

Decentralized Data Dependency Analysis for Concurrent Process Execution

by

Ziao Liu, B.E.

A Thesis

In

COMPUTER SCIENCE

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

Approved

Dr. Susan D. Urban

Chairperson of the Committee

Dr. Rattikorn Hewett

Dr. Michael Shin

Fred Hartmeister

Dean of the Graduate School

December, 2009

Copyright 2009, Ziao Liu

Texas Tech University, Ziao Liu, December 2009

iii

ACKNOWLEDGMENTS

I am heartily thankful to my academic advisor, Dr. Susan Urban, whose

encouragement, guidance and support from the very beginning of my graduate study

to the end of my master thesis has made all this happen.

I greatly appreciate Le Gao for his opinions and help on the research and this

thesis.

I would like to thank all my friends for being so supportive.

This work is dedicated to my parents.

Texas Tech University, Ziao Liu, December 2009

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... III

ABSTRACT ... VI

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

CHAPTER I ... 1

INTRODUCTION .. 1

CHAPTER II .. 5
RELATED WORK .. 5

2.1 Advanced Transaction Models ... 5

2.2 Transactional Workflows ... 7
2.3 Transactional Aspects of Service Composition ... 9

CHAPTER III .. 13

OVERVIEW OF THE DELTA GRID PROJECT .. 13

3.1 Delta Enabled Grid Service (DEGS).. 13

3.2 Process History Capture System (PHCS) .. 14

3.3 Using Deltas in the Recovery Process ... 16

CHAPTER IV .. 18

OVERVIEW OF PROCESS EXECUTION AGENTS ... 18
4.1 PEXA Execution Scenario ... 18
4.2 Internal PEXA Architecture ... 20
4.3 Challenges for Decentralized Data Dependency Analysis 21

CHAPTER V .. 24

DECENTRALIZED DATA DEPENDENCY ANALYSIS .. 24
5.1 Dependency Analysis Using the Lazy Approach... 24

 5.1.1 Preliminary Issues for Graph Construction and Analysis 24

 5.1.2 The Lazy Algorithm .. 28

 5.1.3 Execution Scenario for the Lazy Algorithm ... 33
5.2 Dependency Analysis Using the Eager Algorithm .. 35
5.2.1 The Eager Algorithm .. 35
 5.2.2 Execution Scenario for the Eager Algorithm .. 39
 5.2.3 Decentralized Scenario for the Eager Algorithm 40

 5.2.4 Process Dependency Graph Issues .. 42

Texas Tech University, Ziao Liu, December 2009

v

 5.2.4.1 Cycles in the Process Dependency Graph .. 43

 5.2.4.2 Deletion of Nodes .. 43

CHAPTER VI .. 47
IMPLEMENTATION AND EVALUATION OF DECENTRALIZED DATA DEPENDENCY

ANALYSIS ... 47
6.1 Implementation Environment and Measurement Criteria 47
6.2 Performance Analysis for the Decentralized Algorithms 49

CHAPTER VII ... 57
SUMMARY AND FUTURE RESEARCH ... 57

REFERENCES .. 59

Texas Tech University, Ziao Liu, December 2009

vi

ABSTRACT

In processes composed of Web Services, interleaved access to data between

service executions of concurrent processes can potentially cause data inconsistency

problems. If a process fails, data items modified by the recovery of a failed process

may affect other processes that are concurrently executing and have accessed the same

data items. The results of this research present a decentralized approach to analyzing

data dependencies among concurrently executing processes in a service-oriented

environment. The decentralized approach is an extension of past research with the

DeltaGrid project that analyzes data changes captured from service executions to

identify processes that are dependent on a failed process based on data access patterns.

The results of this research have defined algorithms that allow multiple process

execution engines to share information about data dependencies. Process Execution

Agents (PEXAs) have been defined that control the execution of processes and build

local delta object schedules. Process execution histories are then enhanced with

control information that allows the construction of data dependency graphs to be

distributed among multiple PEXAs by sharing data dependency information, This

research has explored a lazy algorithm that constructs distributed process dependency

graphs upon the failure of a process. The research has also explored an eager

algorithm that dynamically constructs process dependency graphs for all executing

process so that dependency graphs are available as soon as a failure occurs. The work

includes an analysis of performance characteristics of the algorithms. The results of

this research represent an initial step towards the development of distributed, process-

aware execution environments that can support more intelligent ways of monitoring

failures, detecting dependencies, and responding to failures and exceptional conditions

in an environment that cannot conform to traditional data locking protocols.

Texas Tech University, Ziao Liu, December 2009

vii

LIST OF TABLES

Table 1: 10-process execution simulation .. 50

Table 2 100-process execution simulation ... 50

Table 3 500-process execution simulation ... 50

Texas Tech University, Ziao Liu, December 2009

viii

LIST OF FIGURES

Figure 1: Object Delta Structure (Urban et al., 2009a) .. 14

Figure 2: Conceptual View of the Global Schedule (Xiao, 2006) 16

Figure 3: Process Interference Rule Structure (Xiao and Urban, 2008a) 17

Figure 4: PEXA Execution Environment ... 19

Figure 5: Internal PEXA Architecture ... 21

Figure 6: Data Access View of Interleaved Execution .. 22

Figure 7: Global, Distributed Process Dependency Graph .. 23

Figure 8: Cycle in the graph constructed by the lazy approach 25

Figure 9: addVertex() Procedure .. 26

Figure 10: addEge() Procedure ... 26

Figure 11: traversal() Procedure .. 27

Figure 12: findProcessDependencies() Procedure ... 30

Figure 13: buildGraph() Procedure ... 31

Figure 14: recover() Procedure .. 32

Figure 15: Execution Scenario ... 34

Figure 16: Difference between Lazy and Eager Algorithm ... 36

Figure 17: Graph Propagation for the Eager Algorithm .. 38

Texas Tech University, Ziao Liu, December 2009

ix

Figure 18: checkLastModificationOnSameDataItem() Procedure 38

Figure 19: Process Dependency Graph Construction with the Eager

Approach .. 40

Figure 20: Decentralized Execution Scenario for the Eager Algorithm 42

Figure 21: The Deletion of Nodes from the Graph .. 45

Figure 22: 10-process simulation ... 51

Figure 23: 100-process simulation ... 52

Figure 24: 500-process simulation ... 52

Figure 25: Distributed graphs generated per one error .. 54

Figure 26: Comparison of 3 levels of execution .. 54

Figure 27: Average time for adding nodes per PEXA ... 55

Texas Tech University, Ziao Liu, December 2009

1

CHAPTER I

INTRODUCTION

Service-Oriented Computing (SOC) is a new computing paradigm that utilizes

web services as its basic components, supporting the demand for higher

interoperability, scalability, and flexibility in software development practice (Singh

and Huhns, 2005). Web service components are loosely-coupled, platform

independent and distributed in an SOC environment to work collaboratively. Hence,

distributed software is developed using service composition, sometimes creating long-

running computational elements.

Since each service in a process is autonomous and platform-independent, the

commit of a service execution is controlled by the residing service instead of the

global process. As a result, distributed processes composed of services do not execute

as traditional transactions as in centralized and distributed database applications. The

concept of serializability is too strong for concurrently executing services to conform

to global transaction semantics as one process. As a result, ACID (atomicity,

consistency, isolation and durability) properties and traditional concurrency control

mechanisms are not generally suitable for this environment, since a process cannot

afford to block individual services to ensure a commit of the global process (Mikalsen

et al., 2002). Hence, dirty writes and dirty reads are inevitable since a service can

commit before a process completes. This interleaved access to data between service

executions of concurrent processes can potentially cause data inconsistency problems.

If a process fails, data items modified by this failed process may affect other processes

which are concurrently executing and have accessed the same data items. As a result,

there exists data dependencies between concurrently executing processes. Information

about data dependencies can potentially be used to enhance recovery procedures and

to provide more intelligent ways to address data consistency issues.

Several recent research endeavors have focused on the recovery of processes in

a service-oriented environment. One such project that has addressed the recovery of

Texas Tech University, Ziao Liu, December 2009

2

dependent processes is the DeltaGrid Project (Xiao, 2006; Xiao and Urban, 2008a;

Xiao and Urban, 2008b). In the DeltaGrid system, services are referred to as Delta-

Enabled Grid Service (DEGS) (Urban et al., 2009a), and are extended to capture

incremental data changes, known as deltas. A subsystem known as the Process History

Capture System (PHCS) is created to receive, store, and analyze deltas. The

DeltaGrid system is capable of providing a limited form of rollback (known as Delta-

Enabled Rollback) as well as compensation and contingency procedures. The merged

deltas are also used to analyze dependencies when a process fails and to invoke a

recovery process that uses user-defined rules to determine forward or backward

recovery actions for dependent processes (Xiao, 2006; Xiao and Urban, 2008a; Xiao

and Urban, 2008b).

In the DeltaGrid project, a centralized PHCS merges multiple streams of deltas

to create a time-sequenced global schedule of data changes. Distributed deltas in the

execution environment are transmitted, stored at the central delta repository, and used

to create execution context and a global schedule. The work in (Urban et al., 2009a;

Xiao and Urban, 2008a) demonstrated the feasibility of collecting data changes for

distributed service execution and analyzing data dependencies to identify how one

process can potentially affect other processes, especially during failure and recovery

activities. The research also demonstrated the overhead associated with the centralized

approach to the analysis of data dependency.

The purpose of this research has been to investigate a decentralized approach

to data dependency analysis in a service-oriented environment. In particular, this

research has investigated the concept of Process Execution Agents (PEXAs) and the

manner in which multiple PEXAs communicate to discover data dependencies that can

be used to support recovery activities. PEXAs are responsible for controlling the

execution of processes that are composed of web services. PEXAs are associated with

specific distributed sites and are also responsible for capturing and exchanging

information with other PEXAs about the data changes that occur at those sites in the

context of service executions.

Texas Tech University, Ziao Liu, December 2009

3

This research defines the functionality of PEXAs and also describes the data

structures and communication mechanisms that are used to achieve a decentralized

approach to the analysis of data dependencies and the construction of distributed

process dependency graphs. Two different decentralized algorithms for data

dependency analysis have been developed. One approach, known as the lazy

algorithm, defers the analysis of data dependencies until the failure of a process. When

a process fails, PEXAs communicate to construct a distributed process dependency

graph that is used to control recovery activities. The other approach, known as the

eager algorithm, constructs distributed process dependency graphs during process

execution so that dependency information is already known at the time of process

failure. Performance results of the lazy approach indicate an inverse relationship

between local graph construction time and the percentage of externally executed

operations, with graph construction time also affected by the percentage of

dependencies. Higher failure rates also correlate with increased graph construction

time. Performance results from the eager approach shows that adding nodes to the

graphs does not consume a large amount of time with an increase in the level of the

process execution.

The decentralized algorithms presented in this thesis eliminate the bottleneck

reported in (Urban et al., 2009a; Xiao and Urban, 2009; Xiao, 2006) of forwarding all

data changes to a central point for analysis. More importantly, the distributed delta

object schedule and decentralized data dependency analysis algorithms represent a

new way of integrating existing transaction processing theories with execution

platforms that can be used to address data consistency issues for concurrent process

execution in service-oriented environments, providing more dynamic and intelligent

ways of monitoring failures, detecting dependencies, and responding to failures and

exceptional conditions.

In the remainder of this thesis, Chapter 2 presents related work. Chapter 3

provides an overview of the DeltaGrid project on which this research is based. Chapter

4 then outlines the functionality of PEXAs with an illustration of the challenges

Texas Tech University, Ziao Liu, December 2009

4

associated with decentralized data dependency analysis. In Chapter 5, the lazy and

eager algorithms are presented for decentralized data dependency analysis and

propagation of recovery. Chapter 6 analyzes performance characteristics of the

algorithms. The thesis concludes in Chapter 7 with a summary and discussion of

future research directions.

Texas Tech University, Ziao Liu, December 2009

5

CHAPTER II

RELATED WORK

This chapter discusses related work. Section 2.1 summarizes work with

advanced transaction models and service composition. Section 2.2 outlines past work

with transactional workflows. Section 2.3 presents issues related to the transactional

aspects of service composition.

2.1 Advanced Transaction Models

Advanced Transactional Models (ATMs) (Worah and Sheth, 1997) relax the

traditional ACID properties and use of the two-phase commit protocol to provide

functionalities such as compensation for backward recovery and contingency for

forward recovery.

In the work of (Garcia-Molina and Salem, 1987), a mechanism is proposed to

structure a long running process as a saga consisting of many ordered smaller tasks.

Each of these smaller tasks conforms to ACID properties, so the tasks from different

processes are allowed to execute as interleaved operations. Furthermore, there could

be nested Sagas which means that each task can have a sequence of smaller tasks that

adhere to ACID properties.

Traditional ACID properties require all or nothing execution. Hence, when a

transaction aborts after a failure, everything has to be rolled back. For each task in a

saga, there should be a compensator (Garcia-Molina and Salem, 1987) to reverse the

original task. The compensator is an execution that logically removes the results of the

failed task. Therefore, to abort a saga, the system aborts the current active task and

executes the compensators for each task in reverse order to remove any actions

performed by an each task of the saga.

The flexible transaction model (Ansari et al., 1992) consists of three

components: a set of sub-transactions, a set of intra-transaction execution

Texas Tech University, Ziao Liu, December 2009

6

dependencies and a set of acceptable states. A flexible transaction has a set of sub-

transactions, each of which is a logical step to do some operations. Since a sub-

transaction can be either compensable or noncompensable, different constraints are

applied. A compensable sub-transaction can commit locally after finishing its

operations, and its results are visible to other transactions or sub-transaction. If

something goes wrong, the sub-transaction can be compensated. However, the

noncompensable sub-transactions must wait for the commit by the global transaction,

so its results can be made visible to others.

The set of intra-transaction execution dependencies defines the execution

semantics. A sub-transaction has an execution dependency as a condition to start, to

resume or to terminate a sub-transaction. Execution dependencies could be based on

the execution state, on the output of other transactions, or on time, so that operations

can be grouped to form one or more sub-transactions.

The set of acceptable states defines the conditions for the success of a flexible

transaction, with a combination of the execution states of sub-transactions. Each sub-

transaction has an acceptable state. If the acceptable state is reached, the sub-

transaction can terminate successfully without additional sub-transactions. Therefore,

during the execution of a flexible transaction, all sub-transactions are scheduled

according to their execution dependencies. Then the scheduler determines if an

acceptable state is reached whenever the execution state of a sub-transaction is

changed. If an acceptable state is reached, the sub-transaction is ready to commit, and

the acceptable state is used to decide whether to commit, abort or compensate this sub-

transaction. Otherwise, the sub-transaction has to be aborted or compensated

according to the execution state.

The multilevel transaction model (Weikum, 1991) allows more concurrency in

the execution of independent transactions. A transaction is decomposed into a nested

set of sub-transactions at different levels and the individual sub-transactions can

unconditionally commit before the whole multilevel transaction commits. An

operation at some level usually creates its sub-transactions in the next level as child

Texas Tech University, Ziao Liu, December 2009

7

sub-transactions and the parent transaction waits until the child sub-transactions

commit. A sequence of abstractions is defined for multilevel transaction to access the

database. At the lowest level, sub-transactions are read or write operations over sets of

pages. At the next higher level, the abstraction of tuples are accessed using SQL

statements. At an even higher level, some interfaces specifically defined can be seen

(Weikum, 1991).

These techniques relax the ACID properties and introduce the concept of

compensation for the decomposed sub-transactions. They also define rule-based

conditions for execution. However, they do not support isolation of data and do not

address recovery for dependent transactions in a loosely-coupled environment.

2.2 Transactional Workflows

The term Transactional Workflows is introduced to clearly recognize the

relevance of transactions to workflows. Transaction workflows involve the

coordinated execution of multiple related tasks that support access to heterogeneous,

autonomous, and distributed data through the use of selected transactional properties

for individual tasks or entire workflows (Worah and Sheth, 1997). The ConTract

Model is one of many models addressing transactional workflows (Wachter and

Reuter, 1992).

The ConTract Model supports the correct execution of non-atomic, long-lived

applications with application-dependent consistency constraints. The model provides a

mechanism for grouping transactions into a multi-transaction activity. A ConTract

consists of a set of predefined actions (steps) and an explicitly specified execution plan

(script). The ConTract Model provides compensation for backward recovery, and

user-defined consistency through the specification of pre-conditions or post-conditions

for steps. After the execution of each step, the ConTract Model will release locks and

if failure occurs, the ConTract Model will semantically undo the effect of completed

steps. The pre-/post-condition guarantees the user-defined way of specifying

Texas Tech University, Ziao Liu, December 2009

8

correctness criteria. However, conditions cannot be checked during the execution, and

the execution of its compensation is not flexible enough to support it in different

contexts.

The work in (Eder and Liebhart, 1995) introduced the workflow activity model

(WAMO). WAMO enables the workflow designer to model complex business

processes in a simple and reliable way. A complex business process or workflow is

decomposed into smaller work units, known as activities, which consist of pre-existing

tasks and automatic exception handling for reliable flow control. In this model, a

workflow consists of one or more activities, forms and agents. An activity indicates

any abstract description of work units in the business process. A form is a data

repository or container to store relevant data. An agent is a processing entity to

perform some execution of activities. An activity may consist of multiple other

activities as its steps. Furthermore, activities may be reused by other activities. Hence,

new workflows are allowed to be composed of predefined activities. Five simple but

powerful control structures are provided to flexibly compose a workflow: Sequence,

Ranked Choice, Free Choice, Parallel and Nesting. After each execution of an activity,

the execution state will also be used to control activities of a workflow.

In the Correct and Reliable Execution of Workflows (CREW) project (Kamath

and Ramamritham, 1998), the correctness requirements and other constraints are

specified for the workflow executions based on the previous work on transactional

workflows. A workflow executes on multiple steps, where a step is triggered by the

completion of one or more previous steps, or the occurrence of specific events. The

rules, events or conditions predefined will be used to dynamically generate the rule

sets to manage the execution of workflows. A mechanism is proposed for the handling

of failures to eliminate unnecessary compensations and re-execution of steps.

Depending on whether the previous execution of steps is acceptable, complete

compensation and re-execution, or partial compensation and incremental re-execution

is used to undo the effects. Therefore, CREW makes the execution of workflows more

Texas Tech University, Ziao Liu, December 2009

9

dynamic by the use of dynamic rule set. The handling of failures and exceptions can

be better managed during execution.

The METEOR model (Wachter and Reuter, 1992) integrates many approaches

from the transactional workflows models. A METEOR model includes four

components, processing entities and their interfaces, tasks, task managers and

workflow schedulers. A processing entity is responsible for the completion of a task,

which could be performed by a user or application system. A task is a basic execution

agent that performs some operations. The task manager takes control of each task and

its interactions with the environment. The workflow scheduler is responsible for

coordinating the execution of tasks within a workflow. Errors are defined and

captured by this model.

The transactional workflows models have been used to define application

specific and user-defined correctness, reliability and functional requirements within

workflow executions. These models have improved the robustness of distributed

transaction executions. Transactional workflows provide solutions to recover a failed

transaction, but the recovery of one failed transaction could affect other concurrently

executing transactions because the relaxation of atomicity and isolation is not

considered. Furthermore, the execution dependencies and rule sets are static, which

means that they are predefined for errors and foreseen exceptions.

2.3 Transactional Aspects of Service Composition

Web services are becoming more popular in the business-to-business

computing environments. A Web service is defined in (Booth et al., 2005) as “a

software system designed to support interoperable machine-to-machine interaction

over a network”. A Web service uses the Web Service Definition Language (WSDL)

to define its interface. The Simple Object Access Protocol (SOAP) messages in an

XML format are exchanged, which is the basic interaction between services. Other

web service standards that provide protocols and frameworks for web services are

Texas Tech University, Ziao Liu, December 2009

10

WS-coordination (Cabrera et al., 2002a), WS-atomic transaction (Cabrera et al.,

2002b) and WS-Business activity (Newcomer et al., 2006).

The WS-coordination specification (Cabrera et al., 2002a) defines an

extensible framework for coordinating distributed computational units using a

coordinator and a set of coordination protocols. Therefore, distributed applications can

reach a consistent state by the coordination protocols. The coordination protocols are

suitable for a wide variety of application activities, such as simple short-lived

operations and complex long-lived business activities. This model defines a

framework for a coordination service which consists of three component services: 1)

an activation service with an operation that enables an application to create a

coordination context; 2) a registration service with an operation that enables an

application to register for coordination protocols; 3) and a coordination type-specific

set of coordination protocols. The WS-coordination specification also provides for

extensibility and flexibility as follows: the publication of new coordination protocols,

the selection of a protocol from a coordination type, and the definition of extension

elements that can be added to protocols and message flows.

The WS-transaction specification (Cabrera et al., 2002b) defines three specific

agreement coordination protocols for the atomic transaction coordination type:

completion, volatile two-phase commit (Volatile 2PC), and durable two-phase commit

(Durable 2PC). The completion protocol initiates commitment processing. Based on

each protocol's registered participants, the coordinator begins with Volatile 2PC, then

proceeds through Durable 2PC. The final result is signaled to the initiator. The 2PC

protocol coordinates registered participants to reach a commit or abort decision, and

ensures that all participants are informed of the final result. Participants managing

volatile resources such as memory should register for Volatile 2PC, and participants

managing durable resources such as a database should register for Durable 2PC.

Atomic transactions conform to an all-or-nothing property.

The WS-Business activity specification (Newcomer et al., 2006) defines the

business activity coordination type which is used to coordinate with the extensible

Texas Tech University, Ziao Liu, December 2009

11

coordination framework described in the WS-Coordination specification above.

Hence, business process and workflow systems are enabled to wrap their proprietary

mechanisms and interoperate across trust boundaries and different vendor

implementations.

Web Service Business Process Execution Language (Jordan et al., 2007), or

WS-BPEL, is a standard to enable the interoperability and the integration between

business processes by specifying interactions with web services. This standard defines

all the elements to build heterogeneous and distributed applications. To define a

business process, basic components need to be included, such as partner links,

properties, correlation, activities, scopes, and handlers. A partner represents both a

consumer of a service provided by the business process and a provider of a service to

the business process. The definition of properties creates a unique name for a WS-

BPEL process definition and associates it with an XML Schema type. Correlation is

used to provide additional application-level mechanisms to match messages and

conversations with the business process instances for which they are intended. Basic

and structured activities are also modeled. Basic activities include receive (doing a

blocking wait for a matching message to arrive), reply (sending a message in reply to a

formerly received message), invoke (invoking a one-way or request-response

operation), assign (updating the values of variables or partner links with new data),

and validate (validating XML data stored in variables). Structured activities are used

for control flow. The scope concept indicates a set of activities which could be basic

or structured operations. There are also three kinds of handlers: event handlers for

message events or time events, fault handlers for exceptional situations, and

compensation handlers for undoing the effects of completed activities.

According to the WS-BPEL standard (Jordan et al., 2007), business processes

are composed of web services. A business process cannot always conform to

traditional concurrency control mechanisms and ACID properties since it is not

reasonable to block individual services to wait for a commit of a global process.

Isolation has to be relaxed since each locally residing service will decide the commit

Texas Tech University, Ziao Liu, December 2009

12

of an operation, and as a result, data dependencies are generated between global

processes. So the recovery of a failed process might affect other concurrently

executing processes. Therefore, the most critical issue in the transactional aspects of

service composition is to guarantee correctness in this concurrent environment for

failure recovery.

The techniques mentioned above do not deal with the data dependencies that

exist between concurrent process executions. If a process fails, it is likely to make one

process consistent by the recovery. But other business processes may not be consistent

since there is no mechanism to detect and identify data dependencies between

concurrent processes. Recent work such as the promises model in (Greenfield et al.,

2007) and the reservation-based technique in (Zhao et al., 2005) propose new

mechanisms to address the use of shard data in concurrent process execution

environments. The promises model provides agreements between clients and the

resources and defines conditions for the control of operations. The reservation

protocol uses a reservation-based mechanism to coordinate transactions without using

locking for data access.

The technique presented in this research dynamically analyzes write

dependencies and potential read dependencies among concurrently executing

processes by capturing data changes from distributed service executions and providing

an intelligent, decentralized approach to discovering dependencies that can be used to

enhance recovery techniques such as those described above.

Texas Tech University, Ziao Liu, December 2009

13

CHAPTER III

OVERVIEW OF THE DELTA GRID PROJECT

The research described in this thesis builds on past work with the DeltaGrid

project (Xiao, 2006; Xiao and Urban, 2008a; Xiao and Urban, 2008b; Xiao and Urban,

2009) and Delta-Enabled Grid Services (DEGS) (Urban et al., 2009). This chapter

provides an overview of foundational work with the DeltaGrid project. Section 3.1

discusses DEGS and how they are used to generate information about data changes.

Section 3.2 then describes process history capture system. Section 3.3 summarizes

how deltas are used in the recovery process.

3.1 Delta Enabled Grid Service (DEGS)

A DEGS is a Grid Service that has been enhanced with an interface that

provides access to the incremental data changes, known as deltas, that are associated

with service execution in the context of globally executing processes. A DEGS uses an

Open Grid Services Architecture Data Access and Integration (OGSA-DAI) Grid Data

Service for database interaction and the Globus Toolkit to provide containers for the

host of grid services. The OGSA-DAI (Foster et al., 2004) implements Java-based grid

services which then can access and integrate data resources such as DB2, Oracle, SQL

Server, and other major commercial database systems.

The database accessed by a DEGS captures deltas using capabilities provided

by most commercial database systems. In (Urban et al., 2009a), triggers and Oracle

Streams (Tumma, 2004) are used as a way to capture data changes(Oracle,

2005)(Oracle, 2005). Oracle Streams is a feature that monitors database redo logs for

changes and publishes these changes to a queue to be used for data sharing.

Deltas captured over the source database are stored in a local delta repository.

Deltas are then generated as a stream of XML data from the delta repository to the

Process History Capture System (PHCS) of the DeltaGrid execution environment. The

object delta structure that formats XML deltas is shown in Figure 1.

Texas Tech University, Ziao Liu, December 2009

14

A DeltaObject contains information about the data items that have been changed

by a service: className, oId and degsId. className indicates the name of the

class/relation that is modified. oId is the unique identifier of the object/tuple instance

and degsId is the identifier of the service that is modifying the data. A DeltaObject can

have multiple Property objects. Each Property includes a propertyName as the name of

the changed property, and one or more PropertyValue objects indicating the history of

data values of an attribute. PropertyValue has a one-to-one mapping to a DataChange

object, which has a processId, operationId and timestamp to indicate a specific process

and its operation at a certain time when a PropertyValue object is created.

Figure 1: Object Delta Structure (Urban et al., 2009a)

As a grid service makes changes to data items in a database, the changes are

packaged in an XML format according to the structure in Figure 1 and forwarded to

the process history capture system.

3.2 Process History Capture System (PHCS)

The PHCS parses, analyzes, organizes, and records deltas for execution

recovery. The PHCS is comprised of three layers: a delta storage layer that stores the

deltas, a data access layer that provides interfaces for reading from and writing to the

delta repository, and a service layer that receives and parses deltas sent through XML

files (Xiao, 2006).

When receiving captured deltas, a complete execution history for distributed,

concurrent processes is formed. The execution history includes deltas from distributed

DEGSs and the process runtime context generated by the process execution engine.

Texas Tech University, Ziao Liu, December 2009

15

Deltas are dynamically merged using timestamps as they arrive in the PHCS to create

a time-ordered log of delta objects from distributed DEGS, which is called the global

delta object schedule.

The global delta object schedule shows how concurrent processes interleave

access to shared data items. The schedule supports recovery activities like the

backward recovery of a completed service and also provides the basis for discovering

data dependencies among processes.

An indexing structure is provided for the global delta object schedule using

runtime information and deltas. This conceptual view of the global schedule obtains

all the active processes and their operations from the process runtime information

repository. The global schedule also contains a time-ordered list of node structures

indicating the data that has been modified. A time-sequence index is established to

retrieve a node by specifying the processes and operations. The node and time-

sequence index is a one-to-one mapping, retrieving the delta repository for the delta

objects that are stored into the global schedule as a key-value pair. When deltas arrive

as XML files, they are extracted using the object delta structure and added into the

global schedule organized through the indexing structure. Figure 2 shows the

conceptual view of the global schedule as defined in (Xiao, 2006).

Data dependencies are used to identify concurrently executing processes that

may be affected by the failure and recovery of a process that is accessing shared data.

Using the global schedule, processes that are write dependent on a failed process can

be detected. Write dependency exists between two processes if one process modifies

the data objects that have been written by another process that has not yet committed

(Xiao, 2006). Since the delta object schedule only contains information about

modified data, potential read dependencies can only be derived from the process and

operation context, and not from the delta repository. Potential read dependencies are

handled in a conservative way by detecting services that have executed at the same

site during the same time period. If a process fails, the data items modified by the

failed process may affect other concurrently executing processes, thus creating data

Texas Tech University, Ziao Liu, December 2009

16

consistency issues in the execution environment. Therefore, write and read

dependencies can be identified based on the definitions and then used in the recovery

process.

Figure 2: Conceptual View of the Global Schedule (Xiao, 2006)

3.3 Using Deltas in the Recovery Process

Besides DEGS and PHCS, the DeltaGrid project introduced the use of process

interference rules (PIRs) (Xiao, 2006). Process Interference Rules are active rules that

query the data changes from a failed process and its potential read and write dependent

processes, using application semantics to determine if the recovery of a failed process

has an effect on active processes that are read and/or write dependent on the failed

process (Xiao and Urban, 2009). Process interference rules retrieve the delta values of

the global execution history, using user-defined semantics to determine how to deal

with an affected process.

Figure 3 shows the rule structure of a process interference rule. There are four

elements for a process interference rule: event, define, condition and action. When a

Texas Tech University, Ziao Liu, December 2009

17

process fails, all processes that are read and/or write dependent on the failed process

are identified. Each dependent process generates a failureRecoveryEvent that triggers a

PIR. The define element is used to specify the data items that are monitored by the

rules. The condition element is used to test an application-specific condition that

determines if recovery of a dependent process is required. The action element contains

a list of recovery commands. If the condition is satisfied, the commands specified in

the action element will be executed.

create rule ruleName

event failureRecoveryEvent

define [viewName as <OQL expression>]

condition [when condition]

action recovery commands

Figure 3: Process Interference Rule Structure (Xiao and Urban, 2008a)

In summary, DEGSs that are executing concurrently send deltas to the

centralized PHCS from multiple sites. Deltas are constructed into the global schedule

through the indexing structure and stored in the delta repository together with runtime

information. If a process fails, the processes that are write dependent or potentially

read dependent on the failed process will be detected using the procedures mentioned

earlier to get the dependency information. At this time, if there is a PIR for a process,

the process is suspended and the PIR is checked for user-defined rules that determine

whether to recover the affected process.

The DeltaGrid project demonstrated the feasibility of the DeltaGrid approach

to analyzing data dependencies among concurrently executing processes, but

identified the centralized approach to data dependency analysis as a bottleneck in the

process. The results presented in this thesis extend the data dependency analysis

concept to decentralized approaches, where multiple Process Execution Agents

maintain local delta object schedules and communicate as peers to share information

about common data access patterns among concurrent processes.

Texas Tech University, Ziao Liu, December 2009

18

CHAPTER IV

OVERVIEW OF PROCESS EXECUTION AGENTS

This chapter provides an overview of process execution agents that have been

defined as part of this research (Urban et al., 2009b). The discussion begins in Section

4.1 with an example execution scenario that illustrates the construction of distributed

process dependency graphs. Section 4.2 then describes the internal architecture of a

PEXA as well as data structures created for the execution environment. Section 4.3

elaborates on the challenges associated with constructing distributed process

dependency graphs.

4.1 PEXA Execution Scenario

The example execution scenario in Figure 4 assumes there are three PEXAs in

the decentralized environment. Each PEXA is indicated as a rectangular box and is

associated with a distributed site (Di) that has a DEGS interface and possible multiple

databases. Executing processes are indicated as circles, with lightning bolts indicating

the PEXA that is controlling the execution of the process. A solid line from a process

to a DEGS interface represents a service invocation. Dashed lines between PEXAs

indicate decentralized communication among PEXAs. Data changes that are made by

each DEGS are forwarded to the PEXA that is associated with the DEGS and stored in

the local delta object schedule.

As shown in Figure 4, each PEXA is responsible for controlling the execution

of local processes that are composed of service executions. Each process is invoking

services that modify data at distributed sites. For example, site D1 is controlling the

execution of p1 and p4. Process p1 is composed of two service executions identified as

op11 and op12, both executing at D1. Process p4 executes op41, also at site D1. Site D2

controls the execution of p2, where p2 executes op21 at D1 and op22 at D2. Site D3 controls

the execution of p3, which is executing op31 at D2, op32 at D1, and op33 at D3.

Texas Tech University, Ziao Liu, December 2009

19

As indicated in Figure 4, each invocation of an opij has a timestamp, tx,

indicating the time at which the operation is invoked. The box inside each PEXA

provides a snapshot of the local delta object schedule for the data items that are being

modified by each service that accesses data at the site, illustrating the interleaved data

access by the service invocations of concurrent processes. For example, the delta

object schedule for D1 shows that objects X1 and Y1 have been modified. The schedule

indicates the operations that have made the modifications and orders the schedule by

the operation timestamps. The local schedule at D1 indicates that p2 is dependent on p1

since op21 has modified X1 after op11 has modified X1 and p1 is still executing. The

schedule also indicates that p4 is dependent on p3 through access to Y1. At D2, the

operations have accessed data item X2, with the local schedule indicating that p3 is

dependent on p2.

D3

D2

DEGS

interface

DEGS

interface

p1

p3

p2
p4

t1 op11 t6 op41

t2 op21

t3 op22

t5 op32

DEGS

interface

PEXA 1

In control of p1 and p4

At Site D1

Local
Delta Object Schedule

PEXA 2

In control of p2

At Site D2

Local

Delta Object Schedule

PEXA 3

In control of p3

At Site D3

Local

Delta Object Schedule

D1

t8 op12

t4 op31

Solid Lines:

Service Invocation

Dashed Lines:

 P2P Communication

Executing Process
p1

t7 op33
 oID ts op

 X1 t1 op11

 X1 t2 op21

 Y1 t5 op32

 Y1 t6 op41

 Z1 t8 op12

 oID ts op

 X2 t3 op22

 X2 t4 op31
 oID ts op

 X3 t7 op33

Figure 4: PEXA Execution Environment

Texas Tech University, Ziao Liu, December 2009

20

4.2 Internal PEXA Architecture

Figure 5 shows the internal architecture of a PEXA. A PEXA contains a

process execution component, such as a BPEL processor, with a Process History

Capture System that records runtime information about the status of each executing

process. Our implementation uses the db4o object-oriented database (Paterson et al.,

2006) to record the runtime status of each process and to record the data changes that

are communicated to the PEXA from each DEGS associated with the PEXAs local

environment.

The local delta object schedule is the indexing structure showed in Figure 2

that sequences data changes in the delta repository according to time stamps and

allows the recovery system to 1) analyze data dependencies and 2) retrieve delta

information at different levels of granularity (e.g., all changes associated with a

specific process or all changes associated with a specific service invocation within a

process). The data dependencies are used by the recovery algorithm to identify

processes that are write dependent on a failed process. There is no explicit data about

read dependencies, so potential read dependencies are identified using runtime

information about overlapping service execution as defined in (Xiao, 2006; Xiao and

Urban, 2008b). Dependent processes can then query delta values, checking user-

defined conditions to determine if they need to recover (i.e., execute compensating

procedures) or continue running.

As part of the recovery process, a PEXA builds a process dependency graph

based on the information in its local delta object schedule. But since a process can

execute services at multiple sites, each monitored by a different PEXA, a PEXA must

communicate with other PEXAs to construct a global, distributed view of process

dependencies when a process fails. Furthermore, local process dependency graphs are

extended with a structure known as a link object to assist in the construction of the

global, distributed view. Section 4.3 elaborates on the use of link objects and other

runtime information to construct global, distributed process dependency graphs.

Texas Tech University, Ziao Liu, December 2009

21

Peer-to-peer

Communication

Component

Recovery Algorithm

DB4O

Delta

Repository

Runtime

Info

Process Execution

Component

Local

Delta

Object

Schedule

Process

Depedency

graphs

Link

Objects

Local Process History Capture System

Figure 5: Internal PEXA Architecture

4.3 Challenges for Decentralized Data Dependency Analysis

The objective of decentralized data dependency analysis is to construct a

virtual, global process dependency graph to determine all active processes that are

potentially affected by the recovery of a failed process. For example, if p2 is dependent

on p1 and p3 is dependent on p2, then if p1 fails, the global process dependency graph is

p1p2p3. As a simplification, this research assumes that a failed process and every

dependent process of the failed process executes a compensating procedure as part of

the recovery process, creating a cascaded recovery process. This is a worst-case

scenario for constructing the full process dependency graph. Extensions to this

simplification are addressed at the end of this thesis in the context of future research

directions for the use of user-defined correctness conditions.

If the data changes for all active processes are in one delta object schedule, as

in (Xiao, 2006; Xiao and Urban, 2008b), the construction of a global process

dependency graph is straightforward. The challenge with the use of multiple PEXAs is

that the delta object schedule is distributed among several PEXAs. As a result, a

global view of process dependencies must be discovered through PEXA

communication.

Texas Tech University, Ziao Liu, December 2009

22

P1 P2 P4P3

op11 op21 op12op33op41op32op31op22

Time t1 t2 t3 t4 t5 t6 t7 t8

D1

X 1

Y 1

Z 1

D2 X 2

D3 X 3

Figure 6: Data Access View of Interleaved Execution

As an example, consider again the process execution scenario in Figure 4.

Figure 6 shows the interleaved execution view of each process and operation from a

data access point of view when op12 fails at time t8. The global process dependency

graph for the four active processes is shown in the upper right of Figure 7, indicating

that the process dependency graph is p1p2p3p4. The recovery process is invoked

when op12 fails at site D1 and invokes the compensation of p1, which is controlled by

PEXA 1. Figures 6 and 7 together illustrate that PEXA 1 can detect that p2 is

dependent on p1 due to modification of X1. PEXA 1 can also detect that p4 is

dependent on p3 due to modification of Y1, but PEXA 1 cannot identify this

dependency as part of the global graph for p1 because of the distributed nature of the

execution. As shown in Figure 7, p3 is not dependent on p1, p2, or p4 based on data

access patterns at D1, but p3 is dependent on p2 based on data accessed at D2.

Disconnected graphs such as those in PEXA 1 of Figure 7 are referenced to as hidden

dependencies. Additional execution information must be recorded to link together all

distributed components of the graph and to identify hidden dependencies within a

single PEXA.

In particular, the runtime information about processes must be extended to

record information about the distributed execution. When a service is executing at a

PEXA, it is important to record whether the service is invoked by an internal or an

external process. An internal process is a process that is controlled by the PEXA

Texas Tech University, Ziao Liu, December 2009

23

where the service is invoked. An external process is a process that is controlled by a

PEXA different from the one where the service is invoked. For example, in Figure 6,

op21 executes at the site of PEXA 1 but is invoked by a process running at PEXA 2. As

a result, p2 is marked as an external process (EX) in PEXA 1 within Figure 7. Using

the same rationale, p3 is marked as external in PEXA 2 (because of op31) and also in

PEXA 1 (because of op32).

Process

Dependency

graphs

In PEXA 2 p3

p2

Process

Dependency

graphs

In PEXA 1
p2

p1

Process

Dependency

graphs

In PEXA 3

P2's operation

at PEXA 1

P3's operation

at PEXA 1

p3

P3's operation

at PEXA 2
PEXA3

Link

Objects

PEXA2

Link

Objects

PEXA1

Link

Objects

P2

op21

D1

…..

…..

p4

p3

P3

op32

D1

…..

…..

P3

op31

D2

…..

…..

Null

EX

EX

EX
Virtual global

graph

p1

p3

p2

p4

Figure 7: Global, Distributed Process Dependency Graph

In the opposite direction, a PEXA that controls a process that invokes a service

at a different site must create a link object to record information about the site where

the service is executed. In Figure 7, PEXA 2 creates a link object to indicate that op21

of process p2 is executed at the site of PEXA 1. PEXA 3 creates two link objects to

record the fact that op31 executes at PEXA 2 and op32 executes at PEXA 1. Used in

combination, link objects together with an indication of internal or external process

invocation can be used to dynamically discover global, distributed process dependency

graphs. Section 5 elaborates on the algorithm for constructing distributed process

dependency graphs among decentralized PEXAs.

Texas Tech University, Ziao Liu, December 2009

24

CHAPTER V

DECENTRALIZED DATA DEPENDENCY ANALYSIS

Two recovery algorithms are proposed to achieve decentralized data

dependency analysis. The lazy algorithm assumes that every process runs successfully

and that a PEXA does not start to build the process dependency graph until one

process fails. The eager algorithm dynamically builds graphs at runtime during

service. As a result, process dependency graphs are available as soon as any process

fails. Section 5.1 addresses the lazy algorithm (Urban et al., 2009b), describing

dependency graph construction under the lazy approach and propagation of the

recovery process among multiple PEXAs. Section 5.2 addresses the eager algorithm,

describing dependency graph construction during process execution. Both algorithms

are demonstrated using the execution scenario from Figure 4.

5.1 Dependency Analysis Using the Lazy Approach

The distributed graph construction and recovery algorithm is invoked upon the

failure of a service within a process. The approach is to construct an initial process

dependency graph at the site of the failure by calling

findProcessDependencies(processId), where processId is the identifier of the failed

process. The graph is then used to 1) recover local service executions and 2) find

information about external processes and link objects to communicate with other

PEXAs about propagation of recovery and graph construction activities. Link objects

point to services that are under the control of a process at the current PEXA but were

executed at a different PEXA, whereas services marked as external (EX) have executed

at the current PEXA but are under the control of a process at a different PEXA.

5.1.1 Preliminary Issues for Graph Construction and Analysis

The process dependency graph data structure is created to store information

about data dependencies at the process level. Let opjk represent a service invoked from

process pj and opmn represent a service invoked from process pm. If opmn is write

Texas Tech University, Ziao Liu, December 2009

25

dependent (or potentially read dependent) on opjk, then pm is identified as dependent on

pj in a process dependency graph for pj when pj fails. In the graph, nodes represent

processes and edges represent process dependencies. For example, if p1 is dependent

on p2, then the dependency p2p1 is stored in the graph as two nodes, with an edge

pointing from p1 to p2. The graph is represented as a hashmap called adjacencyMap that

combines a key-value pair for fast retrieval, where a process is a key and its value is a

list to store all processes that are immediately read and/or write dependent on another

process. Dependencies are found using procedures in (Xiao, 2006) for querying a delta

object schedule. After finding immediate dependencies, transitive dependencies are

recursively found.

P1

P2

P3

Figure 8: Cycle in the graph constructed by the lazy approach

There can potentially be cycles in a process dependency graph. For example, in

Figure 8, suppose the following cycle exists: p1p2p3p1 when p1 fails, where p1

and p3 are dependent on each other. The dependency of p3 on p1 was created before the

dependency of p1 on p3. For the lazy algorithm, since the graph is constructed to

control the order of the recovery process, a cycle when detected is not needed in the

graph. In the above example, p1 will be recovered before p2 and p2 will be recovered

before p3. As a result, it is not necessary to enter the cycle in the graph since p1 is

recovered already before p3. Here, compensation is used for recovery, which means to

logical undo the previous results and return to pre-defined results. The difficulty with

Texas Tech University, Ziao Liu, December 2009

26

cycles is that the graph is distributed. A PEXA must therefore be capable of dealing

with local and global cycles.

Local cycles can be detected using information in the local delta object

schedule. The method addVertex(pi) in Figure 9 is used to add nodes that represent

processes (pi) to the graph (g). A process is added to a graph only if a node

representing the process does not already exist. The method addEdge(pi, pj) in Figure

10 is used to create an edge in g, indicating that pj is dependent on pi. To avoid local

cycles, the method addEdge(pi, pj) prevents cycles by first checking to see if pj is

already a parent of pi in the graph. If so, the edge is not created to avoid a cycle. The

variable result is a list variable to share the current value of the dependency graph

using a breadth first traversal. The traversal() method in Figure 11 is used to do a

breadth first traversal of the graph and return the value of result.

Figure 9: addVertex() Procedure

Figure 10: addEge() Procedure

public boolean addEdge (String v1, String v2)
{
 LinkedList l = (LinkedList)traversal(v2);
 LinkedList ll = (LinkedList)adjacencyMap.get(v1);

 if(!l.contains(v1)){
 ll.add(v2);
 System.out.println("add an edge!");
 }
 else
 System.out.println("Cycle eliminated!");
 return true;
}

public boolean addVertex (String vertex)
{
 if (adjacencyMap.containsKey(vertex))
 return false;
 adjacencyMap.put (vertex, new LinkedList());
 return true;
}

Texas Tech University, Ziao Liu, December 2009

27

Figure 11: traversal() Procedure

Information about a service execution that was requested by an external

process is stored in the runtime information component of a PEXA. The structure of

an entry in the schedule is:

- pName (the process name)

- pId (the process identifier)

- opName (the operation name)

- opId (the operation identifier)

- oId (the object identifier)

- PEXAId (the controlling PEXA)

- inOrEX (indicating whether a process is local or external)

- status (the execution status of the process)

The inOrEx field distinguishes between service execution requested by a local

(i.e., internal) process and service execution requested by an external process running

at another PEXA. This information is queried during the graph construction process to

indicate that notifications must be sent to the corresponding PEXA about propagation

of the recovery and graph construction process.

Because the processes in the process dependency graph can come from

multiple PEXAs as remote operations composing processes, the location of a process

public List traversal(String root){
 if(adjacencyMap==null) return null;
 if(!result.contains(root)) result.add(root);
 List temp=new LinkedList();

temp=(LinkedList)adjacencyMap.get(root);
if(temp==null) return null;

 for(int i=0;i<temp.size();i++)
 {
 if(!result.contains(temp.get(i))) result.add(temp.get(i));
 }
 for(int j=0;j<temp.size();j++)
 traversal((String)temp.get(j));
 return result;
}

Texas Tech University, Ziao Liu, December 2009

28

in the controlling PEXA needs to be identified so that the dependency analysis can be

conducted in a decentralized manner. Link objects are used to support this capability.

Link objects are virtual references to the external operations and are created by a

PEXA when a process executing at a local PEXA invokes a service at a remote site.

The structure of a link object is:

- processId (identifier of the controlling process)

- opName (name of the service)

- opId (service identifier)

- degsId (DEGS identifier)

- status (indicating successful or compensated)

A db4o database is used to store the link objects of each PEXA. During

recovery, a PEXA can compensate all its operations, both local and remote ones. The

use of link objects supports the detection of the hidden dependencies. Link objects are

also needed for propagation of the recovery and graph construction process. The link

object attribute status is used to address distributed cycles. The attribute indicates the

status of an external operation as either successful or compensated. When an external

operation finishes executing successfully, it will send its successful status back to the

controlling process and update the corresponding link object. If the service is later

compensated at the execution site, a notification will be sent back to the controlling

process to change its status to compensated. This value is used in the propagation of

the recovery and graph construction process to avoid distributed cycles (i.e., to prevent

invoking compensation of procedures that have already been compensated). The use

of this value and the decentralized algorithms will be illustrated in the following two

sections.

5.1.2 The Lazy Algorithm

Figure 12 provides pseudocode of the graph propagation for the lazy

algorithm. This procedure is called after the PEXA finds out that a process fails and

the failed process is passed to the procedure findProcessDependencies(processId). Two

Texas Tech University, Ziao Liu, December 2009

29

list variables for dependency detection are created, processWDon for write dependency

and processRDon for read dependency. These lists indicate the processes on which the

service is write or potentially read dependent.

The findProcessDependencies() procedure first finds all of the immediate

dependent processes of the failed process, both write dependencies and potential read

dependencies. Write dependencies are collected from the local delta object schedule

by the method getWriteDependentProcessListOnProcess(processId) and returned to

processWDon. The potential read dependencies are from the runtime information by

using the method getReadDependentProcessListOnProcess(processId) and returned to

processRDon. In (Xiao, 2006), every concurrent process is suspended to execute

recovery procedures and resumes after the recovery. In this research, these two

methods contain procedures to lock the data items of dependent processes. So if there

are concurrent processes trying to access locked data items, they have to wait for the

release of locks held by the recovery processes. Processes accessing other data items

continue running. Compared with suspending everything in the previous work, the

locking of data items is more efficient and reasonable. Each of the two methods will

return lists of processes dependent on the failed process. Since there could be

duplicate processes in these two list, they are merged into one list and sent to the

recursive graph construction method buildGraph(list, processed, graph, n), where list is

the merged dependent process list and n is a value to make sure that a node from the

list is considered only once. As shown in Figure 13, the buildGraph() method is invoked

to run through each of the dependent processes, creating nodes and edges in the local

process dependency graph.

After graph construction, the traversal() procedure is called to do a breadth first

traversal of the graph and generate an ordered list of processes that is returned for use

in the recovery process.

Figure 14 provides pseudocode for the recovery process. The procedure is

called after the construction of the local process dependency graph and is passed the

ordered list of processes to be recovered.

Texas Tech University, Ziao Liu, December 2009

30

Figure 12: findProcessDependencies() Procedure

The recover() procedure examines each process in the list and determines if

each process is internal or external. All local service executions are identified and

recovered. Recall that we are initially assuming that every process is recovered

through compensation of each service invocation. Since each internal process can also

invoke services at other sites, the algorithm then queries the link objects associated

with the process to find services of the process that were executed at other sites (i.e.,

public void findProcessDependencies (String processId) //failed process id
{

 //create a new vector
 Vector pListWD=new Vector();
 Vector pListRD=new Vector();

 //create a new list to store all the dependent processes based on the failed one
 List result=new LinkedList();

 // n is used for building graphs
 int n=0;

 //get all the processes that are write dependent on failed process or read
 //dependency
 pListRD=ProcessInfoAccess.getReadDependentProcessListOnProcess(processId)
 pListWD=GlobalScheduleAccess.getWriteDependentProcessListOnProcess(processId);

 //merging lists procedure eliminates duplicated processes
 Vector newList=merge(pListRD, pListWD);

 //building graphs
 Graph g=new Graph(processId);

 //recursively iterate through every dependent process
 buildGraph(newList, processId, g, n);

 //breadth first traversal
 result=g.traversal(processId);

 //start the recovery process for the graph
 recover(result);

 }

Texas Tech University, Ziao Liu, December 2009

31

Figure 13: buildGraph() Procedure

// recursive method to build dependent processes
public void buildGraph(Vector pList, String processId, Graph g, int n)
{
 //temporary value temp1 to pass processId to
 String temp1=processId;

 //whether there are dependent processes
 if(pList.size()!=0)
 {
 //start to build graph by adding the vertex
 g.addVertex(processId);

 //check each of the dependent processes
 for(int i=0;i<pList.size();i++)
 {
 //use a temporal variable
 ProcessInfo temP=(ProcessInfo)pList.get(i);

 //add vertex
 g.addVertex(temP.getProcessId());

 //add edge
 g.addEdge(temp1, temP.getProcessId());

 //get the process id
 temp1=temP.getProcessId();

 //find all the processes write and read dependent on temp1 (or read dependency)
 Vector temPListRD
 =ProcessInfoAccess.getReadDependentProcessListOnProcess(processId)

 Vector temPListWD

=GlobalScheduleAccess.getWriteDependentProcessListOnProcess(temP.getProcessId());

 //merge two lists
 Vector newList=merge(tempListRD, tempListWD);

 //check the current process dependency and keep building the graph
 buildGraph(newList, temp1, g, n);
 }
 }end if
 }end for
 }

Texas Tech University, Ziao Liu, December 2009

32

Figure 14: recover() Procedure

the IF part of the algorithm). Notifications are then sent to the PEXAs of each external

process. Each PEXA will then invoke findProcessDependencies(processId) for the

relevant process to construct its own local dependency graph to continue the recovery

process at the new PEXA site.

// recover dependent processes according to where they come from
public void recover(List list){

 //create a new list for operations from the lcoal schedule
 List tempList;

 FOR each process in the list
 {
 //find operations from the lcoal schedule
 tempList = (List)ProcessInfoAccess.getExecutedOperationList(processId);

 // there are operations to be compensated
 if(tempList!= null){
 compensate(tempList);
 }

 IF the process is initiated by the local PEXA
 {
 //find external operations of processId from the link objects table
 tempList=LinkObject.getExecutedOperationList(processId);

 //send notifications
 if(tempList!=null)
 sendNotification(tempList);
 }
 ELSE //the process is initiated by a peer PEXA
 {
 //send notifications when the process is not a root node in the graph
 if(! g.isRoot(processId))
 sendNotification(processId);

 }

 }END FOR

}

Texas Tech University, Ziao Liu, December 2009

33

For a service invoked by an external process, the service is compensated and

then a notification is sent to the external PEXA to propagate the recovery and graph-

building process. The notification includes information about changing the status of

the corresponding link objects to compensated. Once a graph is compensated, it is

deleted.

5.1.3 Execution Scenario for the Lazy Algorithm

Figure 15 uses the execution scenario from Figure 6 to illustrate the logic of

the algorithm presented in Figures 12-14. When the execution of an external operation

is completed, the execution result is sent back to its controlling PEXA to mark the

status in its link object. This communication is shown as solid lines between PEXAs in

Figure 15. Notifications that are initiated by the sendNotification() procedure are drawn

as dashed lines in Figure 15.

In the scenario from Figure 6, the recovery process is initiated when op12 fails

in PEXA 1 and constructs a local process dependency graph. Recall that link objects

have already been created for each process as a result of execution up to this point. In

PEXA 1, the local dependency graph is initially determined to be p1p2. In Figure 15,

the box to the left of each process node shows the runtime information for the process,

indicating the service executed and the internal/external status of the associated

process. The recover procedure for the graph compensates procedure op11, which is an

internal service. There are also no entries for p1 in the link object table, indicating that

all of p1’s services were executed at site D1. As a result, tempList is null and no

notifications are sent. Since p2 is an external process, op21 is compensated at PEXA 1

and then a notification is sent to PEXA 2 (labeled as notification 1 in Figure 15),

indicating that 1) op21 should be marked as compensated in the link object table and 2)

the recovery and graph construction process should continue at PEXA 2 using p2 as a

root node (i.e., invoke findProcessDependencies(p2)).

Texas Tech University, Ziao Liu, December 2009

34

P1

P2

P3

101 P1 op11 X1 In degs 1 PEXA 1

201 P2 op21 X1 EX degs 1 PEXA 2

302 P3 op32 Y1 EX degs 1 PEXA 3

P4401 P4 op41 Y1 In degs 1 PEXA 1

P1 102 P1 op12 Z1 In degs 1 PEXA 1

P2 202 P2 op22 X2 In degs 2 PEXA 2

P3

PEXA 1 DEGS 1

PEXA 2 DEGS 2

301 P3 op31 X2 EX degs 2 PEXA3

* change to compensated when the PEXA receives the

recovery notification

** change to compensated when the PEXA send the

recovery notification to another PEXA

Solid line: send the execution result(status in link objects

changed to successful)

Dashed line: send the recovery notification (status in link

objects changed to compensated)

PEXA 3

P3

--

link objects table

P2 op21 201 degs1 PEXA1 successful *

link objects table

P3 op31 301 degs2 PEXA2 Successful *

link objects table

P3 op32 302 degs1 PEXA1 Successful**

Notification

1

Notification

3

Notification

2

301 P3 op33 X2 In degs 3 PEXA3

Figure 15: Execution Scenario

At PEXA 2, the graph p2p3 is created from the local delta object schedule.

The algorithm in Figure 14 is then invoked to recover the operations associated with

the graph. The first iteration through the recover procedure determines that p2 is an

internal procedure, finding a local operation (op22) and a remotely executed operation

(op21). PEXA 2 will compensate op22 and discover that op21 has already been

compensated. As indicated in the comment box in Figure 15, successful* is changed to

compensated for op21 in the PEXA 2 link object table when notification 1 is received.

When p3 is processed, it is identified as an external node. As a result, op31 is

compensated and notification is sent to PEXA 3 (notification 2 in Figure 15) to

propagate the recovery and graph construction process, together with information

about changing the status of the link object for op31 from successful* to compensated.

At PEXA 3, the graph contains only one node for p3, which in an internal

process. When the algorithm in Figure 14 is invoked, the IF part of the code is then

Texas Tech University, Ziao Liu, December 2009

35

executed. As a result, op33 is compensated since it was executed at PEXA 3. Link

objects are then found for op31 and op32. Since op31 has already been marked as

compensated, the notification message is only sent to PEXA 1 for the invocation of

findProcessDependencies(p3). The status of op32’s link object is changed from successful**

to compensated before sending the notification, with the actual compensation to take

place at PEXA 1.

PEXA 1 constructs the graph p3p4. Since p3 is an external node, op32 is

compensated at PEXA 1 and a notification is sent back to PEXA 3 (not shown in

Figure 15). PEXA 3 will be able to determine at this point that all relevant services for

p3 have already been compensated and thus will not continue to propagate the process

(i.e., detects and terminates a distributed cycle). PEXA 1 then compensates op41 and

terminates since there are no more notifications to send.

Note that when the findProcessDependencies() procedure is called in each PEXA

to construct a local process dependency graph, the data items identified in the local

delta object schedule are locked, with compensating procedures executing as nested

transactions that inherit the associated locks. This prevents other executing processes

from accessing the data involved in the recovery process and creating further

dependencies.

5.2 Dependency Analysis Using the Eager Algorithm

Unlike the lazy algorithm, the eager algorithm dynamically builds the process

dependency graph at runtime. As a result, whenever a service is invoked, the PEXA

builds a graph using both its runtime information and deltas. As in the lazy algorithm,

the graph is used to recover local service executions, using information about external

processes and link objects to communicate with other PEXAs for recovery and graph

construction.

5.2.1 The Eager Algorithm

Texas Tech University, Ziao Liu, December 2009

36

Figure 16 illustrates the difference between the lazy and eager algorithms. As

mentioned in Section 5.1, the lazy algorithm is invoked on the failure of an operation

from a process. To determine data dependencies, the algorithm reads forward in the

delta object schedule to discover processes dependent on the failed process.

The eager algorithm detects dependencies dynamically at runtime instead of

waiting for the failure to occur and then builds process dependency graphs during

execution. When a process fails, the dependent processes are ready to be recovered

since the process dependency graph is dynamically maintained. When an operation of

a process completes, the object schedule is scanned backwards in time to determine

processes on which the completed process is dependent. If dependencies are identified,

the process dependency graph will be updated. If not, a new graph with a single root

node for the process of the completed operation is created.

Delta Object

Schedule
The Lazy Algorithm The Eager Algorithm

Reads forward in

the schedule to find

processes that are

dependent on the

failed process

If an operation from a

Process fails here
Reads backwards

in the schedule to

find processes that

a successfully

completed process

is dependent on

Discovers data

dependencies after a

failure

Discovers data

dependencies after each

operation

t1

tn

Figure 16: Difference between Lazy and Eager Algorithm

The link object information, which represents external service executions, is

still recorded for recovery consideration. The advantage of the eager approach is that

when an operation fails or a notification triggers the recovery process, PEXAs already

have the dependent processes and are able to initiate the recovery process

immediately. The eager algorithm, however, has overhead associated with process

dependency graph construction for every process.

Texas Tech University, Ziao Liu, December 2009

37

Figure 17 provides pseudocode of the graph propagation for the eager

algorithm, findProcessDependencies(). When the graph construction procedure is

invoked after the completion of each operation, write and read dependencies are

discovered and process dependency graphs are updated accordingly with new

elements, such as a new edge or a new separate node.

To generate the processWDon list, deltas created by the current process are

examined to get the data items that have been modified. Since there can be more than

one data item that has been modified, the data items are recorded into processWDon by

identifiers. A procedure is also called to get the potential read dependencies, which

also returns the read dependencies to the processRDon list. After merging the two lists

to avoid duplicates, edges are added in to the graph pointing from the current process

to its dependent processes.

The graph is built at the process level under the eager algorithm. A completed

process only needs to record its most immediate dependencies. For example, suppose,

p1, p2 and p3 have all modified data item X in the order of p1 at t1, p2 at t2, and p1 at t3.

When p3 completes, it records that it is dependent on p2. p2 will record the dependency

on p1, creating the transitive dependency of p3 on p1. As a result, it is not necessary to

explicitly record the dependency of p3 on p1.

If processId does not exist in the current graph, a new vertex is added. The

processId and operationId of the completed process is then passed into the

checkLastModificationOnSameDataItem(processId, operationId) procedure of Figure 18 to

find the data items that have been modified. During process execution, when a data

item is modified by an operation from a process, processId and objectId are recorded

separately as a key and value in latestOperationOnData. As a result, when the modified

data items of a completed process are identified, the corresponding latest process can

be discovered as well. The checkLastModificationOnSameDataItem() procedure returns a

list containing all of the latest processes on which the completed process is dependent

according to each data item that was modified.

Texas Tech University, Ziao Liu, December 2009

38

Figure 17: Graph Propagation for the Eager Algorithm

Figure 18: checkLastModificationOnSameDataItem() Procedure

The eager approach assumes that a process will potentially fail and collects all

the dependencies and builds graphs for fast recovery. Therefore, when a process

actually fails, the relevant dependent processes already exist and are recovered using

the same recover() procedure in Figure 14 as in lazy algorithm. If a process fails, the

public Vector checkLastModificationOnSameDataItem(String processId, String operationId){
 Vector result=new Vector();
 Vector dlist=GlobalScheduleAccess.getDeltas(processId, operationId);
 if(dlist==null) return null;
 for(int i=0;i<dlist.size();i++){
 Delta temp=(Delta)dlist.get(i);
 String dataItem=temp.getObjectId();
 String latestProcess= (String)Server.latestOperationOnData.get(dataItem);
 result.add(latestProcess);
 }
 return result;
 }

public void findProcessDependencies(String processId, String operationId){

 //a list to store all the operations that this operation is write or read dependent on
 boolean nodeInGraph=checkExisting(processId);
 Vector processWDon=new Vector();
 Vector processRDon =new Vector();
 Vector merge=new Vector();
 //if it's not existing, add node
 if(!nodeInGraph){
 g.addVertex(processId);
 }
 processWDon =CheckLastModificationOnSameDataItem(processId, operationId);
 processRDon
 =ProcessInfoAccess.getReadDependentProcessListOnProcess(processId);
 merge=merge(processWDon, processRDon);
 //if there is a process that the current process is dependent on
 if(merge!=null){
 //add edge a ---> b for each dependent process
 for(int i=0;i<merge.size();i++)
 g.addEdge((String)merge.get(i), processId);
 }
}

Texas Tech University, Ziao Liu, December 2009

39

graph will be retrieved by the traversal() procedure passing the identifier of the failed

process as the parameter to recover the sub-graph that represents the dependent

process list.

5.2.2 Execution Scenario for the Eager Algorithm

The example in Figure 19 shows how to build a process dependency graph

using the eager algorithm. The left side of the figure shows the order of execution for

the operation of processes p1, p2, and p3. The right side of the figure shows the

dependency graph that is constructed along with the process execution at runtime.

In Figure 19, op11 of p1 executes and modifies data item object1. After its

execution, the findProcessDependencies() procedure is invoked to decide whether p1 is

dependent on other processes. At this point, p1 is not dependent on any previous

processes. As a result, a node will be added in a new graph for p1.

After the execution op21 of p2, based on the data item it has modified, p2 is not

dependent on the other processes. So a node for p2 is also added to the graph. When

op22 of p2 executes, the findProcessDependencies() procedure discovers that the latest

process operating on object1 is op11 from p1. Hence an edge pointing from p2 to p1 is

created in the graph to represent the dependency labeled as Edge1 in Figure 19.

After op12 of p1 executes, the dependency of p1 on p2 is discovered. This edge,

indicated as Edge2 in the graph of Figure 19, is also added, creating a cycle in the

graph. Unlike the lazy algorithm, cycles are allowed in the graph since the order of

dependent processes to be compensated is volatile according to different failed

processes. Cycles, deletion of nodes, and other process dependency graph issues are

addressed in Section 5.2.4.

Texas Tech University, Ziao Liu, December 2009

40

P1

P2

P3

P1

op11

object1

P2

op21

object2

P2

op22

object1

P1

op12

object2

P3

op31

object1

time

Edge 1

Edge 2

Edge 3

P1

P2

P3

Edge 1 Edge 2

Edge 3

Order of Operation Execution Process Dependency Graph

Figure 19: Process Dependency Graph Construction with the Eager Approach

After op31 of p3 executes, p3 is dependent on both p1 and p2 according to data

item object2 that they have modified. However, p1 has the latest modification to the

data item that p3 has modified. So the dependency of p3 on p1 is added to the graph, as

Edge3 in Figure 19.

5.2.3 Decentralized Scenario for the Eager Algorithm

Figure 20 uses the distributed execution scenario from Figure 15, to illustrate

the use of the eager algorithm with a decentralized dependency graph. Processes

execute concurrently in three PEXAs and graphs are constructed at runtime. At the

end of an operation execution, the findProcessDependencies() procedure is invoked to

update the process dependency graph data structure, either to generate a root node or

to add a node and edges to an existing graph.

Texas Tech University, Ziao Liu, December 2009

41

In PEXA 1, after op11 of p1 executes on X1, the application calls the graph

construction procedure. The deltas created by this operation are retrieved to find the

modified data items for the write dependencies to add in the processWDon list. Here,

data item X1 is found modified by p1. For each data item found by delta retrieval, only

the latest operation on the item is needed to construct the graph if there is any. The

HashMap structure latestOperationOnData is used to retrieve the latest operation

corresponding to each data item since this variable records the pair of the latest

process and data item. At this time, there is no process that has modified X1. As a

result, no dependencies are discovered and only a node for p1 is added to the graph

structure.

After the execution of op21 of p2 from PEXA 2, the findProcessDependencies()

procedure is invoked. The deltas that op21 has created are retrieved. The result returns

X1. Based on X1, write dependencies are analyzed and p1 is found to be the latest

operation to modify X1. p1 is added in the processWDon list. Then the node p2 is added

in the graph and an edge from p2 to p1 is also created.

Meanwhile, op22 of p2 is executing in PEXA 2 modifying data item X2. Since no

dependency exists at this point, the graph in PEXA 2 is created with p2 as a root node.

After p3 executes op31 in PEXA 2, the findProcessDependencies() procedure is invoked.

The delta created by p3 indicates the data item modified is X2 and, according to the

latestOperationOnData variable, p2 is the latest operation that has modified the same data

item before p3. Therefore, p3 is added in the graph as a node and an edge from p3

pointing to p2 is also added for the dependency discovered.

After p3 creates a delta in PEXA 1, the findProcessDependencies procedure is

invoked. The delta indicates data item Y1 has been modified. Since no other process

has been found to have modified this data item, p3 only generates a node in the graph

with no edges. Then p4 executes and generates a delta by modifying Y1. The latest

process that has modified Y1 is p3, resulting in an edge from p4 pointing to p3 in the

graph.

Texas Tech University, Ziao Liu, December 2009

42

P1

P2

P1

op11

X1

P3

op32

Y1

P2

op21

X1

P4

op41

Y1

P1

op12

Z1

time

Edge 1

Edge 2

P1

P2

P3

P3

P4

Edge1

P4

Edge2

P2

P3

op31

X2

P2

op22

X2

P3

op33

X2

Edge 1

P3

P3

time

P2

P3

Edge1

time

P3

PEXA1

PEXA2

PEXA3

Figure 20: Decentralized Execution Scenario for the Eager Algorithm

In PEXA 3, after op32 of p3 invokes a service in PEXA 2, op33 of p3 executes

locally and creates a delta by modifying a data item X3. Since no other process can be

found to have modified X3, a graph is generated with only one node p3 as a root. Then,

p3 remotely invokes a service at PEXA 1.

At this point, there are two graphs in PEXA 1, one graph in PEXA 2 and one

in PEXA 3. When op12 from p1 executes locally at PEXA 1 and fails, the same recover()

procedure in Figure 14 used by the lazy algorithm is invoked. Since the process

dependency graphs exist already, the sub-graph based on the problematic process can

be simply retrieved. The rest of the recovery is the same with that of the lazy

algorithm.

5.2.4 Process Dependency Graph Issues

Texas Tech University, Ziao Liu, December 2009

43

In this section, maintenance issues are addressed for the use of the eager

approach. Section 5.2.4.1 discusses the issue of cycles. Section 5.2.4.2 discusses the

deletion of nodes from the graph.

5.2.4.1 Cycles in the Process Dependency Graph

As illustrated in the previous sections, the eager approach allows cycles to

appear in local process dependency graphs. It is necessary to represent cycles since the

graph is constructed for all executed processes in anticipation of a possible failure. In

comparison, the lazy algorithm only constructs a process dependency graph when a

process fails. The graph for the lazy approach defines the order for recovery of

dependent processes. As a result, dependency cycles are not relevant.

Using the eager approach, when a failure occurs, the sub-graph to be recovered

is extracted from the graph by doing a breadth first traversal starting from the node

that represents the failed process with the traversal() procedure, detecting and

eliminating cycles for recovery. Using Figure 19 as an example, when P1 in the graph

fails, the sub-graph based on P1 is P2 P1 P3. When P2 fails, the sub-graph based on

P2 is P2P1 P3. Since a failure can potentially happen to any active processes,

different sub-graphs will be generated for different failed processes. And it is unlikely

to predict ahead of time when a process will fail. Therefore, when a failure occurs, the

graph is traversed to create the recovery order of dependent processes. Hence, cycles

are needed in the graph construction for the eager algorithm.

5.2.4.2 Deletion of Nodes

Another important maintenance issue is to delete nodes from process

dependency graphs, since the graphs will keep growing large with continuous

executing processes. There are two situations to consider for the deletion of nodes.

Examples are given in Figure 21. One situation occurs after the execution of the

recovery procedure when sub-graphs need to be deleted from the graph structure.

Texas Tech University, Ziao Liu, December 2009

44

Another situation requires that PEXAs using the eager algorithm periodically examine

their own local graphs for the deletion of completed processes.

First consider the recovery situation. After recovery, all of the nodes

representing processes in the sub-graphs need to be deleted from the local process

dependency graphs to reduce the complexity of local graphs. Since the sub-graph

contains all of the processes dependent on the failed process, deleting the sub-graph

will not impact the other dependencies stored in the graph. Therefore, the processes in

the sub-graphs can be removed without any problems. For example, in Figure 21,

Situation 1 illustrates that Process i is dependent on Process g and Process h, which are

dependent on Process f, and Process f is dependent on Process d. If Process f fails,

nodes f, g, h and i can be removed from the graph after the recovery of the sub-graph

based on Process f.

For the maintenance situation, process dependency graphs need to be checked

periodically to remove processes that have successfully completed. Even if there are

processes dependent on the completed processes or the completed processes are

dependent on others, the completed processes can be removed since they have

committed successfully and cannot be recovered. This research prescribes a top down

rule for removal of completed processes, where completed nodes are deleted

beginning from a completed root node.

If the completed process is a single root node in the graph, it can be removed

from the graph. As a result, dependent processes, if there are any, become new single

roots of their own graphs and are recursively examined to delete if they are dependent

completed processes. For example, Situation 2.1 in Figure 21 indicates that Process a

can be removed from the graph if Process a completes. Process j then becomes a root

node and can also be deleted if it has completed, as indicated in Situation 2.2a. In some

case, when a node such as Process a is deleted, a dependent node will be discovered to

be part of a cycle. For example, after deleting Process a, Process b is identified as a

dependent node but b is not a root node. Instead, Process b is part of a cycle since it

cannot be removed if it has completed.

Texas Tech University, Ziao Liu, December 2009

45

a

c

b d

e

f

g h

Situation 1

Situation 2.1

Situation 2.3

Situation

2.2b

i

j

Situation

2.2a

Figure 21: The Deletion of Nodes from the Graph

Cycles can be detected by some of the existing algorithms in the area of graph

theory. Classic algorithms used to find cycles in a graph are the work of (Floyd, 1967)

and (Brent, 1980).

After cycle detection, the only way to delete the cycle as a root node is to make

sure that 1) every node in the cycle is a completed process; 2) none of the nodes is

dependent on other nodes. The processes that are dependent on the processes in the

cycle do not impact the deletion of the cycle. In the example of Situation 2.2 from

Figure 21, to delete the cycle as a root, Process b, a and d cannot be dependent on other

processes and have to be completed processes after Process a is deleted.

If a process is not a root node but has completed, it cannot be removed

immediately to avoid complex additional re-structuring of the graphs. Therefore,

completed processes which are not root nodes are marked as completed and wait to be

removed when they become root nodes. During the retrieval of sub-graph where a

failure occurs, nodes marked completed are not added in the sub-graph of nodes to be

Texas Tech University, Ziao Liu, December 2009

46

recovered. The processes that are dependent on successfully completed processes are

not added to the sub-graph unless they have direct dependencies on the processes to be

recovered. After the recovery of the sub-graph, the completed process is removed as

part of regular maintenance since it is new root node now.

For example, in Situation 2.3 in Figure 21, Process e is dependent on Process d.

So when Process e has completed, it is not removed until it becomes a root node. As

another example using Situation 1, suppose that Process g has completed and then

Process f fails. The sub-graph starts from Process f and then to Process g. Since Process

g is completed, Process g is not added to the sub-graph to be recovered. Then Process h

is added to the sub-graph followed by Process i is added. Therefore, the sub-graph is

Process f, Process h, and Process i. Process g then becomes a root node and is removed

as part of regular maintenance.

The maintenance of the process dependency graph guarantees that the local

graphs are consistent and at minimal redundancy with the maximum effect of reducing

the graph size for PEXAs.

Texas Tech University, Ziao Liu, December 2009

47

CHAPTER VI

IMPLEMENTATION AND EVALUATION OF DECENTRALIZED DATA

DEPENDENCY ANALYSIS

This chapter presents an analysis of the decentralized data dependency analysis

algorithms. Section 6.1 describes the implementation environment and measurement

criteria. Section 6.2 presents an evaluation of the recovery propagation algorithm that

is central to the lazy and easy algorithm.

6.1 Implementation Environment and Measurement Criteria

The implementation was done in a Windows machine. The operating system

used was Windows XP Professional x64 Edition with an Intel processor Core 2

Extreme Q6850 @ 3 GHz 4 GB of memory. Java was used to develop the PEXA

architecture and distributed algorithms, as well as the delta generator using Netbeans

6.5 as the integrated development environment. The communication between PEXAs

was set up using Java Sockets. Each PEXA has a socket server and client to send and

receive messages from other PEXAs, for compensation or updating process status. In

this experiment, three PEXAs were deployed

PEXAs can be deployed in several machines or in one machine by specifying

either IP addresses of different machines or ports of the same machine. This research

mainly focused on analyzing different aspects of the distributed algorithms and not

communication issues. Therefore, this experiment has used one machine to host all

PEXAs.

This initial implementation of the algorithms was designed as a simulation of

process execution and recovery activities and, as such, cannot provided any definitive

statements about performance measures at this stage of the research. True performance

measures are affected by many factors. For example, the implementation of

decentralized algorithms developed in this thesis is limited by use of existing

procedures to detect write/read dependencies from (Xiao, 2006). These procedures

Texas Tech University, Ziao Liu, December 2009

48

have not been optimized for efficient retrieval of data from the local delta object

schedule. This implementation is also not fully integrated into an actual process

execution environment with full support for compensation or use of actual Delta-

Enabled Grid Services. The main focus of this initial implementation of the algorithms

was on observation of characteristics of the algorithms.

A delta generator was used to simulate every service call at a PEXA and also

invokes services in other sites. The deltas generated are controlled by specifying

attributes such as:

- number of processes (the number of concurrent processes)

- number of services in a process (number of composing services in a process)

- percentage of external operations

- failure rate (possible percentage for a failure to occur in a process)

- number of accessed data objects by a service invocation

- deltaProperty is set to 1 (one column in the test table is accessed)

By varying these attributes, decentralized algorithms under different situations

are tested by different simulations. Data sets for different simulations are captured and

used to examine algorithms in a certain level of process execution with a certain

failure rate. Therefore, the changes or the potential limitations of the algorithms can be

detected for performance considerations.

The following section presents the results of the analysis. The study has

focused on analysis of the lazy approach, such as the graph construction and recovery.

With respect to the eager algorithm, the main measurement is to examine the time to

add a node to the graph after discovering data dependencies backwards for the local

delta schedule. After building a graph in the eager algorithm, the recovery procedure is

the same as that used by the lazy algorithm. Therefore, the distributed graph

propagation based on a specific error is not measured for the eager approach. Given

reported failure percentages for web services such as in [Amazon Simple Storage

Texas Tech University, Ziao Liu, December 2009

49

Service, 2007], maintenance of the graph for successfully completed processes would

be unnecessary overhead since the deletion of completed processes can lead to

complicated situations as such re-structuring the graphs for adding new edges,

merging nodes, and deleting nodes and edges.

6.2 Performance Analysis for the Decentralized Algorithms

This section analyzes the performance of data dependency analysis using the

lazy algorithm. The major issue for the lazy algorithm is to 1) examine the average

time to build local process dependency graphs, and 2) examine the number of graphs

and the time for graph construction that propagates among the PEXAs as part of the

recovery process. Since the eager algorithm is using the same recovery procedure to

compensate dependent processes, only the time to discover dependencies and then add

nodes to the graph is recorded for examination. This is indicated as average time for

adding nodes per PEXA at the end of this chapter. As described in the previous

subsection, the simulations were run using three PEXAs. One simulation assumed ten

processes running at each PEXA, with each process executing five operations (i.e.,

service calls). A second simulation assumed 100 processes running at each PEXA,

with the number of operation ranging from five to ten. A third simulation generated

500 processes running at each PEXA, with five to ten operations for each PEXA.

Each simulation was divided into four tests that varied parameters for the

percentage of external vs. local operations, the failure rate (ranging from 2% to 20%),

and the number of data items modified by one operation and number of columns. As a

database, the tests used a db4o database containing ten objects and randomly

generated data access patterns that ranged from 10% to 50% of the data objects. The

tests assumed that each data access was based on the same column for each data item.

Tables 1, 2, and 3 show the test parameters for each simulation. Each test, t1 through

t4, was run ten times to generate the average number of graphs constructed per PEXA,

the average local graph construction time, the total graph construction time across all

Texas Tech University, Ziao Liu, December 2009

50

PEXAs, the average number of errors per PEXA, and the number of distributed graphs

generated per error.

test id processes operations % external failure Rate objects column

t1 10 5 .20 .05 1~3/10 1

t2 10 5 .30 .20 1~3/10 1

t3 10 5 .50 .05 1~5/10 1

t4 10 5 .70 .10 1~5/10 1

Table 1: 10-process execution simulation

test id processes operations % external failure Rate objects column

t1 100 5 .20 .10 1~3/10 1

t2 100 10 .50 .10 1~3/10 1

t3 100 10 .30 .15 1~5/10 1

t4 100 10 .70 .05 1~5/10 1

Table 2 100-process execution simulation

test id processes operations % external failure Rate objects column

t1 500 10 .20 .10 1~5/10 1

t2 500 10 .50 .05 1~5/10 1

t3 500 10 .50 .10 1~5/10 1

t4 500 5 .70 .02 1~5/10 1

Table 3 500-process execution simulation

Figure 22 shows the relationship between the average number of graphs per

PEXA and the average local graph construction time using the test parameters in Table

1 (10 processes per PEXA). Figures 23 and 24 present similar data for the 100 process

simulation and the 500 process simulation, respectively.

In Figure 22, Test t1 has the smallest failure rate, but the largest percentage of

local operations. As a result, the average number of graphs is small, but the graph

construction time is larger since most of the data dependencies are found locally. In

comparison, Test t4 has a larger percentage of external operations, with a slightly

higher failure rate, generating a larger number of graphs per PEXA with a smaller

graph construction time. Test t2 only accesses 30% external operations, but generates a

larger number of graphs since it has the highest failure (20%) rate and there is more

Texas Tech University, Ziao Liu, December 2009

51

recovery activity than with a lower failure rate. Test t3’s performance for an external

percent of 50% is similar to that of Test t4 at 70%.

Figure 22: 10-process simulation

Figure 23 shows the results for 100 processes per PEXA. Test t1 has the lowest

percentage of external operations, with more local dependencies and a higher average

construction time. Test t2 has 50% internal and 50% external operations, generating

more graphs with a lower construction time than t1. Test t3 is only 30% external, but

has a higher failure rate (15%), generating more graphs with a smaller construction

time per graph. Test t4 has the largest percentage of external operations at 70%, but it

also has the lowest failure rate (5%). The number of graphs generated was smaller,

with the average construction time higher than the other tests.

Figure 24 shows the results for 500 processes per PEXA. Test t1 has the lowest

percentage of external operations and the highest failure rate in all, resulting in higher

local dependencies and therefore a higher average construction time. Tests t2 and t3

have the same percentage of external operations (50%). The only difference is the

failure rate of 5% for t2 and 10% for t3. Since t3 produced more errors and constructed

slightly more graphs, the average graph construction time was lower than that of t2’s.

0

20

40

60

80

100

120

0.33 1 2.33 6.33 8.67

avg. graph
construction

time(ms)

avg. number of graphs

10 processes

t1

t2

t3

t4

Texas Tech University, Ziao Liu, December 2009

52

Although Test t4 has the highest percentage of external operations, the lowest failure

rate caused fewer graphs constructed and longer average graph construction time.

Figure 23: 100-process simulation

Figure 24: 500-process simulation

Therefore, with respect to Figures 22, 23, and 24, two conclusions can be

drawn. The first one is that the average number of graphs is associated closely with the

0

100

200

300

400

500

600

700

24 26 28 30 32 34 36 38 40 42 44 46

avg. graph
construction

time (ms)

avg. number of graphs

100 processes

t1

t2

t3

t4

0

500

1000

1500

2000

2500

3000

3500

103 114

avg. graph
construction

time (ms)

avg. number of graphs

500 processes

t1

t2

t3

t4

125

Texas Tech University, Ziao Liu, December 2009

53

failure rate and percentage of external operations. A higher percentage of external

operations can distribute more dependencies across PEXAs. A higher failure rate

causes more errors to occur and thus more opportunities to trigger the data dependency

analysis to recover dependent processes. However, a relatively lower failure rate does

not necessarily mean more graphs will be generated, as in Test t4 in the 500-process

simulation. The second conclusion is that the more graphs generated, the less the

average graph construction time is. Since both the percentage of external vs. local

operations and number of accessed data items decide the data dependencies, if the

number of accessed data items is the same for two tests, the test with a lower

percentage of external operations will have more local dependencies and thus have to

spend more time retrieving the local delta object schedule. Therefore, more time will

be consumed for the local retrieval and graph construction. More distributed

dependencies are generated by the higher percentage of external operations and local

dependencies might be relatively less, thus spending less time constructing the graphs

but having more distributed graphs.

Figure 25 shows how many distributed graphs are generated across all three

PEXAs by one specific error. Using the four tests in the three different levels of

process execution, all of the average numbers from these tests are compared. The t4

tests in 100-process and 500-process simulations are the highest since they have the

highest external execution rates. When a failure occurs, more graphs are generated

because of more external operations from other PEXAs.

Figure 26 is the comparison between three different levels of process

execution. The average numbers of errors, graphs and nodes for each level of

simulation are provided for a better view. The average number of graphs is increasing

significantly from 10 processes to 500 processes, while the average number of errors

is increasing slightly. However, the average number of nodes per graph is not

increasing significantly.

Texas Tech University, Ziao Liu, December 2009

54

Figure 25: Distributed graphs generated per one error

Figure 26: Comparison of 3 levels of execution

The initial implementation of eager algorithm was also tested. The Tables 1, 2,

and 3 were used for the experiments. As described before, recovery process using the

eager approach is the same as the lazy approach. So recovery-related information

about distributed graph construction and graphs propagated per error was not

0

5

10

15

20

25

30

35

10-process 100-process 500-process

n
u

m
b

e
r

o
f

gr
ap

h
s

Distributed graphs generated per error

t1

t2

t3

t4

0

20

40

60

80

100

120

140

10-process 100-process 500-process

Comparison of 3 levels of execution

avg. errors per PEXA

avg. graphs per PEXA

avg. nodes per graph

Texas Tech University, Ziao Liu, December 2009

55

recorded. Instead, the average time for adding nodes to the graph per PEXA is

recorded for the examination of the performance analysis for the eager algorithm.

Figure 27 is the bar chart that shows the average time for adding nodes per

PEXA using the eager algorithm. The performance of different levels of process

executions is demonstrated. From 10 to 500 process execution, Tests t1, t2, and t3 are

increasing slightly corresponding to different levels of execution. t4 in the 500-process

level consumed relatively less time for adding nodes since the failure rate (2%) is low

enough to simulate the real world applications. Therefore, Figure 27 indicates that the

time to retrieve dependencies and add nodes to the graphs is relatively stable and

efficient for different levels of process execution since the time of increase of similar

tests is acceptable for the implementations in the industry.

Figure 27: Average time for adding nodes per PEXA

The reason that the time for retrieving dependencies and adding nodes is less

using the eager algorithm than that using the lazy algorithm is that the way to discover

dependencies is different. The way to get potential read dependencies is the same for

two approaches. However, the way to get write dependencies is very different. The

lazy approach uses the write dependent procedure to retrieve local delta object

schedule and discover dependencies often. But the eager approach only finds the

0

5

10

15

20

25

30

35

10 processes 100 processes 500 processes

avg. time for
adding nodes

(ms)

t1

t2

t3

t4

Texas Tech University, Ziao Liu, December 2009

56

latest dependencies according to modified data items provided by a set of variable in

the memory. Therefore, the time to add nodes using the eager approach is less. The

main overhead associated with the eager approach is maintenance of the process

dependency graph for successfully completed processes. For low failure rates, the

overhead may not be justified.

Texas Tech University, Ziao Liu, December 2009

57

CHAPTER VII

SUMMARY AND FUTURE RESEARCH

This thesis has presented a decentralized approach to analyzing data

dependencies among concurrently executing processes in a service-oriented

environment. The decentralized approach extends existing research with the DeltaGrid

project that analyzes data changes captured from service executions to identify

processes that are dependent on a failed process based on data access patterns. Unlike

the original work with the DeltaGrid project, where data changes are merged and

analyzed in a centralized manner, this research defined algorithms that allow multiple

process execution engines to share information about data dependencies. Process

Execution Agents have been defined that control the execution of processes and build

local delta object schedules. Process execution histories are then enhanced with

control information that allows the construction of data dependency graphs to be

distributed among multiple PEXAs. This research has explored a lazy algorithm that

constructs distributed process dependency graphs upon the failure of a process. The

research has also explored an eager algorithm that dynamically constructs process

dependency graphs for all executing process so that dependency graphs are available

as soon as a failure occurs. The data dependency analysis algorithms developed as part

of this research represent an initial step towards the development of distributed,

process-aware execution environments that can support more intelligent ways of

monitoring failures, detecting dependencies, and responding to failures and

exceptional conditions in an environment that cannot conform to traditional data

locking protocols.

There are several directions for future research, especially considering that this

work has been conducted as part of a larger project involving the development of more

dynamic and flexible approaches to service composition and recovery with user-

defined correctness conditions. This initial stage of the research has focused on testing

and demonstrating the feasibility of the algorithms for decentralized data dependency

analysis. As a result, the algorithms have not been fully integrated into an actual

Texas Tech University, Ziao Liu, December 2009

58

process execution engine. Future work should investigate the integration of the

algorithms with BPEL execution engines embedded in PEXAs. The research presented

in this thesis has also simplified the recovery process, assuming that all dependent

processes will recover by executing compensating procedures. The use of the

decentralized data dependency analysis algorithms need to be fully integrated into a

service composition and recovery model, with recovery options for compensation,

contingency, and retry of failed procedures (Greenfield et al., 2003; Xiao and Urban,

2009). Current research directions are defining an event and rule-based model, with

user-defined correctness conditions and the ability to do partial rollbacks to

checkpoints that support alternative paths for forward execution. The role of

decentralized data dependency analysis in the recovery process needs to be further

explored. Finally, the concept of a PEXA needs to be extended into a more process-

aware execution environment that is knowledgable of the service-composition and

recovery model and the manner in which it interacts with the data dependency analysis

algorithm to transform PEXAs into true agents that can reason about execution and

recovery among multiple PEXAs.

Texas Tech University, Ziao Liu, December 2009

59

REFERENCES

Amazon Simple Storage Service. (2007). Website: http://aws.amazon.com/s3-sla/

Ansari, M., Ness, L., Rusinkiewicz, M., & Sheth, A. (1992). Using flexible

transactions to support multi-system telecommunication

applications. Proceedings of the 18th international Conference on Very Large

Data Bases (August 23 - 27, 1992). 65-65.

Brent, R. P. (1980). An improved Monte Carlo factorization algorithm. BIT Numerical

Mathematics, 20(2), 176-184.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., et al.

(2004). Web services architecture. W3C Working Group Note, 11.

Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., et al. (2002a).

Web services transaction (WS-transaction). Microsoft, IBM etc.

Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D., et al.

(2002b). Web services coordination (WS-Coordination). joint specification by

BEA, IBM, and Microsoft, Aug.

Eder, J., & Liebhart, W. (1995). The workflow activity model WAMO. Proc. of the

3rd Int. Conference on Cooperative Information Systems (CoopIs).

Floyd, R. W. (1967). Nondeterministic Algorithms. J. ACM, 14(4), 636-644.

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., et al.

(2004). The open grid services architecture. The Grid2: Blueprint for a New

Computing Infrastructure, 215-257.

Garcia-Molina, H., & Salem, K. (1987). Sagas. Proc. of the ACM SIGMOD Annual

Conference on Management of Data, 249-259.

Greenfield, P., Fekete, A., Jang, J., & Kuo, D. (2003). Compensation is not enough.

7th Int. Conf. on Enterprise Distributed Object Computing.

Greenfield, P., Fekete, A., Jang, J., Kuo, D., & Nepal, S. (2007) Isolation support for

service-based applications: A position paper. Proc. of CIDR.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., et al. (2007).

Web services business process execution language version 2.0. OASIS

Standard, 11.

Texas Tech University, Ziao Liu, December 2009

60

Kamath, M., & Ramamritham, K. (1998). Failure handling and coordinated execution

of concurrent workflows. Proc. of the IEEE Int. Conference on Data

Engineering, 334-341.

Mikalsen, T., Tai, S., & Rouvellou, I. (2002). Transactional attitudes: Reliable

composition of autonomous Web services. Workshop on Dependable

Middleware-based Systems (WDMS 2002).

Newcomer, E.; Robinson, I.; Freund, T.; Green, A.; Harby; Little, M. (2006). Web

Services Business Activity (WS-Business Activity).

Paterson, J., Edlich, S., Hörning, H., & Hörning, R. (2006). The Definitive Guide to

db4o: Apress Berkely, CA, USA.

Singh, M. P., & Huhns, M. N. (2005). Service-oriented computing: semantics,

processes, agents: Wiley.

Tumma, M. (2004). Oracle Streams: High Speed Replication and Data Sharing:

Rampant TechPress.

Urban, S. D., Xiao, Y., Blake, L., & Dietrich, S. W. (2009a). Monitoring Data

Dependencies In Concurrent Process Execution through Delta-Enabled Grid

Services. International Journal of Web and Grid Services, 5(1), 85-106.

Urban, S. D., Liu, Z., & Gao, L. (2009b). Decentralized Data Dependency Analysis

for Concurrent Process Execution. Middleware for Web Service Workshop,

Auckland, New Zealand.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction

management. ACM Transactions on Database Systems (TODS), 16(1), 132-

180.

Worah, D., & Sheth, A. (1997). Transactions in transactional workflows. Advanced

Transaction Models and Architectures, 3-34.

Wächter, H., & Reuter, A. (1992). The contract model: Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA.

Xiao, Y. (2006). Using deltas to analyze data dependencies and semantic correctness

in the recovery of concurrent process execution. Ph.D. Dissertation, Arizona

State Univ., Tempe, AZ

Xiao, Y., & Urban, S. D. (2008a). Using Data Dependencies to Support the Recovery

of Concurrent Processes in a Service Composition Environment (CoopIs) ,

Texas Tech University, Ziao Liu, December 2009

61

Monterrey, Mexico, 139-156.

Xiao, Y., & Urban, S. D. (2008b). Process Dependencies and Process Interference

Rules for Analyzing the Impact of Failure in a Service Composition

Environment. Journal of Information Science and Technology, 5(2), 21-45.

Xiao, Y., & Urban, S. D. (2009). The DeltaGrid Service Composition and Recovery

Model. International Journal of Web Services Research, 6(3), 35-66.

Zhao, W., Moser, L. E., & Melliar-Smith, P. M. (2005). A reservation-based

coordination protocol for Web Services. Proceedings of the IEEE International

Conference on Web Services, 49-56.

