rules as a way to control process flow. Most of these extensions, 

however, are still too rigid to support the type of flexibility that is needed for service-

oriented environments.  

In a service execution environment, a process must be flexible enough to 

respond to different types of events that represent errors, exceptions, and interruptions. 

Backward and forward recovery mechanisms (Lee et al., 1990) can be used to respond 

to such events. For example, a compensation handler is a backward recovery 

mechanism that performs a logical undo operation. Contingency is a forward recovery 

mechanism that provides an alternative execution path to keep a process running. 

Nevertheless, most service composition techniques do not provide flexibility with 

respect to the combined use of compensation and contingency. This absence of 

flexibility hampers the efficiency of exception handling and often does not do enough 

to keep processes running in a forward manner. Furthermore, most process modeling 

techniques for service composition do not make adequate use of pre-conditions, post-

conditions, and other constraint checking techniques that can be used to validate the 

correctness of execution, especially considering that most processes execute in an 

environment that does not support traditional transaction processing. Service 

composition models need to be enhanced with features that allow processes to assess 

their execution state to support more dynamic ways of responding to failures, while at 

the same time validating correctness conditions for process execution. 

The research presented in this thesis defines the concept of Assurance Points 

(APs) together with the use of integration rules to provide a more flexible way of 

checking constraints and responding to execution failures. The research is a 

subcomponent of a larger project addressing decentralized data dependency analysis 

and concurrently executing processes, where distributed execution units communicate 

about process failures, identify processes that are dependent on a failed process, and 

invoke the recovery procedure on dependent processes (Urban, Ziao, and Le 2009). 
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The research in this thesis is focused in enhancing the constraint checking and 

recovery procedures for individual processes with the goals of 1) strengthening the 

specification of user-defined correctness conditions, and 2) increasing the use of 

forward recovery when failure occurs.  

In this thesis, APs are defined as an extension to the service composition and 

recovery model in (Xiao and Urban 2009). An AP is a combined logical and physical 

checkpoint, providing an execution milestone that stores critical data and interacts 

with integration rules to alter program flow and invoke different forms of recovery 

depending on the execution status. During normal execution, APs invoke integration 

rules that check pre-conditions, post-conditions, and other application conditions. 

Failure of a pre or post-condition can invoke several different forms of recovery, 

including backward recovery of the entire process, backward recovery to a specific AP 

for retry attempts, or a dynamic backward recovery process, known as cascaded 

contingency, in an attempt to find a previous AP that can be used to invoke contingent 

procedures or alternate execution paths. When failures occur, APs are also used as 

rollback points for rechecking preconditions and determining whether to invoke 

further forward or backward recovery actions.  

This thesis describes the semantics of APs, integration rules, and the different 

forms of recovery actions. The functionality of the AP concept is illustrated using an 

online shopping example as well as other generic test cases that illustrate APs, 

integration rules, and recovery actions in the context of different nested composition 

scenarios. This thesis also outlines a prototype execution environment that has been 

developed to test the AP and integration rule concept in a BPEL-like execution 

environment. Finally, the research is also evaluated through a comparison of the AP 

functionality for constraints and recovery to the BPEL fault and exception handling 

capability as well as other relevant work with checkpointing and aspect-oriented 

programming. The primary contribution of this research is found in the definition of a 

service composition and recovery model with explicit support for user-defined 

constraints, contingency, and compensation that is embedded in well-defined recovery 
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actions that make use of the execution state supported by assurance points to provide 

flexibility in the recovery process.  

The remainder of this thesis is organized as follows. Chapter 2 gives an 

overview of the related work. Chapter 3 provides an overview of the service 

composition and recovery model with extended functionalities for APs and integration 

rules. Chapter 4 describes a prototype implementation of assurance points. Chapter 5 

presents an evaluation of the assurance point concept. The thesis concludes in Chapter 

6 with a summary and discussion of future research directions. 
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CHAPTER II 

RELATED WORK 

This chapter presents related work. Section 2.1 provides an overview of BPEL 

with a focus on fault, compensation, and exception handling capabilities. Section 2.2 

outlines additional research related to fault and exception handling in workflows. 

Section 2.3 presents the related work that uses events and rules in workflow for 

handling failures and exceptions. Section 2.4 highlights research in aspect-oriented 

workflows to provide flexible and adaptable workflows. The chapter concludes in 

Section 2.5 with a comparison of the research in this thesis to related work. 

2.1 BPEL 

The interoperability of services by using standard protocols is necessary for 

consistency and advancement in Web services. Web service for Business Process 

Execution Language (WS-BPEL or BPEL) defines a model and a grammar for 

describing the behavior of a business process based on interactions between the 

process and its partners (Jordan et al., 2007). BPEL 2.0 is an Organization for the 

Advancement of Structured Information Standards (OASIS) standard, a high-level 

language for composing Web Services for modeling and executing workflows of 

business processes. Since BPEL is an officially approved standard for workflow 

language, it is desirable to compare the assurance points concept with BPEL and its 

advanced fault, compensation, and event handling features. BPEL fulfills the key 

requirements for a workflow language since it represents the business logic of the 

process, has the ability to provide asynchronous and synchronous invocations of Web 

services, supports long running transactions (LRTs), and manages failures, exceptions 

and recovery (Ezenwoye and Sadjadi 2006a).  

BPEL consists of basic and structured activities to describe business process 

flow steps. Basic activities are primitive constructs for general tasks such as invoke for 

invoking Web services, receive for receiving a request, assign for operating on 

variables, wait for waiting for a time period, reply for generating a response, and 
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terminate for terminating the whole process. These basic activities which are used for 

standard simple tasks can be combined with the help of structured activities to 

generate more complex processes. Structured activities like flow for allowing activities 

in parallel, pick to select one of the options, and while for loops are used for the 

combination of basic constructs and helps in asynchronous execution. A Scope in 

BPEL defines the collection of activities which has its own variables, partner links, 

message exchanges, event handlers, fault handlers, and compensation handlers. A 

scope can successfully or unsuccessfully terminate after execution of a business 

process, and in case of unsuccessful termination, it can reverse the activities, while at 

the same time other parts of the process can keep running. A partner represents both a 

consumer of a service provided by the business process and a provider of a service to 

the business process. The definition of properties creates a unique name for a WS-

BPEL process definition and associates it with an XML Schema type. 

2.1.1 Fault, Compensation and Event Handlers of BPEL 

For any transaction to be safe and correct there must be some way to guarantee 

the integrity of the transactions. In traditional database systems, atomicity, 

consistency, isolation and durability (ACID) properties are used to guarantee the 

reliability of database transactions. Atomicity guarantees that all the tasks of a 

transaction are either committed or aborted. Consistency ensures the database remains 

in a consistent state through checking the changes in data values. The isolation 

property is required during concurrent transactions where execution of one transaction 

should not affect the execution of another transaction. Durability guarantees that once 

committed, a transaction persists and cannot be undone.  

Even though these ACID properties are fundamental for traditional databases, 

they are not suitable for long running transactions during service composition. Each 

service in a process is autonomous and platform independent. The commit of a service 

execution is controlled by the residing service instead of the global process. As a 

result, distributed processes composed of services do not execute as traditional 

transactions. The concept of serializability is too strong for concurrently executing 
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services to conform to global transaction semantics as one process. As a result, ACID 

properties and traditional concurrency control mechanisms are not generally suitable 

for this environment, since a process cannot afford to block individual services to 

ensure a commit of the global process (Mikalsen, Tai, and Rouvellou 2002). Hence, 

dirty writes and dirty reads are inevitable since a service can commit before a process 

completes which can cause data inconsistency problems. Therefore, undoing the 

transaction or finding an alternative solution is crucial in such situations. To address 

this issue in a service environment, BPEL has defined the role of fault, event, and 

compensation handlers.   

A fault handler helps to undo the partial job done within a scope when an 

exception occurs during run-time. Faults can be explicitly generated through the throw 

activity. A catch construct is used to catch a specific fault and a catchAll constructs to 

handle all other faults not caught by a catch fault handler. There are three kinds of 

faults in BPEL (Jordan et al., 2007). The first one is application/service faults which 

are generated by services invoked by the process. Another fault type is process defined 

faults which are generated by the throw activity. The third type of fault is system faults 

which are generated by the process engine. We can add fault handlers to the process 

(global) or to a scope within the process (local). Once the fault occurs at the process or 

scope level, the scope is terminated and the corresponding fault handler takes control. 

In such case, the scope is said to be faulted and is not qualified for compensation. If 

the faults are not handled in the current scope or the fault handler cannot resolve a 

fault, then it is re-thrown by rethrow to the parent scope. If any nested scope is already 

completed without a fault being thrown or re-thrown, then it qualifies for 

compensation as backward recovery. 

The work in (Ezenwoye and Sadjadi 2006b) points out the limitations of fault 

handling in BPEL, where in case of system faults, which are common in service-

oriented architecture (e.g. unavailability of Web services), the catchAll can catch these 

faults in BPEL, but it cannot recognize the difference between faults. Knowing the 
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different system faults is necessary to take corresponding related action, thus such an 

approach in BPEL is not desirable for providing good quality of service. 

Compensation provides execution semantics with the relaxed notion of 

undoing a successfully completed activity in the scope or process level of a business 

process. Every scope of the BPEL process has a compensation handler which can 

revert its effects in the reverse order of the execution of activities. The compensate and 

compensateScope activities are used within the fault handler, compensation handler, or 

termination handler to invoke the compensation handlers where compensate causes 

execution of compensation of all completed and not compensated child scopes in 

default order, whereas compensateScope causes execution of compensation of one 

specified successfully completed child scope.  

The event handler in BPEL specifies logic to deal with events. Event handlers 

are associated with a whole process or scopes where activity is invoked concurrently 

when the corresponding event occurs. Two kinds of events are available in BPEL: 

Message Events and Alarm Events. Alarm events are useful if the process needs to 

wait for certain period of time since Web services are not always available in loosely 

coupled service oriented architecture. A message event is useful when the business 

process needs to wait for several multiple messages. Therefore, events can be helpful 

for activities that cannot be scheduled, like a customer cancelling a flight in the middle 

of the process. Event handlers are a normal part of the BPEL process, unlike fault and 

compensation handlers. 

2.1.2 BPEL’s Shortcomings 

Even though faults, compensation, and event handlers give a very basic 

recovery mechanism, WS-BPEL provides these three as a standard mechanism and 

leaves the rest up to the designer about any other task specification when the handler is 

fired (Modafferi and Conforti 2006). Although it gives power to the designer, a lot of 

effort is required if the designer wants to specify advanced recovery procedures. Also, 

BPEL does not have any distributed coordination in regard to multiple concurrent 
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services (Gannod, Burge, and Urban 2007). BPEL offers the above standard features 

to support transactional integrity, but lack of formal semantics makes it hard to 

implement and guarantee that a BPEL process behaves correctly (Breugel and 

Koshkina 2006). Moreover, transactions are long running, therefore, it is more 

difficult to analyze such transactions without formal semantics.  

Formalizing BPEL will lead to several benefits. Several formal approaches 

have been researched and implemented to formalize BPEL, such as Petri-Nets (Desel 

2005) and π-calculus (Sangiorgi and Walker 2001). The work in (Kovács, Varró, and 

Gönczy 2007) presents a formal modeling technique for BPEL workflows with model 

checking. BPELfct is a formalization of BPEL focused only on fault, compensation and 

termination (FCT) handling (Eisentraut and Spieler 2009). In (Rouached, Perrin, and 

Godart 2006), the authors propose an event-driven approach for formalizing and 

verifying Web service composition expressed in BPEL. The work offers the 

consistency checking of a business process in three cases: static verification (before 

running process), dynamic verification (runtime), and non-functional requirements. 

The framework is still under development. The work in (Kuhne et al., 2008) presents a 

prototype of a modeling tool that uses graph-based rules to find problems in business 

process models. Several ongoing research projects are based on self-healing BPEL to 

overcome the lack of formal semantics and to provide automatic service composition 

and adaptation (Breugel and Koshkina 2006), (Kovács, Varró, and Gönczy 2007). 

In (Modafferi and Conforti 2006), the authors provide three options to 

overcome BPEL’s limitations for the support of recovery actions. The first option is to 

define a totally new workflow language and engine. Another option is to define an 

extended BPEL and the corresponding extended engine, as in (Modafferi, Mussi, and 

Pernici 2006) and (Dialani et al., 2002), which gives the designer the option of 

advance recovery mechanisms with very few changes to the current technology. The 

last option is to use the concepts of annotation and preprocessing for enhancing BPEL 

at design time without modifying the workflow engine as in (Baresi, Guinea, and 

Pasquale 2007) and (Wang, Bandara, and Pahl 2009). 
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2.2 Research on Fault and Exception Handling 

A fault is an abnormal condition or defect at the component or sub-system 

level which may lead to failure (Chan et al., 2006), whereas exceptions are facts or 

situations that are raised to signal errors, faults, failures, and other deviations which 

depend on what we want and what we can achieve (Luo et al., 2000). One of the major 

issues in distributed service-oriented applications is fault management. There is no 

guarantee that a composition of even good services will always work (Chan et al., 

2006). Run-time strategies which check whether the composition behaves correctly 

and reactive strategies to detect and recover from errors can be used to ensure the 

correctness of the composition. Several mechanisms are being developed to discover 

and recover from faults automatically (Modafferi, Mussi, and Pernici 2006) (Friese, 

Muller, and Freisleben 2005) (Baresi, Guinea, and Pasquale 2007). The standard 

orchestration language BPEL provides mechanisms like fault handlers, exception 

handler, termination handlers, and compensation handlers for managing recovery 

activities as described in Section 2.2. This section highlights the current research in 

fault tolerance mechanisms in Web Service composition. 

The research in (Brambilla et al., 2005) recognizes three types of exceptions to 

clarify the conditions under which failures occur: behavioral exceptions, which are 

user-generated due to improper execution order of process activities, semantic or 

application exceptions, which are due to unsuccessful logical outcomes of activity 

execution, and system exceptions, which are caused by malfunctioning of the Web 

application at the client and server side, such as network failure or system breakdown. 

The work in (Eder and Liebhart 1996) highlights the sources of failures in workflow 

that can be from i) workflow engine failures, ii) activity failures, or iii) communication 

failures between scheduler and activities. Common ways of handling these failures are 

rollback and compensation for backward recovery, contingency for forward recovery, 

re-try, undo, timeout, safe termination, executing alternative activities, or even human 

interactions (Greenfield et al., 2003). However, in service-oriented architectures, a 

single process may be part of multiple applications due to data dependency during 
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concurrent execution; thus, rollback does not always help to recover from the failures 

(Dialani et al., 2002). Compensation is also not always enough to handle and recover 

failures during LRTs (Greenfield et al., 2003). Therefore, more strong and dynamic 

ways of handling errors are required for fault tolerant systems. 

Many efforts have been made to enhance the standard BPEL’s fault and 

exception handling capabilities. BPEL4Job (Tan, Fong, and Bobroff 2007) is an 

extended BPEL for fault-handling design for job flow management in distributed 

computing environments which has cleanup, task level re-try, and flow re-submit 

policies with the novel idea of migrating flow instances between different flow 

engines for scalable failure recovery. Moreover, it uses a job proxy to facilitate the 

asynchronous nature of job submission and notification which helps to extend the re-

try policy with advance schemes, like for example to alter the input parameters. Since 

there is an increasing complexity of processes and autonomous agents in workflow, 

self-healing mechanisms are necessary for automatic recovery during run-time. The 

work in (Modafferi and Conforti 2006) proposes mechanisms like external variable 

setting, future alternative behavior, rollback and conditional re-execution of the flow, 

timeout, and redo mechanisms for enabling recovery actions using the standard BPEL 

language. These sophisticated recovery strategies can be used for developing a self-

healing engine. The work in (Modafferi, Mussi, and Pernici 2006) presents the 

architecture of SH-BPEL engine, a Self-Healing plug-in for BPEL engines. SH-BPEL 

augments the fault recovery capabilities in BPEL with mechanisms like annotation, 

pre-processing, and extended recovery. Moreover to support self-healing execution of 

business processes, (Friese, Muller, and Freisleben 2005) provides the middleware 

framework called Robust Execution Layer (REL) that acts as a transparent, 

configurable add-on to any BPEL engine to support the peer-to-peer communication 

failure during interaction with business process engines in distributed environment. 

Dynamo (Baresi, Guinea, and Pasquale 2007) adds recovery capabilities to BPEL 

processes to create self-healing BPEL compositions using two special languages: 
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WSCol for specifying constraints and WSRel for executing state recovery strategies 

when constraints are violated.  

Failures are not always easily detectable in Web services, thus methods are 

required to automatically detect failures in a self-healing environment such as in 

(Baresi, Ghezzi, and Guinea 2004) which proposes two methods for dynamic detection 

of failures. One method is Defensive Process Design, in which services are designed 

to cope with failures. Another method is service run-time monitoring where external 

monitoring tools are used to check violations of functional and non-functional 

properties. Other ways of detecting faults are by using monitoring and verifying tools 

such as the ASTRO toolset (Trainotti et al., 2005), WSAT (Web Service Analysis 

Tool) (Fu, Bultan, and Su 2004), SPIN (Holzmann 2004), and BPELCheck (Fischer, 

Majumdar, and Sorrentino 2008) which provides execution monitoring facilities that 

check the predefined properties like pre-condition and post-condition of the processes 

and give feedback in the event of a failure, thus it helps to check the consistency of the 

BPEL processes. However, these monitoring and verifier tools do not suffice since 

some services may be outside the control of the developer (Ezenwoye and Sadjadi 

2006b). The more dynamic approach of monitoring BPEL-processes and embedding 

the monitored process into a WS-BPEL engine is given in (Baresi and Guinea 2005). 

Promises (Jang, Fekete, and Greenfield 2007) is a model for Web service 

applications that addresses the situation of lack of isolation mechanisms in LRTs by 

providing assurance that the resources are available and not violated during a certain 

period of time. A Promise is an agreement between a client and the resource owner 

which helps to maintain the integrity constraints in the workflow so that operations 

can be completed successfully. The Promise system has three components: a Promise 

Manager for recording all active promises in the promise table, an Application for 

processing the activities requested by the Promise Manager, and a Resource Manager 

for storing and updating the state of the system. Here, the most important task is 

guaranteeing the validity of promises, thus the promise system has different ways of 

checking and validating or updating promises as described in (Jang, Fekete, and 
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Greenfield 2007). The Promise system helps to handle the concurrent processes in 

Web-service applications. 

Checkpointing techniques are helpful to increase the efficiency of the system 

in case of failure. In checkpointing, consistent execution states are saved to obtain 

checkpoints during the process flow. During failures and exceptions, the activity can 

be rolled back to the closest consistent checkpoint, resuming the execution from that 

point (Luo 2000) rather than the whole process, which can consume extra resources 

and reduce the efficiency of the system. The checkpointing method can be used with 

events and rules, where the state of the execution can be used to determine the 

responsible action towards application events, exceptions, and faults. The work in 

(Marzouk et al., 2009) presents the periodic checkpointing-based approach which can 

be used as a self-healing mechanism to recover from stopped process instances due to 

failure in the workflow. The work in (Dialani et al., 2002) provides the fault tolerant 

architecture for Web services to detect the faults and to recover by means of 

checkpointing and rollback. The AP concept presented in this thesis also stores critical 

execution data that can be used for constraint checking and passing parameters to rules 

that invoke different types of recovery actions. 

In addition to above techniques to handle faults and exceptions in workflows, 

several formalization and validating techniques (Desel 2005) (Sangiorgi and Walker 

2001) (Kovács, Varró, and Gönczy 2007) as described in Section 2.3 can be used to 

guarantee the correctness, to avoid ambiguities and inconsistencies, and to also 

monitor failures. Moreover, semantics can be added to more dynamically recover from 

failures. A Semantic Web Service is “a means for providing service specifications 

with rich semantic annotations that facilitate flexible dynamic discovery, invocation 

and composition of services” (Wiesner et al., 2008). The Ontology Web Language for 

Services (OWL-S) (Martin et al., 2005) brings semantics to Web services, which can 

support automation and dynamism during service composition by providing 

declarative descriptions to Web service. The work in (Vaculín, Wiesner, and Sycara 

2008) gives the exception handling and recovery mechanisms in OWL-S by 
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introducing constraint violation handlers (CV-handlers) and combining them with 

event handlers. Moreover, (Wiesner et al., 2008) adds semantic annotation to these 

existing methods to generate more dynamic, flexible and adaptive ways of handling 

and recovering from failures. Methods like ReplaceByEquivalent and Advanced Back 

and Forward Recovery actions help to dynamically find alternatives to erroneous 

state, whereas as Automatic Compensation method uses the semantic information to 

undo the completed processes. Therefore, semantic web services can be a key solution 

for achieving dynamism with reliable and adaptable service executions. 

Earlier work with fault and exceptional handling in transactional workflow can 

be found in work such as the ConTract model (Wächter and Reuter 1992) and the 

CREW project (Kamath and Ramamritham 1998). The ConTract Model supports the 

correct execution of non-atomic, long-lived applications with application-dependent 

consistency constraints. The model provides a mechanism for grouping transactions 

into a multi-transaction activity. A ConTract consists of a set of predefined actions 

(steps) and an explicitly specified execution plan (script). The ConTract Model 

provides compensation for backward recovery, and user-defined consistency through 

the specification of pre-conditions or post-conditions for steps. After the execution of 

each step, the ConTract Model will release locks and if failure occurs, the ConTract 

Model will semantically undo the effect of completed steps. The pre-/post-condition 

guarantees the user-defined way of specifying correctness criteria. In the Correct and 

Reliable Execution of Workflows (CREW) project (Kamath and Ramamritham 1998), 

the correctness requirements and other constraints are specified for workflow 

executions based on the earlier work on transactional workflows such as ConTract 

model. A workflow executes in multiple steps, where a step is triggered by the 

completion of one or more previous steps, or the occurrence of specific events. The 

rules, events or conditions predefined will be used to dynamically generate the rule 

sets to manage the execution of workflows. A mechanism is proposed for the handling 

of failures to eliminate unnecessary compensations and re-execution of steps. 

Depending on whether the previous execution of steps is acceptable, complete 
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compensation and re-execution, or partial compensation and incremental re-execution 

is used to undo the effects. Therefore, CREW makes the execution of workflows more 

dynamic by the use of dynamic rule sets. The handling of failures and exceptions can 

be better managed during execution. 

Most of these projects do not fully utilize pre and post conditions or other 

constraint checking mechanisms integrated with a variety of recovery actions to 

support more dynamic and flexible ways of reacting to failures. The research 

described in this thesis demonstrates the viability of variegated recovery approaches 

within a BPEL-like execution environment. 

2.3 Events for Handling Failures and Exceptions 

An important aspect of business processes is to integrate them with business 

events and rules, which can enforce business policies and constraints during the 

execution of a business process. Event driven architectures provide an approach for 

designing and creating applications where events trigger certain actions in real-time 

(Michelson 2006). An event is a notable thing that may signify a problem or 

implement a problem, an opportunity, a threshold, or a deviation (Michelson 2006). A 

rules-based event processing agent may be used to listen to incoming events. Also, 

events can be used with rules for failure and recovery of activities. Rules provide a 

more dynamic way to react to events, providing an alternative to the normal flow of 

execution and creating more reactive and dynamic systems. Since there is an 

increasing occurrence of complex events, event-driven applications, and business 

activity monitoring, the use of rules in business process modeling is an increasing 

necessity. 

Events can be classified into application-oriented events, application 

exceptions, and system faults associated with service execution (Gannod, Burge, and 

Urban 2007). There are three general ways of processing the events (Michelson 2006): 

simple, stream, and complex. Events and rules can be used to control the flow of 

execution as wells as handling failures and exceptions that affect the normal flow of 
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execution. Active rules have been used to extend traditional database systems which 

are able to monitor and react to specific circumstances of relevance to an application 

by using the Event Condition Action (ECA) rules (Paton and Díaz 1999). Rules can be 

used to automatically execute actions in the case of an event, provided that the 

condition holds. Details about the benefits, challenges, and limits of using ECA rules 

for business processes can be found in (Bry et al., 2006). ECA rules are useful for 

efficient and convenient exception handling, since exceptions can be easily expressed 

as events. Even though some languages may only use ECA rules for controlling 

workflow, as in XChange (Bailey et al., 2005), workflow can be easily extended and 

implemented to handle failures and events using ECA rules. ECA rules have been 

successfully implemented for exception handling in (Brambilla et al., 2005) (Liu et al., 

2007). The work in (Liu et al., 2007) uses ECA rules to handle faults and then 

integrate ECA rules with normal business logic to generate reliable and fault-tolerant 

BPEL processes to overcome the limited fault handling capability in BPEL. Thus the 

use of rules increases the productivity and reusability by separating fault handling 

logic from normal business logic. Their future work is to use semantics for more 

efficient fault handling. In (Luo et al., 2000), justified ECA (JECA) rules are used to 

handle exceptions. In addition, a case-based reasoning (CBR) system is introduced 

which can provide a method to understand the exceptions and retrieve similar prior 

exception handling cases. The system can reuse the exception handling experiences 

captured in case of new circumstances. 

2.4 Aspect-Oriented Workflows 

Aspect-oriented programming (AOP) is another way of modularizing and 

adding flexibility to service composition through dynamic and autonomic composition 

and runtime recovery. In AOP, aspects are weaved into the execution of a program 

where join points are specified. Join points are well-defined points in the execution of 

the program. The behavioral code specified in the join point is known as advice. The 

advice code can be executed before, after, or instead of the join points (Charfi and 

Mezini 2007). The work in (Charfi and Mezini 2006) illustrates the application of 
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aspect-oriented software development concepts to workflow languages to provide 

flexible and adaptable workflows. AO4BPEL is presented in (Charfi and Mezini 2007) 

as an aspect-oriented extension to BPEL, where aspects can be plugged into the 

composition during runtime. The system uses AspectJ, which provides control flow 

adaptations such as insertion of a new activity to the process or replacement of an 

activity by another (Kiczales et al., 2001). AO4BPEL enhances the limited capabilities 

of BPEL in terms of modularity and dynamic adaptability. Aspects are written in 

XML in different files, helping to minimize the need for changing the composition 

during runtime. Business rules can also be used to provide more flexibility during 

service composition. Currently business rules are not well modularized in BPEL 

process specifications, thus AO4BPEL successfully addresses such issues. APs as 

described in this paper are similar to the concept of join points, with a novel focus on 

using APs to access process history data in support of constraint checking as well as 

flexible and dynamic recovery techniques.  

2.5 Conclusion 

In this related work section, we have described several past and ongoing 

research projects that support dynamic Web service composition with respect to fault 

and exception handling. Due to the distributed nature of services, the service 

composition is often inflexible and highly vulnerable to errors. Even BPEL, the de-

facto standard for composing Web services, still lacks sophistication with respect to 

handling faults and events as described in BPEL shortcomings in Section 2.3. The 

research in this thesis is different than the related work by providing comprehensive 

support for user-defined constraints with the use of pre, post, and conditional rules. In 

addition, the AP model integrates the rules with different recovery actions as well as 

user-defined compensation and contingency.  Thus, our model attempts to provide 

more flexible recovery process semantics with a focus on user-defined constraints, 

which is a combination of features that are not available in current or past research. 
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CHAPTER III 

OVERVIEW OF SERVICE COMPOSITION AND RECOVERY MODEL WITH 

ASSURANCE POINTS 

The research described in this thesis is an extension of the service composition 

and recovery model described in (Xiao and Urban 2009). The model is based on 

BPEL, with a nested composition structure and support for compensation and 

contingency. The model was originally defined to support a more flexible environment 

for research involving data dependency analysis and recovery procedures between 

concurrent processes (Xiao and Urban 2007), (Xiao and Urban 2008). This chapter 

gives an overview of the model in Section 3.1. Section 3.2 then presents assurance 

points, integration rules, and recovery actions supported by APs. An online shopping 

example is presented in Section 3.3 to illustrate the concepts.  

3.1 Overview of Service Composition and Recovery Model 

In (Xiao and Urban 2009), a process is defined as a top-level execution entity 

that is composed of other execution entities. A process is denoted as pi, where p 

represents a process and the subscript i represents a unique identifier of the process. 

An operation represents a service invocation, denoted as opi,j, such that op is an 

operation, i identifies the enclosing process pi, and j represents the unique identifier of 

the operation within pi. Compensation (copi,j) is an operation intended for backward 

recovery, while contingency (topi,j) is an operation used for forward recovery.  

An atomic group and a composite group are logical execution units that enable 

the specification of processes with complex control structure, facilitating service 

execution failure recovery by adding scopes within the context of a process execution. 

An atomic group (denoted agi,j) contains an operation, an optional compensation, and 

an optional contingency. A composite group (denoted cgi,k) may contain multiple 

atomic groups, and/or multiple composite groups that execute sequentially or in 

parallel. A composite group can have its own compensation and contingency as 

optional elements. A process is essentially a top-level composite group.  
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Figure 1 shows an abstract view of a sample process definition. The process p1 

is the top-level composite group cg1. The process p1 is composed of two composite 

groups cg1,1 and cg1,2, and an atomic group ag1,3. Similarly, cg1,1 and cg1,2 are composite 

groups that contain atomic groups. Each atomic and composite group can have an 

optional compensation plan and/or contingency plan. Some operations, such as op1,4, 

can also be marked as non-critical, meaning that the failure of the operation does not 

invoke any recovery activity and that the process can proceed even if the operation 

fails.  

 

Figure 1. An Abstract View of a Sample Process (Xiao and Urban 2009) 

Contingency is always tried first upon the failure of a group. Compensation 

will only be invoked if there is no contingency or if the contingency fails. For example 

in Figure 1, if op1,6 fails, top1,6 will be executed. If top1,6 fails, cg1,2 and cg1,1 will be 

compensated in that order. 

Compensation is a recovery activity that is only applied to completed atomic 

and composite groups. Shallow compensation involves the execution of a 

compensating procedure attached to an entire composite group, while deep 

compensation involves the execution of compensating procedures for each group 
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within a composite group. As an example in Figure 1, if the contingent procedure for 

op1,6 fails, the recovery process will first try to compensate cg1,2. Since cg1,2 does not 

have a compensating procedure for the entire group (i.e., no shallow compensation 

procedure), deep compensation will be invoked by executing cop1,5. Note that op1,4 is 

non-critical and does not require compensation. After deep compensation of cg1,2, cg1,1 

will be compensated. In this case, cg1,1 provides cg1,1.cop as a shallow compensation 

process. After compensating cg1,1, the contingent procedure for the top-most composite 

group (i.e., cg1.top) will be executed. The reader should refer to (Xiao and Urban 2009)  

for a  formal presentation of the recovery semantics. 

In the service composition and recovery model, more intelligent and automated 

compensation and contingency procedures are necessary for dynamic service 

composition. The goal of the AP concept is to create a more dynamic approach to the 

combined use of compensation and contingency procedures through the use of 

checkpointing and rules that can examine the execution state. Also in current 

DeltaGrid recovery procedures, faults are detected only during run-time. This can be 

significantly improved by adding pre-conditions and post-conditions, thus we can 

detect faults in advance and avoid failures by executing other likely successful 

alternatives. The details of the integration of APs and rules with the composition 

model are illustrated in next section. 

3.2 Extending the Model with Assurance Points and Rules 

Our work has extended the model described in the previous section with the 

concept of assurance points. An AP is a process execution correctness guard. Given 

that concurrent processes do not execute as traditional transactions in a service-

oriented environment, inserting APs at critical points in a process is important for 

checking consistency constraints and potentially reducing the risk of failure or 

inconsistent data. An AP also serves as a milestone for backward and forward 

recovery activities. When failures occur, APs can be used as rollback points for 

backward recovery, rechecking pre-conditions relevant to forward recovery. In the 
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current version of our work, we assume that APs are placed at points in a process 

where they are only executed once, and not embedded in iterative control structures. 

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?, IRcond*>, where: 

- apID is the unique identifier of the AP 

- apParameters is a list of critical data items to be stored as part of the AP, 

representing the current status of the process execution. 

- IRpre is an integration rule defining a pre-condition to be checked prior to the 

execution of an atomic or composite group. 

- IRpost is an integration rule defining a post-condition to be checked after the 

execution of an atomic or composite group. 

- IRcond is an integration rule defining additional application rules that invoke 

conditional actions that run in parallel with the main flow of execution. 

In the above notation, "*" indicates 0 or more occurrences, while "?" indicates an 

optional occurrence that can be either zero or one. 

IRpre, IRpost, and IRcond are expressed as Event-Condition-Action (ECA) rules 

using the format shown in Figure 2, which is based on previous work with using 

integration rules to interconnect software components (Urban et al., 2001), (Jin 2004). 

An IR is triggered by a process reaching a specific AP during execution. Upon 

reaching an AP, the condition of an IR is evaluated. The action specification is 

executed if the condition evaluates to true. For IRpre and IRpost, a constraint C is always 

expressed in a negative form (not(C)). The action (action 1) is therefore invoked if the 

pre or post condition is not true, invoking a recovery action or an alternative execution 

path.  If the specified action is a retry activity, then there is a possibility for the process 

to execute through the same pre or post condition a second time. In such a case, action 

2 is invoked rather than action 1, to invoke a different recovery action. 

When pre and post conditions fail (not(C) = True), recovery actions are invoked. 

In its most basic form, a recovery action simply invokes an alternative process. 

Recovery actions can also be one of the following actions: 
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- APRollback: APRollback is used when the entire process needs to be abandoned, 

which means that the execution engine compensates its way back to the start of the 

process according to the semantics of the service compensation model. 

- APRetry: APRetry is used when the running process needs to be backward 

recovered using compensation to a specific AP. By default, the backward recovery 

process will go to the first AP reached as part of the shallow or deep compensation 

process within the same scope. After backward recovery to the AP, the pre-

condition defined in the AP is re-checked. If the pre-condition is satisfied, the 

process execution is resumed from that AP by re-trying the recovered operations. 

Otherwise, the action of the pre-condition rule is executed. The APRetry command 

can optionally specify a parameter indicating the AP that is the target of the 

backward recovery process. 

- APCascadedContingency (APCC): APCC is a hierarchical backward recovery 

process that searches for a possible contingent procedure. During the APCC 

backward recovery process, when an AP is reached, the pre-condition defined in 

the AP will be re-checked before invoking any contingent procedures for forward 

recovery.  

CREATE RULE       ruleName::{pre | post | cond} 

EVENT                     apId(apParameters) 

CONDITION            rule condition specification 

ACTION                   action 1 

[ON RETRY             action 2] 

Figure 2. Integration Rule Structure 

The most basic use of an AP together with integration rules is shown in Figure 

3, which shows a process with three composite groups and an AP between each 

composite group. The shaded box shows the functionality of an AP using AP2 as an 

example.  Each AP serves as a checkpoint facility, storing execution status data in a 

checkpoint database (AP Data in Figure 3). When the execution reaches AP2, IRs 

associated with the AP are invoked. The condition of an IRpost is evaluated first to 
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validate the execution of cg2. If the post-condition is violated, the action invoked can 

be one of the pre-defined recovery actions as described above. If the post-condition is 

not violated, then an IRpre rule is evaluated to check the pre-condition for the next 

service execution. If the pre-condition is violated, one of the pre-defined recovery 

actions will be invoked. If the pre-condition is satisfied, the AP will check for any 

additional, conditional rules (IRcond) that may have been expressed. IRcond rules do not 

affect the normal flow of execution but provide a way to invoke additional parallel 

activity based on application requirements. Note that the expression of a pre-condition, 

post-condition or any additional condition is optional. 

Service Composition with AP

Cg1

Cg2

Cg3

AP1

AP2

IRpost

F

T

F

Conditional Operation

T

F
AP Data

Recovery Actions

APRetry

APRollback

APCC

Alternative 

Process

T

AP2

IRpre

IRcond

 

Figure 3. Basic Use of AP and Integration Rules 

3.3 Online Shopping Example 

This section provides a specific example of assurance points, integration rules, 

and conditional rules using an online shopping application. A typical online shopping 

process contains several phases such as selecting goods; paying the bill; shipping 

goods, and delivering goods. Based on these phases, a process example using APs is 

presented in Figure 4.  All atomic and composite groups are shown in the solid line 
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rectangles, while optional compensations and contingencies are shown in dash line 

rectangles denoted as cop and top, respectively. APs are shown as ovals between 

composite and/or atomic groups. To simplify the case for illustration of the concepts, 

several suppositions are made: 

a) If the transaction amount is greater than $1000, the system will automatically send 

an SMS notice to the customer after the money is charged successfully. 

b) The customer pays an extra shipping fee for UPS overnight delivery. If UPS fails 

to deliver the item overnight, the extra shipping fee will be refunded. 

c) The order will be open for cancellation (return) for 30 days after the delivery date. 

Then the order will be closed. 

The available AP identifiers and parameters for the online shopping process 

are shown in Table 1, which corresponds to Figure 4. Also, Table 1 shows the 

integration rules and conditional rules associated with the APs in Figure 4. Below, the 

components of an assurance point are explained using the APs in Figure 4 and the 

rules in Table 1.  

Component 1 (AP Identifiers and Parameters): The AP identifier defines the current 

execution status of a process instance. Each AP may optionally specify parameters that 

store critical data when the process execution reaches the AP. The data can then be 

examined in the conditions of rules associated with the AP. For example, the first AP 

is orderPlaced, which reflects that the customer has finished placing the shopping 

order. The parameter is orderId (the identifier of the order), which is used in the rules 

associated with the AP as described in Component 2 below. 

Component 2 (Integration Rules): An integration rule is optionally used as a transition 

between logical components of a process to check pre and post conditions. In Table 1, 

the orderPlaced AP has a pre-condition that guarantees that the store must have enough 

goods in stock. Otherwise, the process invokes the backOrderPurchase process. The 

CreditCardCharged AP has a post-condition that further guarantees the in-stock quantity 

must be in a reasonable status after the decInventory operation. 
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Figure 4. Online Shopping Process with APs 
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Table 1. AP Structure in the Online Shopping Process  
 

Assurance Point  

Identifiers and Parameters 
Integration Rule Conditional Rule 

 
OrderPlaced (orderId, itemID, N) 

 

orderId is the identifier of the 

order  

 

itemID is the ID number of the 

goods; 

 

N is a number which represents 

the order quantity. 

 

create rule QuantityCheck::pre 

event: OrderPlaced (orderId) 

condition: exists(select L.itemId 
from Inventory I, LineItem L where 
L.orderId=orderId and 
L.itemId=I.itemId and 
L.quantity>I.quantity) 
action: 

backOrderPurchase(orderId) 

 

 

CreditCardCharged (orderId, 

cardNumber, amount) 
 

cardNumber is the card to be 

charged 

 

amount is a number which 

represents the shipping charge. 

 

create rule QuantityCheck::post 

event: CreditCardCharged 

(orderId, cardNumber, amount) 
condition: exists(select L.itemId 
from Inventory I, LineItem L where 
L.orderId=orderId and 
L.itemId=I.itemId and I.quantity<0) 
action1: APRetry 

action2: APRollback 

 

create rule Notice::cond 

event: CreditCardCharged 

(orderId, cardNumber , amount) 
condition: amount > $1000 

action: 

highExpenseNotice(cardNumbe

r) 

UPSShipped(orderId, 

UPSShippingDate) 

 

UPSShippingDate is the date on 

which the UPS gets the item. 

 

 

 

 

USPSShipped (orderId) 
 

 

 

 

Delivered(orderId, 

shippingMethod, deliveryDate) 

 

shippingMethod is either UPS or 

USPS; 

 

deliveryDate is the delivery date. 

 

 

 

 

 

 

 

 

create rule 

ShippingRefund::cond 

event: Delivered (orderId, 

shippingMethod, deliveryDate) 

condition: shippingMethod = 

UPS && deliveryDate != 

UPSShipped.UPSShippingDate+1 

action: 

refundUPSShippingCharge(orderId
) 
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Component 3 (Conditional Rule): In Table 1, the CreditCardCharged AP has a 

conditional rule associated with the Delivered AP that sends a text message 

notification for large charges. After the execution of ag4, the Delivered AP is reached. 

Since no pre or post condition is specified, only the conditional rule shippingRefund is 

evaluated. Assume the delivery method was overnight through UPS with an extra 

shipping fee. If UPS has delivered the item on time, then the Delivered AP is complete 

and execution continues. Otherwise, the conditional action refundUPSShippingCharge is 

invoked to refund the extra fee and the process execution continues. If backward 

recovery with retry takes place, it is possible that the process will execution the same 

conditional rule a second time. The action of the rule will only be executed during the 

retry process if the action was not executed the first time through.  

3.4 Summary 

As demonstrated through the online shopping process, we have enhanced 

previous work with a service composition and recovery model with addition of user-

defined constraints and different recovery actions to provide more flexible options for 

recovering a process. In the next chapter, a prototype of the AP model is presented 

with algorithms that illustrate the semantics of different recovery actions with generic 

sample scenarios. 
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CHAPTER IV 

A PROTOTYPE OF ASSURANCE POINTS, INTEGRATION RULES, AND 

RECOVERY ACTIONS 

To illustrate the feasibility of the AP model, this research has prototyped an 

execution environment to demonstrate the extended service composition and recovery 

model with APs and integration rules. BPEL was not used for the prototype since the 

broader scope of the research is addressing techniques for decentralized data 

dependency among distributed Process Execution Agents (PEXAs) (Urban, Ziao, and 

Le 2009), where PEXAs execute processes, communicate about process failures, 

identify processes that are dependent on a failed process, and invoke recovery 

procedures on dependent processes. Existing BPEL engines do not provide the 

flexibility needed to experiment with this form of decentralized communication 

among process execution engines. The process specification framework, however, is 

based on BPEL using the Process Modeling Language (PML) described in (Ma et al., 

2005). This work therefore demonstrates the feasibility of extending or modifying 

BPEL in the future to support assurance points and the recovery capabilities described 

in this thesis.  

The following sections provide details of the implementation of APs and rules. 

Section 4.1 explains the structure and syntax design of APs and integration rules. 

Section 4.2 discusses the implementation of the execution engine using XMLBeans. 

Section 4.3 and Section 4.4 presents algorithms and recovery action semantics with 

the use of generic examples in Section 4.5. Section 4.6 presents the execution history 

generation feature. Section 4.7 provides a summary of the prototype. 

4.1 Specification of Assurance Points and Integration Rules  

This section presents a framework for the specification of assurance points and 

integration rules. Section 4.1.1 gives an overview of the existing PML. Section 4.1.2 

introduces the syntax for the APs and integration rules with supporting examples that 

were extended to support APs and rules.  
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4.1.1 PML Overview 

The PML described in (Ma et al., 2005) is an XML-based modeling language 

for defining processes using the basic functionalities from BPEL, such as invoke as 

well as different forms of control flow specification. An XML format is desirable for 

the language specification since XML is extensible and platform-independent. The 

activities supported by the PML are invoke, assign, sequence, flow, switch, and while 

activities. Support for exception handling and failure recovery was used initially in 

(Lao 2005) to enhance the PML with the features that support the use of compensation 

and contingency plans during execution of processes. The enhanced version in (Lao 

2005) added elements for the specification of atomic groups, composite groups, 

contingency plan, and compensation plans. The work in (Xiao and Urban 2009) 

provides state diagrams that define the semantics of the model for the use of 

compensation and contingency. An initial overview of the semantics of the model was 

presented in Section 3.1. This section demonstrates how PML has been extended to 

incorporate the AP concept with integration rules and the recovery actions outlines in 

Chapter 3.  

4.1.2 AP and Integration Rule Syntax 

The process specification framework uses a minimal set of activities, such as 

assign, invoke, and switch to illustrate the functionality of APs and the different forms 

of recovery. We have added the capabilities to define atomic groups and composite 

groups, with features to express compensation and contingency. Table 2 shows the list 

of activities supported by our process modeling language to illustrate the AP model. 

There are two activity categories: atomic activities and complex activities. The atomic 

activities consist of invoke for service invocation, assign for changing variable values, 

ag for atomic group, cg for composite group, top for contingency, cop for 

compensation, and ap for assurance points. The complex activities category includes 

switch to define alternate control flow. As a simplifying assumption in this initial stage 

of the research, we have omitted looping and parallel constructs to clearly demonstrate 
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the functionality of APs and recovery actions. Future research directions will address 

support for these features. 

Table 2. Activities 

Activity Type Activity Description 

Atomic assign Changes the value of a property 

 invoke Performs or invokes an operation involving the 

exchange of input and output messages 

 ag Atomic Group containing a single invoke activity 

with an optional contingency plan or 

compensation plan 

 cg Composite Group which containing one or more 

atomic or composite groups with an optional 

contingency plan or compensation plan 

 top Contingency plan for executing an alternate 

action 

 cop Compensation plan for executing a logical 

rollback 

 ap 

 

Assurance points for invoking integration rules 

and recovery activity 

Complex switch 
Executes activities from one of multiple sets, 

based on a Boolean value 

 

The following notation guidelines will help to read the scripts used in this thesis: 

- "?" indicates an optional occurrence that can be either zero or one,  

- "*" means 0 or more occurrences, and  

- "+" specifies 1 or more occurrences.  

An XML Schema is provided as a formal definition of the language features. 

The XML Schema with support for APs is shown in Appendix I, with the XML 

schema definition for integration rules in Appendix II. 
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An AP definition contains an AP name together with zero or more variables as 

parameters, indicated by apDataIn. The actual variable refers to global process 

variables defined in the variables section of the process definition. The apDataIn 

variable should be one of the variables defined in the variable element. The following 

figure shows the general structure of how an AP and its parameters are defined. The 

name of the first AP parameter is variable1. For an AP, there can be more than one 

parameter or no parameters at all. 

 

Figure 5. AP Specification Syntax 

An integration rule definition supports the list of events, conditions, and 

actions that can be correlated with a named AP in the process specification. Figure 6 

shows the general structure of how an integration rule with its events, conditions, and 

actions are defined. The rules construct can contain zero or more events, where each 

event is associated with an AP name. The event element can contain zero or one pre-

condition rule, zero or one post-condition rule, or zero or more conditional rule 

definitions. Each of these must have one condition and one or more actions defined. 

The condition element must have an invoke construct which allows a process to invoke a 

request-response operation on a Port Type offered by a Web Service. The details of the 

invoke construct is described in (Ma et al., 2005). The actions elements can have one or 

more actions, where each action can be APRetry, APRollback, APCC, or the name of a 

Web Service that can be used to invoke an alternate execution path. 

Figure 7 shows a sample process in XML to illustrate the syntax for defining 

atomic (<ag …>) and composite (<cg …>) groups with compensating (<cop …>) and 

contingent (<top …>) procedures. The syntax for APs and their parameters are also 

<process> 
     .      .      . 
     <ap name= “APName”> *    
          <apDataIn variable=“variable1” /> * 
     </ap> 
     .      .      . 
<process> 
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illustrated (<ap …>).  This syntax is used to illustrate the XML grammar of the 

language structure using the Online Shopping Process as described in Section 3.1.  

 

Figure 6. Rule Specification Syntax 

Figure 8 shows the XML rule specification associated with the orderPlacedAP 

in Figure 7. Each rule indicates the event (i.e., assurance point) that triggers the rule 

(<event ap = …>), whether the rule is a pre (<pre>) or post (<post>) condition or a 

conditional (<cond>) rule, as well as the condition (<condition …>) and action (<action 

…>) of the rule, where rule conditions are implemented in web services. In Figure 7, 

composite group cg0 has two APs defined: orderPlacedAP and creditCardChargedAP. 

When the execution reaches orderPlacedAP during normal execution, it checks the 

corresponding pre-condition, i.e., QuantityCheck as described in Figure 8. If the 

condition is not satisfied, the corresponding action is invoked, i.e., backOrderPurchase 

<rules> 
<event ap=”APName”> * 
    <pre> ? 
        <ecaRule>  
            <condition name=“conditionName”> 

<invoke serviceName="ncname" portType="qname” 
operation="ncname" inputVariable="ncname"?  
outputVariable="ncname"?>  

</invoke> 
            </condition> 
            <actions> 

<action name=“actionName”> + 
<invoke serviceName="ncname" portType="qname”     
     operation="ncname"  inputVariable="ncname"?   
     outputVariable="ncname"?>? 
</invoke> 

</action> 
            </actions> 
 
        </ecaRule> 
 
    </pre> 

. 

. 

. 
</event>    

</rules> 
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procedure is called.  Otherwise, the AP and process execution continues (as defined in 

this chapter). The complete process definitions for the online shopping process are 

presented in Appendix III with the corresponding rule definitions in Appendix IV. 

 

Figure 7. Process Sample 

<cg name= “cg0”> 
     .      .      .  
     <ap name= “OrderPlacedAP”>    
          <apDataIn variable=“orderId” /> 
     </ap> 
 
     <ag name = “ag02”  

<invoke name=“makePayment” serviceName=“creditCard1” 
  portType=“cc:CreditCardPortType” operation=“makePayment”     
  inputVariable = “makePaymentInput”  
  outputVariable = “makePaymentOutput” /> 
 

<top name=“top02”> 
          <invoke name=“makePayment” serviceName=“creditCard2”     
            portType=“cc:CreditCardPortType” operation=“makePayment”  
            inputVariable = “makePaymentInput”   

      outputVariable=“makePaymentOutput” /> 
</top> 
 
<cop name=“cop02”> 
          <invoke name=“makeRefund” serviceName=“creditCard1”     
            portType=“cc:CreditCardPortType” operation=“ makeRefund”  
            inputVariable = “makePaymentInput”  

      outputVariable= “makeRefundOutput” /> 
</cop> 

     </ag> 
 
     <ap name= “creditCardChargedAP”>    
          <apDataIn variable=“orderId” /> 
          <apDataIn variable=“cardNumber” /> 
          <apDataIn variable=“amount” /> 
     </ap> 
 
     .      .      . 
<cg> 
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Figure 8. Rules Sample 

4.2 Process Execution Architecture 

The parser in charge of the XML Java binding process has been implemented 

in the execution engine using XMLBeans. The XML Java binding process fully 

utilizes the XML Schema definition for unmarshalling and validating XML input 

documents.  XML schema defines the language syntax and is used for document 

validation. The execution engine uses NetBeans IDE. After parsing a process defined 

in XML, XMLBeans creates the Java types that represent schema types, which makes 

it easier to access the instances of the schema through get and set methods. The 

processor initializes variables and begins executing the activities defined in the input 

XML script. For each activity defined, a wrapper class has been developed that 

implements the semantics of the activity. The processor keeps track of nested 

execution layers for supporting the different recovery options. AP data is also stored in 

a db40 object-oriented database (db4objects 2006).  

<rules> 
     .      .      .   

<event ap="orderPlacedAP"> 
    <pre> 
        <ecaRule> 
            <condition name=“QuantityCheck” 
                 <invoke name="checkQuantity" serviceName="ruleConditions" 
                    portType=“rule:ruleConditionsPortType” operation="checkQuantity1"  
                    inputVariable="quantity" outputVariable="result" /> 
            </condition> 
 
            <actions> 

     <action name=“backOrderPurchase”> 
                    <invoke name="backOrderPurchase" serviceName="shopping" 
                    portType=“sho:ShoppingPortType” operation="BackOrderPurchase"  
                    inputVariable="orderId" outputVariable="result" /> 

     </action> 
            </actions> 
        </ecaRule> 
    </pre> 
</event> 

     .       .      . 
</rules> 
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Figure 9 shows a revised version of the execution engine originally presented 

in (Ma et al., 2005). The execution engine consists of three components: the XML 

parser, the XML processor, and the History Manager. 

Execution Engine

Processor
<xsd>

…

…

</xsd>

Process Modeling 

Language Definition

XML Java Binding

History Manager

XML Script for 

Application Process 

Definition

...

<process>

…

…

</process>

Web 

Service

Web 

Service

DB4O

 

Figure 9.  The Execution Engine Architecture 

The XML parser converts an XML document to a Java representation. The 

process is also called XML Java data binding, which allows a simple and direct way to 

use XML in applications. With data binding, an application can largely ignore the 

actual structure of XML documents and work directly with the data content of each 

document. In the XML Java binding process, marshalling is the process of generating 

an XML representation for a Java object in memory. Unmarshalling is the reverse 

process, building a Java object (and dependent objects) in memory from an XML 

representation. XML Java binding can be achieved by code generation, which builds 

classes that reflect the XML document structure and provides a convenient approach 

to start working with documents quickly. 

After the parsing process, the XML processor initializes process parameters, 

service provider information, and variable information and starts executing activities. 

The XML processor is the core component in the execution engine and is also in 
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charge of Web service invocation. The processor utilizes and integrates other 

components to provide all functionalities supported by the execution engine. 

The history of the process execution includes metadata and runtime execution 

information. Process metadata can be extracted by querying a process specification 

described in an XML format. At runtime, the execution history, including the 

information of the process, and Web service invocations are created during the process 

execution and written to an object oriented database. 

The execution engine has been implemented using NetBeans, an open source 

extensible integrated development environment. The APProject NetBeans project was 

created which contains all the java binding process files, implementation files, and 

execution history generation files. The file structure is shown in Table 3. 

Table 3. File Structure for the AP Project 

File or Folder Content 

build.xml The build file for the xmlbeans project that contains all 

tasks for the binding process. 

/src 

└─/impl 

└─/org.ap.pml 

└─/org.ap.eca 

└─/org.ap.db4o 

Contains Java source file folder: 

-Folder impl includes the source code for the execution 

engine,                                                                

- pml and eca folders contains the Java class files generated 

by XMLbeans during Java binding process, 

-db4o contains the database files and other execution 

history generating implementation Java files. 

/file 

└─/test 

Contains input files 

Test input files, including XML scripts 

/lib The libraries used in this project, including the xmlbeans.jar. 

/build The class file folder containing all Java sources. 

/schemas XML Schema folder containing:  pml.xsd, rule.xsd 
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The XML Java binding process has been implemented in the AP project using 

XMLBeans (XMLBeans 2005). The XML Java binding process can be done by 

running the default task defined in the build file. Before running the build task, the 

XML Schema, named pml.xsd and rules.xsd has to exist in the /schemas directory. A 

Java representation of the schema (a jar file) is created for use by the execution engine. 

The actual binding process consists of two steps: 1) the XMLBeans compiler 

generates a Java representation of the XML Schema. This representation is a set of 

generic Java classes and interfaces that represent the structure and constraints of the 

schema, and 2) an actual XML instance document, the XML process script that 

conforms to the above schema, is bound to the instances of the Java classes and 

interfaces generated in Step 1. The binding process involves using the XMLBeans API 

to access the data in the actual XML instance document in an object-oriented manner. 

XMLBeans performs the code generation for each of the elements of the XML 

schema into the source tree of the project using the Ant task named xmlbean defined in 

the build.xml as shown in Figure 10. The standard build process of the project compiles 

those sources.  In this way, we can make sure that any schema changes are reflected in 

the generated code on the next compile. More details of the Ant Task with XMLBeans 

can be found in (Xmlbean Ant Task 2010). 

 

Figure 10. Configuration of XMLBeans in NetBeans 

<taskdef name="xmlbean" 
         classname="org.apache.xmlbeans.impl.tool.XMLBean" 
         classpath=" lib/xbean.jar" /> 
<target name="-pre-compile"> 
         <antcall target="gen-schema"/> 
</target>      
<target name="gen-schema"> 
         <xmlbean srconly="true" 
             verbose="true"  srcgendir="src" 
             failonerror="true" download="true" 
             classgendir="${build.dir}" 
             classpath="${classes.path}" 
             destfile="APSchema.jar"> 
             <fileset dir="schema/" includes="**/*.xsd"/>              
         </xmlbean>              
</target> 
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Figure 11 shows the class diagram of the actual Java interfaces generated for the 

process XML Schema file. The XMLBeans generates an interface for each type 

defined in the schema, such as the process type (ProcessType) and the activity type 

(ActivityType). Each interface contains get and set methods to retrieve and modify 

attribute information. The get and set methods are shown for the ActivityType interface. 

All interfaces of the activity (invoke, assign, cop, top, ag, cg, ap) extend a generic 

interface ActivityType. Similarly, Figure 12 shows the class diagram for the rule XML 

Schema file. The interface for each type defined in the schema such as the event type 

(EventType), condition type (ConditionType), and the actions type (ActionsType) are 

generated by XMLBeans with get and set methods to retrieve and modify attribute 

information. This generic activity interface abstracts all activities which can be 

executed by the execution engine to provide an object-oriented design hierarchy. 

Figure 13 shows how to bind an incoming XML document instance to the 

ProcessType interface described above in Step 2. This code creates a method that 

receives a file representing the XML process instance. The XML document containing 

the root element and its children is bound to the ProcessDocument interface generated 

in Step 1 by calling the ProcessDocument.Factory.parse method. The ProcessDocument 

interface provides a factory class with which to create a new process document 

instance. The factory class provides various versions of the parse method, each 

receiving XML source as a different Java type (file, input stream, or URL). Once the 

ProcessDocument object is created, the process definition is easily obtained by calling 

the getProcess method on the document object. 

The code generated by XMLBeans only contains the static information defined 

in an XML file. The actual behavior of each activity has been implemented by the 

activity wrappers in the AP project. The AP project files are integrated with the 

XMLBeans-generated files as shown in Table 3.  There are nine activity wrappers 

implemented in the execution engine corresponding to the activities listed in Table 2. 

The high level wrapper class hierarchy is shown in Figure 14. 
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+isSetName() : Boolean

+getName() : String

+setName() : void

+unsetName() : void

«interface»

ActivityType

«interface»

ProcessType

«interface»

ProcessParamsType

«interface»

InvokeType
«interface»

AssignType

«interface»

AGType

«interface»

CGType

«interface»

COPType

«interface»

ServiceProviderType

«interface»

VariablesType

«interface»

VariableType

«interface»

CopyType

«interface»

APType

 

Figure 11. Class diagram of the Process XML Schema 

 

«interface»

ECARuleType

«interface»

PostType

«interface»

PreType

«interface»

CondType

«interface»

RulesType

«interface»

ActionsType

«interface»

EventType

«interface»

ConditionType

«interface»

ActionType

 

Figure 12. Class diagram of the Rule XML Schema 

 

 

Figure 13. Code for binding a Process XML document 

public static org.ap.pml.ProcessType createIpmlProcess(File file) { 
            org.ap.pml.ProcessDocument pDoc = null; 
            try { 
                pDoc = ProcessDocument.Factory.parse(file); 
            } catch (XmlException e) { 
                e.printStackTrace(); 
            } catch (IOException e) { 
                e.printStackTrace(); 
            }             
            return pDoc.getProcess(); 

        }     
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AssignWrapperInvokeWrapper

ProcessWrapper

COPWrapper TOPWrapper APWrapperAGWrapper CGWrapper

+run() : void

+execute() : void

+Executable Activity()

+getRunLayer() : string

+setRunLayer() : string

ExecutabkeActivity

-run_layer : string

SwitchWrapper

 

Figure 14. Class diagram of activity wrappers 

 

As shown in Figure 14, an abstract class ExecutableActivity is defined as the 

super class for the eight activity wrappers. This class provides the basic common 

functions that are supported by the activity wrappers. Two important methods are 

defined in the ExecutableActivity class. The first method is called execute. The second 

method is an abstract method, named run, called by the execute method. The abstract 

run method is the place where the execution uniqueness of each activity is defined. 

Each concrete subclass has to implement the run method. In addition, all activities will 

have private member variables called run_layer. This variable helps to differentiate the 

layers that each activity is running on so that the semantics of AP recovery actions can 

be executed successfully. The explanation of the process wrapper and AP wrapper 

with recovery algorithm details are presented in the following two sub-sections.  

4.3 Process Wrapper 

The ProcessWrapper is the wrapper class for the top-level process. The class 

maintains all of the defined variables and service provider information. Variables and 

service instances are managed in a hash table in the process wrapper. The key to the 

variable hash table is the variable name and the value is the variable object. The key to 

the service hash table is the instance name defined in XML instance file.  
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The process starts by executing a composite group, since the top layer process 

is itself a composite group with no higher enclosing construct. Therefore, the logical 

flow of the activities starts with the execution of the CompositeWrapper class, which 

implements how each activity inside the composite group should be handled. Figures 

15(a) and 15(b) show the logic of executeCG. Each composite group can have several 

other activities and each of these activities can be executed or skipped based on the 

semantics of the recovery actions mode. There are three process boolean variables, 

which are used to indicate the invoked recovery actions as defined in Section 3.2: 

APROLLBACK, APRETRY, and APCC. These variables are saved in the variables hash 

table with other variables.  

When the process begins, the recovery mode variables are set to false as a 

default value to indicate that no recovery action has been set. However,  when an 

internal error occurs or when certain rule conditions are not satisfied, then any one 

mode may be turned on at one time by setting the variable to true instead of false. Also, 

after executing or skipping an activity, the state of the process is checked. If there is an 

error in any one operation, the process immediately tries to find the contingency for 

the corresponding atomic group. If the contingency succeeds, the process continues, 

but if the contingency fails or does not exist, then the process goes into APCC mode. 

Even if there is no error, the recovery mode may have been set to true due to failure to 

satisfy a rule condition. In this case, if the mode is APRETRY or APROLLBACK, then 

either the composite or atomic group is compensated. For the APCC mode, the 

semantics are more complex. If an activity is a composite group where the APCC mode 

is set, then the compensation begins to recover inside the scope of the composite 

group. When the process reaches the outside layer of the composite group after 

running compensation the process checks if there is an AP immediately preceding the 

activity in the same scope. If there is, then the process goes back to the previous AP to 

check the pre-condition before trying to execute the contingency of atomic or 

contingency group. If there is no AP specified, the process assumes that the pre-

condition is satisfied and tries to continue the process by executing the contingent 
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Figure 15(a). Execution of a Composite Group 

void executeCG(org.ap.pml.CGType cgTypeObj) { 
// For Each Activity in composite group  
for(int i=0; cgTypeObj.getActivityArray().length > i; i++) { 

// if the process is the top most layer and No more Previous Activity Exists during backward recovery 
if ((i<0) && (this.getRunLayer().equalsIgnoreCase("0")))  {  

                if ((Boolean) ProcessWrapper.variables.get("APCC")) { //check if the process is in APCC 
Mode 

                     success = findContingency(this.cgTypeObj); //invoke contingency if available 
                } 
                break; //break for For Loop and end of recovery 
       }   
 

Cases if Activity is 
AG: //AG is of type org.ap.pml.AGType 
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode 

error = ExecuteActivity (AGWrapper);  
 break; //break for Case 
CG: //CG is of type org.ap.pml.CGType 
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode 

ExecuteActivity (CGWrapper); //CG is of type org.ap.pml.CGType 
 If (APCC && (Reached Outside Layer)) { // reaches parent scope during backward 
recovery 
  boolean checkAPPrev = checkAPPrevious(); //Check if Previous Activity is AP 

if (!checkAPPrev)  { //No AP is found 
findTOP (CG)  //find contingency assuming precondition is satisfied 

Succeeds 
       setAPCC(false); //continue forward execution 
Fails 
       //still under APCC mode 

} 
 } 
 break; //break for Case 
AP: //AP is of type org.ap.pml.APType 
 If (!APCC && !APRetry && !APRollback) //None of the Recovery mode is on -Default Mode 
  ExecuteActivity (APWrapper, getAPRules(APName)); 

else If (!APRollBack && (APCC || APRetry)) {  
If (APRetry && ((APDefined = APName) || (APDefined = null) )) 
 ExecuteActivity (APWrapper, getAPRules(APName)); 

  else if (APCC && Reached Outside Layer) 
ExecuteActivity (APWrapper, getAPRules(APName)); 

} 
break; //break for Case 

Assign: //Assign is of type org.ap.pml.AssignType 
 If (!APCC && !APRollBack && !APRetry) //None of the Recovery mode is on-Default Mode 

ExecuteActivity (AssignWrapper);  
 break; //break for Case 
Switch: //Switch is of type org.ap.pml.SwitchType 

ExecuteActivity (SwitchWrapper); 
break; //break for Case 

End Case //end of executing activity 
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Figure 15(b). Execution of a Composite Group (Continued) 

 

 

Cases after Executing/Skipping Activity 
error:          //Internal Error 

findTOP (AG)  
Succeeds 

setAPCC(false); //continue forward execution  
Fails 

setAPCC(true);  
i = i - 2; //go to previous activity 

break;  
APCC: 

If (!CheckAPPrev) {   
If (Activity = AP) && (Reached Outside Layer while Recovering) { 

i = i + 1; //Go to Next Activity, i.e. AG/CG 
findTOP (AG/CG)  

Succeeds 
//Continue to Next Activity 

Fails 
        i = i - 2; //go to previous activity to continue APCC mode 

} 
else If (Activity = AG/CG) && (Not Reached Outside Layer while Recovering) { 

findCOP (AG/CG); // Deep or Shallow compensation for CG 
i = i - 2; //go to previous activity to continue APCC mode 

    } 
else  

i = i - 2; //go to previous activity to continue APCC mode 
     

} 
else {      

    i = i - 2; //go to previous activity to continue APCC mode 
    checkAPPrev =  false; //reset the variable 

} 
break; 

APRollBack || APRetry: 
If (Activity = AG/CG) 

    findCOP (AG/CG); //can be Deep or Shallow for CG 
i = i - 2; //go to previous activity to continue APRollBack || APRetry mode  
break; 

Default:  
             //continue to forward execution  

break; //running on normal mode, i.e. No Recovery mode is on or No error has 
occurred 

End Case  
     } 
} 
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procedure.  

The contingency and compensation procedures follows the same semantics for 

the atomic and composite groups as described in (Xiao and Urban 2007). In this thesis, 

we’ve simplified the compensation and contingency procedure as shown in Figure 16 

and Figure 17, respectively. The findCompensation procedure will execute the 

compensation activity if it is available for a completed atomic or composite group. If 

the compensation is not available for the atomic group, it is assumed to be non-critical 

and execution continues with compensation of other activities. But if the 

compensation is not available for the composite group, then the procedure will look 

for nested atomic or composite groups and execute the available compensation activity 

in a recursive way. Sometimes the compensation activity might not be executed 

successfully for a composite group. In such a case, the recursive procedure will look 

for nested atomic or composite group and compensates accordingly. The 

findContingency procedure is straightforward, where the contingency activity is 

executed if it is available and returns true if successfully completed, otherwise it will 

return false. Also, in case of unavailability of a contingency procedure, it will return 

false. 

 

Figure 16. Compensation Implementation 

void  findCompensation(org.ap.pml.ActivityType activityType) {       
 

Cases if activityType is 
        AG: //AG is of type org.ap.pml.AGType 
 If AG has cop  

Execute AG.cop; 
        CG: //CG is of type org.ap.pml.CGType 
 If CG has cop 

Execute CG.cop; //shallow compensation 
Suceeds 

Continue 
   Failure 
    For Each subGroup //in reverse order 
     findCompensation(AG/CG) 
 else 
  For Each subGroup //in reverse order 
   findCompensation(AG/CG)  

 } 
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Figure 17. Contingency Implementation 

4.4 AP Wrapper 

The APWrapper is the wrapper class that contains the AP logic. The AP 

wrapper implements the functionalities of an ap activity with the use of integration 

rules. Before executing the ap activity, the rules are initialized based on the AP name 

defined in the rule and XML scripts. Figure 18 shows the code for binding an XML 

rule file which is similar to the description of Figure 12 for process rule documents. 

 

Figure 18. Code for binding an XML Rule Document 

 

 

 
public org.ap.eca.RulesType setRules(File file) { 
        org.ap.eca.RulesDocument rulesDoc = null; 
        try { 
            rulesDoc = org.ap.eca.RulesDocument.Factory.parse(file); 
        } catch (XmlException e) { 
            e.printStackTrace(); 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
        return rulesDoc.getRules(); 
    } 

 
boolean findContingency(org.ap.pml.ActivityType activityType) { 
 

Cases if activityType is 
        AG: //AG is of type org.ap.pml.AGType 
 If AG has top 

return Execute AG.top; 
 else 
  return False; 
        CG: //CG is of type org.ap.pml.CGType 
 If CG has top 

return Execute CG.top;  
 else 
  return False; 

} 
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The ap activity can be executed in two ways:  

1) Normal: when the particular AP is reached for the first time, there has been no 

error during execution, and none of the recovery actions have been specified. 

2) Revisit: when the particular AP has been reached again during the recovery 

process, since an error might have occurred or one of the recovery actions has been 

specified. 

The pseudo code in Figures 19(a) and 19(b) presents the logic of AP execution. 

During normal AP execution, the post condition is checked first. If the post-condition 

is not violated then the pre-condition is evaluated. Similarly, if the pre-condition is 

satisfied, the conditional rules are evaluated. During the course of condition 

validation, the AP calls the integrationRule function, where the condition is evaluated 

through the evaluateCondition method. This method invokes the operation by calling a 

Web service for the corresponding condition as specified in the rule file. If the 

condition is not violated then the method returns false, else the method looks for the 

action. For the sake of simplicity, we have assumed that the rule file can specify at 

most two actions, even though it can be manipulated with more actions as necessary. 

The global integer variable countHerebefore, keeps track of whether the process has 

reached a certain AP before. If the process execution reaches an AP for the first time, 

then the first action is executed. If during RETRY mode the process reaches the same 

AP again, the second action is executed. Moreover, there might be chances of calling 

APRETRY again for three or more times. In this case, the default APROLLBACK mode is 

turned on. The executeAction function is invoked to execute the action to turn on one of 

the recovery modes. The action can invoke a procedure through a Web service, which 

is accomplished by invokeAction function. 

During the revisit of an AP, the revisitAP procedure is called which has 

semantics similar to normalAP. The main difference is that it does not have a post-

condition check since we are retrying the process from a certain AP point by looking 

through contingencies. Thus we want to check the pre-condition again. Also, when 
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revisiting the AP, a conditional rule is evaluated only if the action has not been 

executed the first time through. 

 

Figure 19(a). AP Wrapper Implementation 

 

void execute(org.ap.pml.APType apObjectType, org.ap.eca.RulesType rulesType) { 
 

If (APRetry || APCC) 
revisitAP(); 

 else 
  normalAP(); 
} 
 
void normalAP() { 
 
 if (PostConditionRule Exists) 
  integrationRule (PostConditionRuleType) ;  
 if (PostCondition does not Exists) || (PostCondition is Satisfied)) { 
  if (PreConditionRule Exists)  
   integrationRule (PreConditionRuleType)   

 if (PreConditionRule does not Exists) || (PreCondition is Satisfied)) { 
  if (ConditionalRule Exists)  

                    for (int i=0; i< eventTypeObj.getCondArray().length; i++) { 
                        if (condRule(eventTypeObj.getCondArray(i)))  
                             // Conditional Rule Violated 
                     }  
}    

 } 
} 
 
void revisitAP() { 
 
 if (PreConditionRule Exists)  
  integrationRule (PreConditionRuleType)  
 
 if (PreConditionRule does not Exists) || (PreCondition is Satisfied)) { 
 
  if (ConditionalRule Exists) && (Action for Conditional Rule Not Executed Before) { 
                     for (int i=0; i< eventTypeObj.getCondArray().length; i++) { 

                        if (condRule(eventTypeObj.getCondArray(i)))  
                             // Conditional Rule Violated 

                            } 
  } 
 }       

} 
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Figure 19(b). AP Wrapper Implementation (Continued) 

 

boolean integrationRule(ecaRuleType) { 
boolean executeAction = evaluateCondition(ecaRuleType. getCondition()) 
if (!executeAction)  

return false; //condition is not violated  
else {            
             if (countHereBefore(APName) = 1) //check if the execution flow has been in this 
AP before {                 
  If (isActionTypeNormal(getActionArray(0)))  

executeAction(getActionArray(0).getName(),  
getActionArray(0).getTargetAP());                  

else 
 invokeAction(getActionArray(0));  

             } 
             else if (countHereBefore(APName) = 2) { 

                if (second Action Exists) { 
  If (isActionTypeNormal(getActionArray(1)))   

executeAction(getActionArray(1).getName(),  
getActionArray(1).getTargetAP();  

else 
 invokeAction(getActionArray(1)); 

 } 
                else 
                     executeAction("APRollback", null); 
}           
else 
 executeAction("APRollback", null); 
 

            return true; //condition is violated   
} 

} 
 
void executeAction(String action, String targetAP) {         
        if (action = APRetry) { 
            if ((targetAP = null) || (targetAP.length() <= 0))  
                setAPRetry(true); 
            else 
             setAPRetry(true, targetAP);  
        } 
        else if (action = APCC) 
         setAPCC(true); 
        else if (action = APRollback) 
            setAPRollback(true);  
    } 
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4.5 Sample Scenarios 

This section illustrates the semantics of the APRollback, APRetry, and APCC 

recovery actions using the generic sample process in Figure 20 as well as the Online 

Shopping example in Figure 4. In the following, assume that each AP in Figure 20 has 

an IRpre and an IRpost rule. These sample scenarios follow the algorithms presented in 

the previous section. 

cg0

ag031

cg03.top

cg03

AP2 AP4

ag031.cop

AP1 AP3

cg0.top

ag032

(non-critical)

ag011

cg01.cop

cg01

ag011.cop

ag012

(non-critical)

ag021

cg02

ag021.cop

ag022

ag021.top

ag022.cop

ag04

ag05

(non-critical)
cg02.top

cg02.cop

ag04.cop

 

Figure 20. Generic Process for Recovery Actions 

4.5.1 Recovery Actions for Pre and Post Conditions 

Recall that APRollback is used logically to reverse the current state of the 

entire process using shallow and deep compensation as described in Section 3.1.  

Scenario 1 (APRollback):  

Assumption:    IRpost condition fails at AP4 
Action1 of IRpost at AP4:  APRollback 
Execution trace:  ag04.cop 

    ag031.cop 

    cg02.cop 

    cg01.cop 

 

Since the post-condition fails at AP4 in Figure 20 and the action of IRpost is 

APRollback, the process compensates all completed atomic and/or composite groups 

as describe in Section 3.1. Here, the process invokes ag04.cop to compensate ag04. The 
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APRollback process will then invoke deep compensation ag031 by invoking ag031.cop 

since     

1) no shallow compensation for cg03 exists and  

2) ag032 is non-critical and therefore has no compensating procedure 

 APRollback then invokes shallow compensation cg02.cop, with no specific action to 

ag01 since it is non-critical. 

APRetry is used to recover to a specific AP and then retry the recovered 

atomic and/or composite groups. If the AP has an IRpre, then the pre-condition will be 

re-examined. If the pre-condition fails, the action of the rule is executed, which either 

invokes an alternate execution path for forward recovery or a recovery procedure for 

backward recovery. Otherwise, the relevant section of code is re-executed. By default 

APRetry will go to the most recent AP. APRetry can also include a parameter to 

indicate the AP that is the target of the recovery process. 

Scenario 2 (APRetry-default):  

Assumption:    IRpost condition fails at AP4 
Action1 of IRpost at AP4:  APRetry 
Execution trace:  ag04.cop 

    ag031.cop 
    IRpre Condition succeeds at AP2  

    cg03 

    IRpost Condition fails at AP4  
ag04.cop 

    ag031.cop 

    cg02.cop 

    cg01.cop 

Since the post-condition fails at AP4 in Figure 20 and the action of IRpost is 

APRetry, this action compensates to the most recent AP within the same scope by 

default. APRetry first invokes ag04.cop to compensate ag04. The process then deep 

compensates cg03 by executing ag031.cop. At this point, AP2 is reached and the pre-

condition of IRpre is re-evaluated. If the pre-condition fails, the process executes the 

recovery action of IRpre. If the pre-condition is satisfied or if there is no IRpre, then 



Texas Tech University, Rajiv Shrestha, May 2010 

51 

 

execution will resume again from cg03. In this case, the process will reach AP4 a 

second time, where the post-condition is checked once more. If failure occurs for the 

second time, the second action defined on the rule is executed rather than the first 

action. If a second action is not specified, the default action will be APRollback. 

Therefore, the execution process will now be the same as in Scenario 1. 

Scenario 3 (APRetry-parameterized):  

Assumption:    IRpost condition fails at AP4 
Action1 of IRpost at AP4:  APRetry(AP1) 
Execution trace:  ag04.cop 

    ag031.cop 
    cg02.cop 

IRpre condition succeeds at AP1 

    cg02 
cg03 

    ag04 

    ag05 

Now assume that the action of the pre-condition for AP4 is parameterized as 

APRetry(AP1), indicating that the retry activity should rollback to AP1. The process will 

then compensate the procedure back to the point of AP1 for the retry process, ignoring 

all APs in between. Then the execution continues until the end if no error occurs or no 

condition is violated. 

Scenario 4 (APRetry-Default):  

Assumption:    IRpost condition fails at AP3 
Action1 of IRpost at AP3:  APRetry 
Execution trace:  ag031.cop 
    IRpre condition succeeds at AP2 

cg03   

    ag04 

    ag05     

Since the post-condition fails at AP3 in Figure 20 and the action of IRpost is 

APRetry without parameter, this action compensates to the most recent AP within the 

same scope by default. APRetry first invokes ag031.cop to compensate ag031. Now, the 

process exits the cg03 group to reach AP2 activity in the parent group cg0 without 
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discovering any previous AP within the same group. Therefore, the process will reach 

retry from AP2 where the pre-condition of IRpre is re-evaluated. If the pre-condition 

fails, the process executes the recovery action of IRpre. If the pre-condition is satisfied 

or if there is no IRpre, then execution will resume again from cg03. In this case, the 

process will reach AP3 for a second time, where the post-condition is checked once 

more. If failure occurs for the second time, the second action defined on the rule is 

executed rather than the first action. If a second action is not specified, the default 

action will be APRollback.  

The APCascadedContingency process, or APCC, provides a way of searching 

for contingent procedures in a nested composition structure, searching backwards 

through the hierarchical process structure. When a pre or post condition fails in a 

nested composite group, the APCC process will compensate its way to the next outer 

layer of the nested structure. If the compensated composite group has a contingent 

procedure, it will be executed. Furthermore, if there is an AP with a pre-condition 

before the composite group, the pre-condition will be evaluated before executing the 

contingency. If the pre-condition fails, the recovery action of IRpre will be executed 

instead of executing the contingency. If there is no contingency or if the contingency 

fails, the APCC process continues by compensating the current composite group back 

to the next outer layer of the nested structure and repeating the process described 

above. 

Scenario 5 (APCC):  

Assumption:    IRpost condition fails at AP4 
Action1 of IRpost at AP4:  APCC 
Execution trace:  ag04.cop 

    ag031.cop 
    cg02.cop 

    cg01.cop 
    cg0.top 

Assume that the post-condition fails at AP4 in Figure 20 and that the IRpost 

action is APCC. As soon as APCC is invoked, the process starts compensating until it 

reaches the parent layer. In this case, the process will reach the beginning of cg0 after 
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compensating the entire process through deep or shallow compensation. Since there is 

no AP before cg0, then cg0.top is invoked.  

Scenario 6 (APCC):  

Assumption:    IRpost condition fails at AP3 
Action1 of IRpost at AP3:  APCC 
Execution trace:  ag031.cop     

IRpre condition succeeds at AP2 
cg03.top  

 

Here the post-condition fails at AP3 in Figure 20 and the IRpost action is APCC. 

Since AP3 is in cg03, which is nested in cg0, the APCC process will compensate back to 

the beginning of cg03, executing ag031.cop. The APCC process finds AP2 with an IRpre 

rule for cg03. As a result, the pre-condition will be evaluated before trying the 

contingency for cg03. If there is no pre-condition or if the pre-condition is satisfied, 

then cg03.top is executed and the process continues. Otherwise, the recovery action of 

IRpre for AP2 will be executed. If cg03.top fails then the process will still be under APCC 

mode, where the process will keep compensating until it reaches the cg0 layer, where 

cg0.top is executed. 

4.5.2 Recovery Actions for Execution Errors 

When process execution encounters an internal error, the running operation 

first tries the most immediate contingency, as defined in Section 3.1. If the 

contingency succeeds, the recovery is complete and the execution continues. If the 

contingency fails or if there is no immediate contingency, then the execution goes into 

APCC mode as described in Section 4.3.  

Scenario 6 (Failure at ag031):  

Assumption:    Internal error at ag031 
Execution trace:  IRpre condition succeeds at AP2 

cg03.top  

In Figure 20, as soon as an internal error occurs at ag031, the process looks for 

the contingency for this group. Since there is no contingency specified, the process 
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goes into APCC mode where it backward recovers to AP2. The process will evaluate 

IRpre before executing the cg03.top (as in Scenario 5).  

 Scenario 7 (Online Shopping Example - Failure at ChargeCreditCard):  

Returning to the Online Shopping Example of Figure 4, assume the process 

fails while executing chargeCreditCard. The process then executes the contingency 

ag21.top (eCheckPay). If ag21.top fails, then APCC process begins, during which the 

process reaches the orderPlaced AP, where the pre-condition of the AP is re-checked 

(rule QuantityCheck in Table 1). If the pre-condition is violated, the action backOrder is 

invoked, which means there are not enough goods in stock.  

Scenario 8 (Online Shopping Example – Failure at UPShipping):   

From Figure 4, assume the process fails on the operation UPSShipping. Since 

there is no immediate contingency, the process invokes the APCC process, rolling 

back to the CreditCardCharged AP at the outer level. Since there is no pre-condition 

defined at the CreditCardCharged AP, the contingency cg3.top (FedexShipping) will be 

executed. If cg3.top fails, the process will be still under APCC mode, compensating its 

way back to the beginning of the transaction. 

4.6 Execution History Generation 

The AP data storage layer contains a process runtime information repository. 

This section illustrates the storage structure of AP data and parameters along with 

other process information, and how this information is entered into the data storage. In 

our implementation, we use the db4o object-oriented database (db4objects 2006) to 

store the process runtime information as well as AP data. Since process runtime and 

AP data information are represented by object relationships, it is better to store them in 

an object-oriented way. Moreover, db4o provides easy and efficient access to store 

objects. The process execution history consists of the metadata information and the 

run-time execution information as shown in Figure 21.  
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The process runtime information repository stores process execution context. 

Figure 21 presents the metadata that can be retrieved from existing process definitions. 

Also, the figure shows the runtime process instance information. At runtime, a process 

-ruleId : int

-apId : int

-ruleType : string

-sTime : Date

-eTime : Date

-reTryParam : string

-action : string

IRule

-apId : int

-apName : string

-parentId : int

-processId : int

-sTime : Date

-eTime : Date

-status : string

AP

0..* 1

1
0..*

-paramId : int

-paramName : string

-apId : int

APParameters

0..*
1

-apName : string

AP

-ruleType : string

-reTryParam : string

-condOp : string

-action : string

IRule

1

1..*

1

0..*

0..*

1

1

1 Condition Check Operation

Alternate Action

-paramName : string

APParameters

1

0..*

1

1

1

1

-gName : string

-runType : int

-parentGroup : string

Group

-gId : int

-parentId : int

-processId : int

-sTime : Date

-eTime : Date

-status : String

Group

-vId : int

-vName : string

-processId : int

-value : Object

-type : string

Variable

-invokeId : int

-parentId : int

-name : String

-sTime : Date

-eTime : Date

-runType : int

-status : string

-portType : string

-operationName : string

Invoke

-pName : string

Process

-processId : string

-pName : string

-sTime : Date

-eTime : Date

-status : string

Process

-vName : string

-type : Object

Message

-operationName : string

Operation

PortType

Metadata

Runtime

*

1

1

*

invoke

1

*

1

*

1

*

1
3

1
0..2 0..2

1

0..*

1

0..2

1

0..2

1

1

0..*

0..*

1

 

Figure 21: Process Metadata and Runtime Information 
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is instantiated and its execution information such as instances of groups (atomic or 

composite), invoke status, variables, APs, and rules are recorded as the runtime 

information associated with each process instance. The metadata also describes that a 

Web service can provide multiple operations packaged in different Port Types. A 

process may invoke multiple operations on different services. A process or an 

operation can have an input and/or an output parameter defined through a unique 

message type. The AP also has the capability of invoking an operation to evaluate the 

rule condition or to invoke the action specified in the rule. The details associated with 

each message type can be extracted by querying the WSDL file associated with a Web 

service. In addition to these information stored, the history manager also identifies the 

process to which an invoke operation or a group belongs and also, the nested group 

relationship can be established through their corresponding parent identifier. 

The following classes are added to define the history of execution in the 

src/org/ap/db4o folder as shown in Table 3: 

1. Process(processed, pName, sTime, eTime, status): defines the process history with a 

unique indenfier (processId) for each process instance with the name of the 

process (pName), the process start time (sTime), end time (eTime), and the process 

execution status (status), which can be success or failure. 

2. Group(gId, parented, processId, sTime, eTime, status): defines the execution 

information for an atomic or a composite group. A group has a unique identifier 

(gId), and an identifier to its immediate parent group (parentId). The processId 

identifies which process instance it belongs to. Also, the GroupInfo class has the 

group start time (sTime), end time (eTime), and its execution status (status). 

3. Invoke(invokeId, parented, sTime, eTime, status, operationName, portType, runType): 

defines the invoke activity history. Each invoke activity has a unique attribute 

called invokeId with name of invoke (name), start time (sTime), end time (eTime), 

and execution status. A group identifier (parentId) is used to identify the atomic 

group that calls the operation. Moreover, the operationName and portType of the 
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service on which the invocation is called are also stored and these attributes map 

to an Operation and PortType classes in the metadata. For any operation, the 

runType attribute can be original for the original primary operation, or 

compensation for primary operation’s compensation plan, or contingency for 

primary operation’s contingency plan, or conditionCheck for condition 

evaluation of an integration rule, or alternateAction for invoking an alternate 

action which can be defined in an integration rule 

4. Variable(vId, vName, processId, value, type): defines the history of process variables 

that consists of process parameters, invocation, or AP input/output parameters. A 

process, an invoke activity, and an AP can contain variables. Thus the variable 

information is included in the execution history. In the VariableInfo class definition, 

its instance can have a primary key (vId) and a variable name (vName), its value 

which is stored as a Java object and the type (input or output) are included. This 

variable can be associated with an invoke activity as either an input variable or an 

output variable. Also the variable can be associated with AP parameters. The 

message type associated with this Variable class instance can be found through the 

metadata associated with the corresponding APParameters or Invoke instance. 

5. AP(apId, apName, parentId, sTime, eTime, status): stores the runtime AP information 

which is uniquely identified by apId. Also the name of the AP (apName), start 

time (sTime) and end time (eTime) are stored for each AP. The parent group 

identifier (parentId) is also stored. The status of AP indicates whether the AP is run 

as normal or as revisit as described in Section 4.4. Each APInfo instance will have a 

APParameters instance which stores the variable information used by AP. 

6. APParameters(paramId, paramName, apId): stores the AP parameters for each AP. 

The paramId unique identifies each AP parameter with its parameter name 

(paramName) and its APs identifier (apId). Each APInfo instance can be associated 

multiple number of APParameters class since each AP can have several parameters 

where each parameter are associated with message type. 
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7. IRule(ruleId, apId, ruleType, sTime, eTime, retryParam, action): stores the integration 

rules information for each AP if available. Each rule is uniquely identified by 

ruleId and the ruleType can be one of the integration rule IRpre, IRpost, or IRcond which 

corresponds to AP by apId. Also the rule information contains the start time 

(sTime) and end time (eTIme), and the action specified by the rule which can be 

one of the recovery actions: APRollback, APRetry, or APCC. These rules also have 

capability to invoke a Web service for the condition evaluation as well as to 

invoke an action other than recovery actions.  

In addition to above classes, the following classes were added for the ease of 

accessibility to db4o database: 

 Util: stores the static variables such as db4o file name and location, execution 

status. Also it has the operations that can get the list of results from the database.  

 DB4oAccess: used for setting up database and accessing the database with 

operations such as openDB(), getDB(),  commitDB(), and accessDb4o(). 

4.7 Summary 

This chapter has provided a comprehensive view of a prototype design and 

architecture of an AP Model with integration rules to extend an existing service 

composition and recovery model. This extended model has provided a way to specify 

APs in the workflow and incorporate these APs with integration rules defined in a 

different XML file. Also, in addition to compensation and contingency plan utilization, 

we have presented three recovery modes during process recovery: APRollback, 

APRetry, and APCC. Incorporating these new features, the service composition and 

recovery model is much more flexible by invoking different recovery actions during 

situations such as internal errors or during violation of pre, post, or conditional rules. 

This research has prototyped the initial version of the AP model. 
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CHAPTER V 

EVALUATION OF ASSURANCE POINTS 

This section presents an evaluation of the AP concept developed as part of this 

research. The evaluation compares APs, integration rules, and recovery algorithms 

with other recovery mechanisms and semantics. Our goal is to demonstrate that 

recovery approach of the AP model can be used to improve existing workflow 

languages such as in BPEL with better flexibility and modularity. 

This chapter is organized as follows. Section 5.1 gives the comparison analysis 

with the recovery semantics provided in BPEL. Section 5.2 compares APs with fault-

tolerant capabilities in Aspect-Oriented Workflows. Section 5.3 compares the AP 

logic with workflows that implement checkpointing concepts for recovery. The 

chapter concludes in Section 5.4 with a summary of the evaluation. 

5.1 Comparison to BPEL 

WS-BPEL 2.0 is the standard for orchestrating Web service composition. As 

described in Section 2.1.1, BPEL uses fault, compensation, and termination handlers 

to guarantee transactional integrity during LRTs. Moreover, Section 2.1.2 highlighted 

several shortcomings of BPEL with respect to recovery issues. Unlike BPEL, the AP 

logic allows designers to have a clear notion of how the recovery actions can take 

place and at the same time provide flexibility with the option of different recovery 

actions depending upon the status of execution and integration rules. Additional 

considerations arise during concurrent execution of activities. The flow construct in 

BPEL allows the process to execute activities in parallel. In BPEL, if one of the 

branches is faulted, then the compensation policy for concurrent processes forces all 

branches to compensate at the same time. If a control link is specified, then all 

available compensation handlers are run for immediately enclosed scopes in the 

reverse order. Recall that a scope in BPEL is a set of activities that is grouped 

together, which is comparable to a composite group in the AP model. However, for 

parallel scopes the compensation takes place in arbitrary order. Moreover, the 
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termination handler is run before the compensation handler to terminate all the 

activities in the running scope.   

Even though the initial AP model implementation does not support concurrent 

execution within a process, this section outlines AP compatibility with concurrent 

execution with a comparison to BPEL’s recovery semantics. Section 5.1.1 summarizes 

relevant issues for BPEL’s recovery semantics. Section 5.1.2 provides a comparison of 

our recovery model concept with the recovery semantics used in BPEL. Section 5.1.3 

discusses how the AP model can support faults during concurrent execution and also 

compares our approach with the way BPEL handles such concurrent issues. 

5.1.1 Problems in BPEL 

In BPEL, when a fault occurs, the fault handler attached to a scope catches the 

fault. The aim of the fault handler is to continue the process execution, which might 

require undoing certain actions already completed in the current scope. Since the 

compensation handler defines the semantics of undoing such changes, the fault 

handler may start the compensation handler (Khalaf, Roller, and Leymann 2009). 

Similar to our approach of deep or shallow compensation in service composition and 

recovery model (see Section 3.1), the compensate activity does the compensation of the 

completed activities in the nested scopes, whereas, the compensateScope activity 

causes compensation of one single completed scope. If any of the handlers are not 

specified, then the default handler is assigned to each scope. Default compensation 

invokes the installed compensation handlers for all the inner scopes.  When the default 

compensation is applied to a scope, the compensation handlers are executed in reverse 

order of completion of the scopes.  

The work in (Khalaf, Roller, and Leymann 2009) highlights the two main 

problems with the fault and compensation mechanism in the current BPEL standard: 

1) compensation order can violate control link dependencies if control links cross the 

scope boundaries, 2) high complexity of default compensation order due to default 

handler behavior. Figure 22 shows a modified version of a figure from  (Khalaf, 
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Roller, and Leymann 2009) which illustrates the fault and compensation mechanisms 

of BPEL. This figure is used below to illustrate BPEL anomalies.   

 

Figure 22: Compensation Sequence Demonstration  

(Khalaf, Roller, and Leymann 2009) 

The outer scope G in Figure 22 is still running with its fault and termination 

handlers active. Inside scope G are scopes F and D, where F is still running with fault 

and termination handlers active. Scope D is already completed and therefore, the 

compensation handler is active. Scope F has two scopes, A and B, which are both 

completed with its compensation handlers active. Scope F also has a non-scope 

activity C which is still running. The arrows (solid and dashed) in Figure 22 show 

control links between activities. In BPEL, a control link specifies that a target activity 

must not start until the source activity is completed. In Figure 22, the solid arrow 

represents control links between peer scopes within the same scope F. The dashed line 

represents a control link among non-peer scopes. 
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Assume a fault occurs at activity E. The termination handler of scope G aborts 

all the running non-scope activities, such as activity I. BPEL will deactivate the fault 

handler of scope F and activate the termination handler which tries to terminate the 

running activities inside the scope F. Therefore, non-scope activity C is terminated. 

Since there is control link between the completed scope A and B, the compensation 

order honors the control link and B is compensated before A. If scope A and B were 

still running, the termination handler of either A or B can be invoked first.  

Consider the control link that exists between scope B and D (shown by the 

dashed arrow), where scope D is outside of the parent scope of scope B. In this case, 

BPEL compensation takes place from scope B to A to D. This order violates the 

reverse control dependencies where the completed scope D should be compensated 

before the completed scope B does. Therefore, a wrong compensation sequence is 

followed. This simple example demonstrates the confusion that can be caused by lack 

of consistent and clear semantics regarding BPEL fault handling capability. Moreover, 

the research in  (Khalaf, Roller, and Leymann 2009) explains how the default 

compensation order leads to complication in the compensation process due to what is 

called the zigzag behavior of compensation. Zigzag behavior is caused by the way 

scopes get compensated at different nesting levels with no clear direction of 

compensation order. To support the solution to these problems, (Khalaf, Roller, and 

Leymann 2009) offers way of calculating the compensation order graph by eliminating 

the default handlers and still honoring the control links. 

Interested readers are advised to go through the (Khalaf, Roller, and Leymann 

2009), (Coleman 2005), (Koenig 2006) for details of BPEL’s limitations and issues in 

fault, compensation, and termination handler. 

5.1.2 Comparison Criteria 

This section provides a comparison between the AP model and BPEL’s 

recovery semantics. Table 4 shows the comparison between BPEL and AP’s recovery 

semantics with respect to the criteria below: 
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Criteria 1 (Control Link Support): BPEL honors the control link during compensation 

of peer scopes as shown in Figure 22 with the control link between scope A and scope 

B. But sometimes the notion of control link reversal during compensation procedure is 

violated when the control link is present between non-peer scopes (Khalaf, Roller, and 

Leymann 2009); i.e., when an activity in one flow is dependent on an activity in 

another flow, such as in Figure 22 (control link between scope B and scope D). Like 

BPEL, the AP recovery model allows both deep and shallow compensation, where 

deep compensation is executed by default if shallow compensation is not present (see 

Section 3.1). The AP model also honors the control links between peer-scopes. Unlike 

BPEL, the order of compensation is clear since the AP approach does not support 

control links between non-peer scopes, making the semantics of compensation in the 

AP approach unambiguous, without any surprises in the compensation order as in 

BPEL. In addition, the AP model supports a hierarchical structure during 

compensation as promoted in (Khalaf, Roller, and Leymann 2009).  

Criteria 2 (Compensation for Constraint Violations):  In general, the notion of 

compensation should also be capable of handling constraint violations (Coleman 

2005). Since BPEL’s compensation handling mechanism through the <compensate> 

activity can only be called inside a fault handler, this limits the ability to call 

compensation outside a fault handling. Thus, a fault has to occur to invoke a 

compensation procedure. In the case of AP model, compensation can be invoked 

during normal execution (no error has yet occurred) when integration rules are not 

satisfied. This allows a flexible way to recover the process through compensation in 

response to constraint violations. 

Criteria 3 (Behavior  of Recovery Procedures): In BPEL, the designer is responsible for 

handling complex fault handling logic and, in addition, BPEL’s default compensation 

procedure increases the potential for unexpected errors as described in Criteria 1, 

causing confusion about the flow of BPEL compensation order. The AP concept 

provides well-defined recovery actions with hierarchical structure. When an execution 

error occurs, a process goes into APCC mode as described in Section 4.3. Also when a 
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process reaches an AP, an integration rule can trigger any of the recovery actions 

where the semantics of the recovery actions are clearly defined and the designer is 

involved in defining how and when to apply different recovery actions.  

Criteria 4 (Contingency Procedure): Currently, BPEL currently does not explicitly 

support contingency other than through fault, exception, and termination handlers. A 

fault handler can be used for forward recovery. In contrast, our recovery strategy 

encourages the use of contingency activities so that forward recovery is possible rather 

than always rolling back. The contingency procedure increases the possibilities of 

recovering the process through alternate procedures and thus, saves time and resources 

that may be wasted through compensation as a rollback procedure. 

Criteria 5 (Rules Support): The integration of rules with workflow languages helps to 

modularize the process execution engine. BPEL does not provide any such rule 

mechanisms for the specification of constraints, thus every time the business logic 

changes, the designer has to change the logic of the workflow. In the AP approach, 

rules that are associated with execution correctness are specified separate from the 

main logic and integrated into the workflow engine through AP’s. Thus, when 

business logic changes, we can change the rule definition files without significant 

changes to the main process flow. APs therefore provide a more modular approach to 

the specification of execution constraints. 

Table 4. Comparison of Recovery Semantics (BPEL VS. AP)  

No. Comparison Criteria BPEL AP 

1 
Support for Control Links between 

Non-Peer Scopes 
Yes No 

2 Compensation for Constraint violations No Yes 

3 Behavior  of Recovery procedures Zigzag Hierarchical 

4 Explicit contingency procedure No Yes 

5 Rules support No Yes 
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In addition to the comparison in Table 4, the ability to access the process 

execution state is an important feature required for triggering appropriate recovery 

procedures. The compensation handler in the older version of BPEL did not have 

access directly to the current status of the process (Coleman 2005), BPEL 2.0 version 

does provide such a feature (Khalaf, Roller, and Leymann 2009). The AP model also 

provides access to the state of the current process. In BPEL, however, compensation is 

based on the notion of a scope, which allows the scope to compensate as a whole. The 

compensation notion in the AP model is similar to BPEL during APCC mode, where it 

rolls back the scope as a whole. But during APRetry mode, the process may reach an 

AP within same scope during compensation. As a result, compensation in the AP 

model can be based on AP markers in addition to scope boundaries.  

5.1.3 Concurrent Issues for Assurance Points 

The AP model can be extended to support parallel execution with a fork 

construct, such as in the flow activity of BPEL. In this section, we will illustrate 

different situations for the integration of APs with the parallel activities using the 

diagram in Figure 23. Extending the AP model with parallel activities is a direction for 

future work. 

 Figure 23 shows a process that starts with cg0 as the top-most process. The 

process starts with atomic activity ag01 and then reaches AP1. After successfully 

checking the constraints through AP1, the flow activity is reached where cg02 and cg03 

are executed simultaneously. As the execution goes through these parallel activities, 

there are chances that an error can occur or that integration rule conditions can be 

violated. In this case, it is desirable to handle the error in the faulted group through 

forward recovery, while the other parallel groups continue to execute. But there will 

be situations where the faulted group cannot be recovered and in such a case we might 

have to rollback through terminating the running parallel activity and compensating 

the completed activities.  
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ag021
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ag021.cop

ag022

ag021.top
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ag04

cg02.top

cg02.cop

ag04.cop

 

Figure 23. Sample Process 

 

Below are the list of situations described for how AP recovery action can be 

extended to concurrent execution: 

Internal error: As soon as an internal error occurs in one of the parallel activities, the 

group goes under APCC recovery mode while the other activity might be still running 

or completed. The faulted group initially tries to recover through the contingency 

procedures. If the forward recovery is unsuccessful, then the process has to recover 

back to a previous activity which might be beyond the flow construct. At that time, the 

other parallel activity is also rolled back to the same previous activity. For example 

assume that an internal error occurs at ag031 in Figure 23. As soon as the error occurs at 

ag031, the process goes under APCC mode since there is no contingency. The APCC 

semantics is followed so that the forward recovery is possible for cg03 through cg03.top. 

If cg03.top succeeds, then the process continues as if nothing has happened. Otherwise, 

the other parallel activity running inside cg02 is terminated and cg02 rolls back through 
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compensation until it reaches AP1. Now, IRpre condition at AP1 is checked and the 

process either continues or recovers as defined in the AP.  

Violation of Rule Condition: There are chances of violating the rule conditions at an 

AP during the execution of parallel activities, such as in AP2 of Figure 23. In such a 

case, the recovery depends upon the recovery actions. If the action defined is: 

 APRollback: The process stops executing all parallel activities and each composite 

group backward recovers all the way up to the top-most group through 

compensation.  

 APRetry: The group cg03 looks for a previous or specified AP in the same scope. If 

one is found, the retry activity proceeds without any affect on the parallel group. 

Since no other AP defined before AP2 within its scope, the process keeps rolling 

back to its parent scope until an AP in the parent scope is encountered. The 

semantics are similar to the case described in Section 4.5. But if during recovery 

the process reaches an AP outside the flow activity, parallel activities are 

terminated and compensated back to the same AP. The whole process is now 

under APRetry mode. One way to make APRetry semantics unambiguous for 

designer is by providing a list of options to choose APRetry parameter as AP 

identifier.  

 APCC: the semantic is similar as described above for internal error where the 

faulted group looks for contingency until it reaches the activity before flow 

construct. 

5.2 Comparison to Aspect-Oriented Workflows 

Section 2.4 in related work has briefly described the aspect-oriented 

programming (AOP) concept. The aspect notion can be used by workflows languages 

in order to modularize the process specification with respect to crosscutting concerns 

which are the functions that affect the entire workflow and thus should be centralized 

into one location. The examples of crosscutting concerns are exception management, 

business rules, logging, authentication, and persistence. Typically, the code for these 
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concerns is scattered all over the system and requires expensive code management 

when changes are necessary. Therefore AOP provides a more modularized 

implementation with clear separation of the core concerns and the cross cutting 

concerns (Domokos and Majzik 2007). In (Charfi and Mezini 2007), the idea of AOP 

was implemented in BPEL to create an aspect-oriented extension to BPEL 

(AO4BPEL). A separate XML file defines the aspect activities with pointcut and 

advice declarations. 

Similar to the idea of integrating aspects into BPEL in AO4BPEL, the AP 

model also has a separate XML rule file for checking constraints. Our approach is 

more focused on the integration of the checkpointing concept with integration rules to 

support recovery actions. AOP has not yet focused on recovery issues. Also, even with 

the advantages of AOP, most programming languages haven’t really evolved in the 

aspect-oriented direction (Manolescu 2002). Future research should investigate the 

integration of the AP approach with AOP concepts to support recovery activity.  

5.3 Comparison to Workflows using the Checkpointing Concept 

Section 2.2 of the related work section discussed the checkpointing concept. 

Most checkpointing techniques are concepts used for storing states, rolling back to a 

previous state as in (Luo 2000), and mobilizing orchestrated services for portability in 

the system as in (Marzouk et al., 2009). The AP model supports the traditional 

checkpointing concept through storing states of a process and rolling back, but 

enhances checkpointing capabilities by providing more flexible recovery mechanisms 

through constraint checking using integration rules and implementing different types 

of recovery actions. Therefore, our work differs from previous research work done in 

checkpointing mainly due to the fact that the APs and integration rules defined will 

also have access to the information collected during processing, thus enabling the 

system to make more prudent decisions for the next processing action. Moreover, the 

main goal of this work is to improve fault handling and constraint checking through 

APs, integration rules, and recovery actions rather than to improve the portability of 

the system.  
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CHAPTER VI 

SUMMARY AND FUTURE RESEARCH 

The research in this thesis has defined the concept of assurance points and 

illustrated how assurance points can be used together with integration rules and 

recovery actions to 1) provide a way of expressing user-defined constraints for process 

execution and 2) provide greater flexibility for use of forward and backward recovery 

options when constraints are not satisfied or execution fails. This is especially 

important considering that concurrent processes often execute with relaxed isolation 

assumptions between the service executions of a process. Assurance points enhance 

traditional work with checkpointing, providing logical points for backward recovery 

with semantics that increase the potential for forward recovery by rechecking pre-

conditions, retrying services, and looking for contingencies. Planning for failure and 

recovery should be an important part of every process specification. The assurance 

point, integration rule, and recovery option functionality demonstrated in this thesis 

provides a more flexible way to address failure and recovery issues. 

There are several directions for future work. One direction involves the 

integration of the AP concept into a BPEL processor, with performance studies to 

address the overhead associated with the AP functionality. Another direction involves 

formalization of the assurance point concept with Petri net and model checking. 

Methodological issues for the specification of APs, integration rules, and recovery 

procedures should also be addressed in the context of more extensive application 

scenarios. In addition, external events that are interruptions from the external 

application environment can be integrated into the AP model to provide more dynamic 

event handling capabilities. While the research mainly focused on the AP and 

integration rule language syntax design and incorporation of recovery actions, there 

are several other situations that need to be considered to fully integrate the AP model 

with the DeltaGrid environment, such as concurrent execution within a group and Grid 

Services support. 
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Another research direction involves the integration of invariant conditions with 

the use of assurance points. In the context of the AP model, an invariant is a data 

condition that must be true from one AP to another when data cannot be locked over 

across several service invocations. Techniques can be developed to monitor data 

changes and to inform a process with invariant conditions are violated. The strength of 

the invariant technique is that it provides a way to monitor data consistency in an 

environment where the coordinated locking of data items across multiple service 

executions is not possible, thus providing better support for reliability and 

maintenance of user-defined correctness conditions among concurrent processes. 

Future research should also investigate the integration of the assurance point concept 

with current work on decentralized data dependency analysis (Urban, Ziao, and Le 

2009) in Process Execution Agents (PEXAs), where PEXAs communicate about data 

dependencies so that when one process fails and recovers, other data dependent 

processes can be notified of potential data inconsistencies. The AP concept can be 

used to enhance decentralized PEXAs with greater flexibility for process recovery 

options.  
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APPENDIX I 

XML SCHEMA DEFINITION FOR PML WITH ASSURANCE POINTS 

<?xml version="1.0" encoding="utf-8" ?> 

<!-- 

  ***************************************************************** 
  **             AP XML Schema Definition                   ** 

  ***************************************************************** 

  --> 
<schema xmlns="http://www.w3.org/2001/XMLSchema" 

  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 

  xmlns:ipml="http://ap.org/pml/" targetNamespace="http://ap.org/pml/" elementFormDefault="qualified"> 
  <annotation> 

    <documentation>This is the XML Schema definition for the AP</documentation> 

  </annotation> 
  <import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="http://schemas.xmlsoap.org/wsdl/"/> 

  <element name="process" type="ipml:ProcessType"/> 

  <!-- 
    ============================== 

    =         Process 

    ============================== 
  --> 

  <complexType name="ProcessType"> 

    <sequence> 
      <!--<element name="processParams" type="ipml:processParamsType" minOccurs="0" maxOccurs="1"/> 

      <element name="serviceProvider" type="ipml:ServiceProviderType" 
        minOccurs="1" maxOccurs="unbounded"/>--> 

      <element name="variables" type="ipml:VariablesType" minOccurs="0" maxOccurs="1"/>       

      <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/> 
    </sequence> 

    <attribute name="name" type="NCName" use="required"/> 

    <attribute name="targetNamespace" type="anyURI" use="required"/> 
  </complexType> 

  <!-- 

    ============================== 

    =    Process Parameter 

    ============================== 

  
  <complexType name="processParamsType"> 

    <sequence> 

      <element name="processParam" type="ipml:processParamType" maxOccurs="unbounded"/> 
    </sequence> 

  </complexType> 

  <complexType name="processParamType"> 
    <attribute name="name" type="NCName" use="required"/> 

    <attribute name="type" type="ipml:ParamIOType" use="required"/> 

  </complexType> 
 --> 

 

  <!-- 
    ============================== 

    =    Service Provider 

    ============================== 

   

  <complexType name="ServiceProviderType"> 

    <annotation> 
      <documentation>Service provider type definition</documentation> 

    </annotation> 

    <sequence> 
      <element name="locator" minOccurs="1" maxOccurs="1"> 

        <complexType> 

          <attribute name="type" type="ipml:ServiceInstanceType" use="required"/> 
          <attribute name="handle" type="anyURI" use="required"/> 

        </complexType> 
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      </element> 

    </sequence> 
    <attribute name="name" type="NCName" use="required"/> 

    <attribute name="type" type="NCName" use="required"/> 

  </complexType> 
  --> 

   

  <!-- 
    ============================== 

    =         Variables 

    ============================== 
  --> 

  <complexType name="VariablesType"> 

    <sequence> 
      <element name="variable" type="ipml:VariableType" minOccurs="0" maxOccurs="unbounded"/> 

    </sequence> 

  </complexType> 
 

  <!-- 

    ============================== 
    =         Variable 

    ============================== 

  --> 
  <complexType name="VariableType"> 

    <sequence> 

      <element name="variableValue" type="ipml:ValueType" minOccurs="0"/> 
    </sequence> 

    <attribute name="name" type="NCName" use="required"/> 
    <attribute name="messageType" type="QName" use="optional"/> 

    <attribute name="type" type="QName" use="optional"/> 

  </complexType> 
 

  <!-- 

    ============================== 
    =          Activity 

    ============================== 

  --> 

  <element name="activity" type="ipml:ActivityType"/> 

  <complexType name="ActivityType" abstract="true"> 

    <attribute name="name" type="NCName"/> 
  </complexType> 

 

  <!-- 
    ============================== 

    =          Invoke 

    ============================== 
  --> 

  <element name="invoke" type="ipml:InvokeType" substitutionGroup="ipml:activity"/> 

  <complexType name="InvokeType"> 
    <complexContent> 

      <extension base="ipml:ActivityType"> 

        <attribute name="serviceName" type="NCName" use="required"/> 
        <!--<attribute name="serviceId" type="int" use="required"/>--> 

        <attribute name="portType" type="QName" use="optional"/> 

        <attribute name="operation" type="NCName" use="required"/> 
        <attribute name="inputVariable" type="NCName" use="optional"/> 

        <attribute name="outputVariable" type="NCName" use="optional"/> 

        <attribute name="instance" type="NCName" use="optional"/> 
      </extension> 

    </complexContent> 

  </complexType> 
 

  <!-- 

    ============================== 
    =          Assign 

    ============================== 
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  --> 

  <element name="assign" type="ipml:AssignType" substitutionGroup="ipml:activity"/> 
  <complexType name="AssignType"> 

    <complexContent> 

      <extension base="ipml:ActivityType"> 
        <sequence> 

          <element name="copy" type="ipml:CopyType" minOccurs="1" maxOccurs="unbounded"/> 

        </sequence> 
      </extension> 

    </complexContent> 

  </complexType> 
  <complexType name="CopyType"> 

    <sequence> 

      <element ref="ipml:from"/> 
      <element ref="ipml:to"/> 

    </sequence> 

  </complexType> 
  <element name="from" type="ipml:FromType"/> 

  <complexType name="FromType"> 

    <attribute name="variable" type="NCName"/> 
    <attribute name="expression" type="string"/> 

    <attribute name="part" type="NCName"/> 

  </complexType> 
  <element name="to"> 

    <complexType> 

      <complexContent> 
        <restriction base="ipml:FromType"> 

          <attribute name="expression" type="string" use="prohibited"/> 
        </restriction> 

      </complexContent> 

    </complexType> 
  </element> 

 

  <!-- 
    ============================== 

    =   Derived Simple Type 

    ============================== 

  --> 

  <simpleType name="ParamIOType"> 

    <restriction base="token"> 
      <enumeration value="input"/> 

      <enumeration value="output"/> 

    </restriction> 
  </simpleType> 

  <simpleType name="ServiceInstanceType"> 

    <restriction base="token"> 
      <enumeration value="factory"/> 

      <enumeration value="persistence"/> 

    </restriction> 
  </simpleType> 

 

   <!-- 
    ========================= 

    =          Contingency 

    ============================== 
  --> 

  <element name="top" type="ipml:TopType"/> 

    <complexType name="TopType"> 
        <complexContent> 

            <extension base="ipml:ActivityType"> 

                <sequence> 
                  <!--<element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/>--> 

                  <element name="invoke" type="ipml:InvokeType"/> 

                </sequence>                 
            </extension> 

        </complexContent> 
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    </complexType> 

 
  <!-- 

    ============================== 

    =          Compensation 
    ============================== 

  --> 

  <element name="cop" type="ipml:CopType"/> 
    <complexType name="CopType"> 

        <complexContent> 

            <extension base="ipml:ActivityType"> 
                <sequence> 

                  <!--<element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/>--> 

                  <element name="invoke" type="ipml:InvokeType"/> 
                </sequence>               

            </extension> 

        </complexContent> 
    </complexType> 

 

  <!-- 
    ============================== 

    =    Data Input for Ap (Variables as Parameters) 

    ============================== 
  --> 

  <complexType name="apDataInType"> 

    <attribute name="variable" type="string" use="required"/> 
  </complexType> 

 
  <!-- 

    ============================== 

    =          Assurance Points 
    ============================== 

  --> 

  <element name="ap" type="ipml:APType" substitutionGroup="ipml:activity"/> 
    <complexType name="APType"> 

        <complexContent> 

            <extension base="ipml:ActivityType"> 

                <sequence> 

                  <!--<element ref="ipml:activity" minOccurs="0" maxOccurs="unbounded"/>--> 

                  <!--<element name="invoke" type="ipml:InvokeType"/>--> 
                  <element name="apDataIn" type="ipml:apDataInType" minOccurs="0" maxOccurs="unbounded"/> 

                </sequence>               

            </extension> 
        </complexContent> 

    </complexType> 

 
  <!-- 

    ============================== 

    =          Atomic Group 
    ============================== 

  --> 

  <element name="ag" type="ipml:AGType" substitutionGroup="ipml:activity"/> 
    <complexType name="AGType"> 

        <complexContent> 

            <extension base="ipml:ActivityType"> 
                <sequence> 

                  <element name="invoke" type="ipml:InvokeType"/> 

                  <element name="cop" type="ipml:CopType" minOccurs="0" maxOccurs="1"/> 
                  <element name="top" type="ipml:TopType" minOccurs="0" maxOccurs="1"/> 

                   

                </sequence> 
                 

            </extension> 

        </complexContent> 
    </complexType> 
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  <!-- 

    ============================== 
    =          Composite Group 

    ============================== 

  --> 
  <element name="cg" type="ipml:CGType" substitutionGroup="ipml:activity"/> 

    <complexType name="CGType"> 

        <complexContent> 
            <extension base="ipml:ActivityType"> 

                <sequence> 

                  <element ref="ipml:activity" minOccurs="1" maxOccurs="unbounded"/> 
                  <element name="cop" type="ipml:CopType" minOccurs="0" maxOccurs="1"/> 

                  <element name="top" type="ipml:TopType" minOccurs="0" maxOccurs="1"/> 

                </sequence> 
                 

            </extension> 

        </complexContent> 
    </complexType> 

 

  <!-- 
    ============================== 

    =          Switch 

    ============================== 
  --> 

  <element name="switch" type="ipml:SwitchType" substitutionGroup="ipml:activity"/> 

  <complexType name="SwitchType"> 
    <complexContent> 

      <extension base="ipml:ActivityType"> 
        <sequence> 

          <element name="case" maxOccurs="unbounded"> 

            <complexType> 
              <sequence> 

                <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/> 

              </sequence> 
              <attribute name="condition" type="string" use="required"/> 

            </complexType> 

          </element> 

          <element name="otherwise" minOccurs="0" maxOccurs="1"> 

            <complexType> 

              <sequence> 
                <!--<element ref="ipml:activity" minOccurs="0" maxOccurs="unbounded"/>--> 

                <element name="cg" type="ipml:CGType" minOccurs="0" maxOccurs="1"/> 

              </sequence> 
            </complexType> 

          </element> 

        </sequence> 
      </extension> 

    </complexContent> 

  </complexType> 
 

</schema> 
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APPENDIX II 

XML SCHEMA DEFINITIONS FOR RULES 

<?xml version="1.0" encoding="utf-8" ?> 

<!-- 

  *********************************************************************** 
  **AP ECA rules (Integration Rules) Schema Definition ** 

  *********************************************************************** 

  --> 
<schema xmlns="http://www.w3.org/2001/XMLSchema" 

  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 

  xmlns:eca="http://ap.org/eca/" targetNamespace="http://ap.org/eca/" elementFormDefault="qualified"> 
 

  <import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="http://schemas.xmlsoap.org/wsdl/"/> 

 
  <element name="rules" type="eca:rulesType"/> 

 

  <complexType name="rulesType"> 
    <sequence> 

      <element name="event" type="eca:eventType" minOccurs="0" maxOccurs="unbounded"/> 

    </sequence> 
  </complexType> 

 

  <complexType name="eventType"> 
    <sequence> 

      <element name="pre" type="eca:preType" minOccurs="0" maxOccurs="1"/> 
      <element name="post" type="eca:postType" minOccurs="0" maxOccurs="1"/> 

      <element name="cond" type="eca:condType" minOccurs="0" maxOccurs="unbounded"/> 

    </sequence> 
    <attribute name="ap" type="string" use="required"/> 

  </complexType> 

  <!-- 
    ============================== 

    =          Pre-Condition 

    ============================== 

  --> 

  <complexType name="preType"> 

    <sequence> 
      <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/> 

    </sequence> 

  </complexType> 
  <!-- 

    ============================== 

    =          Post-Condition 
    ============================== 

  --> 

  <complexType name="postType"> 
    <sequence> 

      <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/> 

    </sequence> 
  </complexType> 

  <!-- 

    ============================== 

    =          Conditional Rule 

    ============================== 

  --> 
  <complexType name="condType"> 

    <sequence> 

      <element name="ecaRule" type="eca:ecaRuleType" minOccurs="1" maxOccurs="1"/> 
    </sequence> 

  </complexType> 

 
  <complexType name="ecaRuleType"> 

    <sequence>         
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        <element name="condition" type="eca:conditionType" minOccurs="1" maxOccurs="1"/> 

        <element name="actions" type="eca:actionsType" minOccurs="0" maxOccurs="1"/> 
    </sequence> 

  </complexType> 

 
  <complexType name="conditionType"> 

    <sequence> 

        <element name="invoke"  type="eca:invoke" minOccurs="1" maxOccurs="1"/> 
    </sequence> 

    <attribute name="name" type="string" use="required"/> 

  </complexType> 
 

  <complexType name="actionsType"> 

    <sequence> 
      <element name="action" type="eca:actionType" minOccurs="1" maxOccurs="2"/> 

    </sequence> 

  </complexType> 
 

  <complexType name="actionType">     

    <sequence>   
        <element name="invoke"  type="eca:invoke" minOccurs="0" maxOccurs="1"/> 

    </sequence> 

    <attribute name="name" type="string" use="required"/> 
    <attribute name="targetAP" type="string" use="optional"/> 

  </complexType> 

  <!-- 
    ============================== 

    =          Invoke Condition as Service 
    ============================== 

  -->   

      <complexType name = "invoke"> 
            <attribute name="name" type="NCName" use="required"/> 

            <attribute name="serviceName" type="NCName" use="required"/>             

            <!--<attribute name="portType" type="QName" use="required"/>--> 
            <attribute name="operation" type="NCName" use="required"/> 

            <attribute name="inputVariable" type="NCName" use="optional"/> 

            <attribute name="outputVariable" type="NCName" use="optional"/> 

            <attribute name="instance" type="NCName" use="optional"/> 

      </complexType> 

 
</schema> 

 

 

 

 

 

 

 

 

 

 

 



Texas Tech University, Rajiv Shrestha, May 2010 

84 

 

APPENDIX III 

PROCESS DEFINITION FOR THE ONLINE SHOPPING EXAMPLE 

<?xml version="1.0" encoding="utf-8"?> 

 

<!-- 
 ***************************************************************** 

 **        Online Shopping Checkout Process Definition          ** 

 ***************************************************************** 
--> 

<process xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xsi:schemaLocation="http://ap.org/pml/ 

file:/C:/Documents%20and%20Settings/rshresth/My%20Documents/NetBeansProjects/APProject/src/org/ap/schema/APSchema.

xsd" 
  xmlns:tns="urn:checkoutService" 

  xmlns:sho="http://www.ap.org/service/Shopping" 

  xmlns:cc="http://www.ap.org/service/CreditCard" 
  xmlns:echk="http://www.ap.org/service/ECheck" 

  xmlns:inv="http://www.ap.org/service/Inventory" 

  xmlns:shi="http://www.ap.org/service/Shipping" 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"   

  xmlns="http://ap.org/pml/" name="checkout" targetNamespace="urn:checkoutService"> 

 
  <variables> 

    <!--input --> 
    <variable name="orderId" type="xsd:string"/> 

    <variable name="loginName" type="xsd:string"/> 

    <!--shopping variables --> 
    <variable name="getCustomerInfoInput" messageType="sho:getCustomerInfo"/> 

    <variable name="getCustomerInfoOutput" messageType="sho:getCustomerInfoResponse"/>  

    <variable name="getProductListInput" messageType="sho:getProductList"/> 
    <variable name="getProductListOutput" messageType="sho:getProductListResponse"/> 

  </variables> 

 

  <cg name="cg0"> 

      <assign name="cg0_assign1"> 

          <copy> 
            <from variable="loginName"/> 

            <to variable="getCustomerInfoInput" part="loginName"/> 

          </copy> 
          <copy> 

            <from variable="loginName"/> 

            <to variable="getProductListInput" part="loginName"/> 
          </copy> 

          <copy> 

            <from variable="orderId"/> 
            <to variable="getProductListInput" part="orderID"/> 

          </copy> 

      </assign> 
 

      <cg name="cg01"> 

          <ag name="ag011"> 

            <invoke name="getCustomerInfo" serviceName="shopping"  

                portType="sho:ShoppingPortType" operation="getCustomerInfo" 

                inputVariable="getCustomerInfoInput" outputVariable="getCustomerInfoOutput"/> 
          </ag> 

 

          <ag name="ag012"> 
              <invoke name="selectShipper" serviceName="shopping" 

                portType="sho:shoppingPortType" operation="selectShipper" 

                inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/> 
              <top name = "top_ag012"> 

                  <invoke name="selectShipper" serviceName="shopping" 
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                    portType="sho:shoppingPortType" operation="selectShipper" 

                    inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/> 
              </top> 

          </ag> 

 
          <cop name = "cop_cg01"> 

              <invoke name="selectShipper" serviceName="shopping" 

                portType="sho:shoppingPortType" operation="selectShipper" 
                inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/> 

          </cop> 

          <top name = "top_cg01"> 
              <invoke name="selectShipper" serviceName="shopping" 

                portType="sho:shoppingPortType" operation="selectShipper" 

                inputVariable="selectShipperInput" outputVariable="selectShipperOutput"/> 
          </top> 

      </cg>       

 
      <ap name ="orderPlacedAP"> 

          <apDataIn variable= "orderId"/> 

      </ap> 
 

      <cg name="cg02"> 

          <ag name="ag021"> 
                <invoke name="chargeCreditCard" serviceName="creditCard" 

                    portType="cc:CreditCardPortType" operation="chargeCreditCard" 

                    inputVariable="chargeCreditCardInput" outputVariable="chargeCreditCardOutput"/> 
                <cop name="cop_ag021"> 

                  <invoke name="creditBack" serviceName="CreditCard" 
                      portType="cc:CreditCardPortType" operation="creditBack" 

                      inputVariable="creditBackInput" outputVariable="creditBackOutput"/> 

                </cop> 
                <top name="top_ag021"> 

                  <invoke name="eCheckPay" serviceName="eCheckPay" 

                      portType="echk:ECheckPortType" operation="chargeECheckPay" 
                      inputVariable="eCheckPayInput" outputVariable="eCheckPayOutput"/> 

                </top> 

          </ag> 

          <ag name="ag022"> 

              <invoke name="decInventory" serviceName="inventory" 

                  portType="inv:InventoryPortType" operation="decInventory" 
                  inputVariable="decInventoryInput" outputVariable="decInventoryOutput"/> 

              <cop name="cop_ag022"> 

                <invoke name="incInventory" serviceName="inventory" 
                    portType="inv:InventoryPortType" operation="incInventory" 

                    inputVariable="incInventoryInput" outputVariable="incInventoryOutput"/> 

              </cop> 
          </ag> 

      </cg> 

             
      <ap name ="creditCardChargedAP"> 

            <apDataIn variable= "orderId"/> 

            <apDataIn variable= "amount"/>             
      </ap> 

       

      <cg name="cg03">           
          <assign name="assigncg03"> 

                <copy> 

                  <from variable="orderId"/> 
                  <to variable="loginName"/> 

                </copy> 

          </assign> 
 

          <switch name="switch"> 

              <case condition="${shippingMethod} == USPS"> 
                  <cg name="cg031_if"> 

                      <ag name="ag0311_if"> 
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                          <invoke name="sendShippingRequest" serviceName="Shipping"  

                                  portType="shi:ShippingPortType" operation="sendShippingRequest" 
                                  inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/> 

                      </ag> 

                      <ap name="UPSShippedAP"> 
                            <apDataIn variable= "orderId"/> 

                            <apDataIn variable= "UPSShippingDate"/> 

                      </ap> 
                  </cg> 

              </case> 

              <otherwise> 
                  <cg name="cg031_else"> 

                      <ag name="ag0311_else"> 

                          <invoke name="sendShippingRequest" serviceName="Shipping"  
                                  portType="shi:ShippingPortType" operation="sendShippingRequest" 

                                  inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/> 

                      </ag> 
 

                      <ap name="USPSShippedAP"> 

                          <apDataIn variable= "orderId"/> 
                          <apDataIn variable= "USPSShippingDate"/>                                              

                      </ap> 

                  </cg> 
 

              </otherwise> 

          </switch> 
          <assign name="assignShippingTop"> 

              <copy> 
                  <from variable="getCustomerInfoOutput" part="altShippingMethod"/> 

                  <to variable="sendShippingRequestInput" part="shippingMethod"/> 

              </copy> 
          </assign> 

          <top name="shippingMethodTop"> 

              <invoke name="sendShippingRequest" serviceName="Shipping" 
                  portType="shi:ShippingPortType" operation="sendShippingRequest" 

                  inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/> 

          </top> 

      </cg> 

      <ag name="ag04"> 

          <invoke name="deliverOrder" serviceName="shipping" 
              portType="shi:ShippingPortType" operation="deliverOrder" 

              inputVariable="sendShippingRequestInput" outputVariable="sendShippingRequestInput"/> 

      </ag> 
      <ap name ="deliveredAP"> 

          <apDataIn variable= "orderId"/> 

          <apDataIn variable= "shippingMethod"/> 
          <apDataIn variable= "deliveryDate"/> 

      </ap> 

      <ag name="ag05"> 
        <invoke name="OrderClose" serviceName="shopping" 

            portType="sho:ShoppingPortType" operation="orderClose" 

            inputVariable="OrderCloseInput" outputVariable="OrderCloseOutput"/> 
      </ag> 

  </cg> 

 
</process> 
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APPENDIX IV 

RULE DEFINITIONS FOR THE ONLINE SHOPPING EXAMPLE 

<?xml version="1.0" encoding="utf-8"?> 

 

<!-- 
 ***************************************************************** 

 **  Integration Rule for Online Shopping ** 

 ***************************************************************** 
--> 

<rules xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
  xsi:schemaLocation="http://ap.org/eca/ 

file:/C:/Documents%20and%20Settings/rshresth/My%20Documents/NetBeansProjects/APProject/src/org/ap/schema/rules.xsd" 

  xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
  xmlns="http://ap.org/eca/"> 

 

    <event ap="orderPlacedAP"> 
        <pre> 

            <ecaRule> 

                <condition name="quantityCheck"> 
                     <invoke name="checkQuantity" serviceName="ruleConditions" 

                        operation="checkQuantity1" 

                        inputVariable="quantity" 
                        outputVariable="result"/> 

                </condition> 
                <actions> 

                    <action name="backOrderPurchase"> 

                        <invoke name="backOrderPurchase" serviceName="shopping" 
                          operation="backOrderPurchase" inputVariable="orderId" 

                          outputVariable="result" /> 

                    </action> 
                </actions> 

            </ecaRule> 

        </pre> 

    </event> 

    <event ap="creditCardChargedAP"> 

        <post> 
            <ecaRule> 

                <condition name= "quantityCheck"> 

                     <invoke name="checkInStockQuantity" serviceName="ruleConditions" 
                        operation="checkQuantity2" 

                        inputVariable="quantity" 

                        outputVariable="result"/> 
                </condition> 

                <actions> 

                    <action name="APRetry" targetAP= "orderPlacedAP"/> 
                    <action name="APRollback"/> 

                </actions>                 

            </ecaRule> 
        </post> 

        <cond> 

            <ecaRule> 

                <condition name="notification"> 

                     <invoke name="checkAmount" serviceName="ruleConditions" 

                        operation=" checkAmount" 
                        inputVariable="amount" 

                        outputVariable="result"/> 

                </condition> 
                <actions>                     

                    <action name="highExpenseNotice"> 

                        <invoke name="highExpenseNotice" serviceName="shopping" 
                          operation="highExpenseNotice" inputVariable="cardNumber" 

                          outputVariable="result" /> 
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                    </action> 

                </actions> 
            </ecaRule> 

        </cond> 

    </event> 
 

    <event ap="deliveredAP"> 

        <post> 
            <ecaRule> 

                <condition name= "testSample"> 

                     <invoke name="checkInStockQuantity" serviceName="ruleConditions" 
                        operation="testPostatDelivered" 

                        inputVariable="quantity" 

                        outputVariable="result"/> 
                </condition> 

                <actions>                     

                    <action name="APRetry"/> 
                </actions> 

            </ecaRule> 

        </post> 
        <cond> 

            <ecaRule> 

                <condition name="ShippingRefund"> 
                     <invoke name="ShippingRefund" serviceName="ruleConditions" 

                        operation="ShippingRefund" 

                        inputVariable="orderId" 
                        outputVariable="result"/> 

                </condition> 
                <actions> 

                    <action name="refundUPSShippingCharge"> 

                        <invoke name="refundUPSShippingCharge" serviceName="shipping" 
                          operation="refundUPSShippingCharge" inputVariable="orderId" 

                          outputVariable="result" /> 

                    </action> 
                </actions>               

            </ecaRule> 

        </cond> 

    </event> 

 

    <event ap="USPSShippedAP"> 
        <post> 

            <ecaRule> 

                <condition name= "testSample"> 
                     <invoke name="checkInStockQuantity" serviceName="ruleConditions" 

                        operation="testPostatDelivered" 

                        inputVariable="quantity" 
                        outputVariable="result"/> 

                </condition> 

                <actions> 
                    <action name="APCC"/> 

                </actions> 

            </ecaRule> 
        </post> 

    </event> 

 
</rules> 


