Texas Alliance for Water Conservation

Rick Kellison, Project Director
Declining Water Resources
Texas High Plains Irrigation
(Ag Census) – all crops
A Cooperative Venture with the Texas Water Development Board

Producers Across the Southern High Plains

Texas Tech University
College of Agricultural Sciences & Natural Resources

USDA
NRCS & ARS

High Plains Underground Water Conservation District

FARM Assistance
Planning Solutions

Texas A&M AgriLife Extension

Texas A&M AgriLife Research
Texas Alliance for Water Conservation

[Map showing the area for the Alliance with highlighted regions for South Plains and the Expanded Area.]
Primary Objectives of Project

- Demonstrate how to reduce total water use
- Demonstrate how to enhance profitability
- Identify effective crop and irrigation systems
- Impact producer decision-making
Crops/Livestock (~Total 5,000 acres)

- Cotton Monocultures
- Corn Cotton
- Grain Sorghum Cotton
- Cotton-Cattle
- Grass-cattle
- Specialty Crops
Irrigation Methods

- Sprinkler
- Sub-surface drip
- Furrow
- Dryland
Site Monitoring

- Rainfall
- Temperature
- Water applied
 - Netirrigate
 - PivoTrac
- Soil moisture
 - AquaSpy
 - Crop Sense
 - Aqua Check
- Production inputs
- Plant & animal yields
- Economic analysis
Field Walks 2013

Field 1
82.8 Acres
Grain Sorghum

Field 2
54.1 Acres
Corn

Field 3
92.3 Acres
Cotton
Crop Evapotranspiration Long-term Average (1997–2011)

(Planting Date: 1 May)

- Corn
- Grain Sorghum
- Cotton

Day of Year

(Rajan and Maas)
Sorghum Evapotranspiration
Long-term Average
(1997–2011)

(Rajan and Maas)
Sensor Graph

4”-20” zones wetting up when drip is turned on.

Rainfall stored moisture all the way to 48”
Pioneer 86G32

82.8 acres produced 8816 pounds/acre

Total water supply = 9.3 inches irrigation and 13.4 inches rain = 22.7 inches

Water use efficiency = 411 lbs/acre-inch
Pioneer Aqua Max Yellow Hybrid

54.1 acres produced 818,240 pounds grain = 240.5 bushels/acre

Total water supply = 16.9 inches irrigation and 13.0 inches rain = 32.9 inches

Water use efficiency = 7.32 bushels/acre-inch
Eddie Teeter

Drip – Cotton

- FM 2484 B2F

- 92.3 acres produced 1891 pounds/acre

- Total water supply = 11 inches irrigation and 13.9 inches rain = 24.9 inches

- Water use efficiency = 75.9 lbs/acre-inch
Water Management LEPA vs LESA

Field 1
66.8 Acres

Cotton

Field 2
55.1 Acres

Millet
Comparison of Irrigation Method

Spray Mode

LEPA Mode

Spray mode is slow to wet up soil

LEPA is quicker to wet up soil
LEPA vs LESA

Spray

LEPA
LEPA vs LESA Budget Comparison 2011

PER ACRE GROSS INCOME

<table>
<thead>
<tr>
<th></th>
<th>LEPA</th>
<th>LESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton lint</td>
<td>Quantity: 1001</td>
<td>Total: $900.90</td>
</tr>
<tr>
<td>Cotton seed</td>
<td>Quantity: 0.72</td>
<td>Total: $245.39</td>
</tr>
<tr>
<td>PER ACRE TOTAL GROSS INCOME</td>
<td>$1,146.29</td>
<td>$1,006.58</td>
</tr>
<tr>
<td>PER ACRE TOTAL OF ALL COST</td>
<td>$968.89</td>
<td>$945.93</td>
</tr>
<tr>
<td>PER ACRE NET PROJECTED RETURNS</td>
<td>$177.40</td>
<td>$60.65</td>
</tr>
<tr>
<td>Percent Increase</td>
<td></td>
<td>193%</td>
</tr>
</tbody>
</table>

WATER APPLIED - INCHES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lint lbs per acre-in of water applied</td>
<td>38.4</td>
<td>33.7</td>
</tr>
<tr>
<td>Percent Increase</td>
<td></td>
<td>13.9%</td>
</tr>
</tbody>
</table>
LEPA vs LESA Budget Comparison 2012

<table>
<thead>
<tr>
<th>PER ACRE GROSS INCOME</th>
<th>2012</th>
<th>LEPA</th>
<th>Total</th>
<th>LESA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton lint</td>
<td>1057</td>
<td>$ 951.30</td>
<td></td>
<td>896</td>
<td>$ 806.40</td>
</tr>
<tr>
<td>Cotton seed</td>
<td>0.76</td>
<td>$ 213.39</td>
<td></td>
<td>0.65</td>
<td>$ 180.88</td>
</tr>
<tr>
<td>PER ACRE TOTAL GROSS INCOME</td>
<td></td>
<td>$ 1,164.69</td>
<td></td>
<td>$ 987.28</td>
<td></td>
</tr>
<tr>
<td>PER ACRE TOTAL OF ALL COST</td>
<td></td>
<td>$ 980.33</td>
<td></td>
<td>$ 950.04</td>
<td></td>
</tr>
<tr>
<td>PER ACRE NET PROJECTED RETURNS</td>
<td></td>
<td>$ 184.35</td>
<td></td>
<td>$ 37.25</td>
<td></td>
</tr>
</tbody>
</table>

- **Percent Increase**
 - 395%

WATER APPLIED - INCHES

| Lint lbs per acre-in of water applied | 55.6 | 47.2 |
| Percent Increase | 18.0% | |

- **Percent Increase**
 - 18.0%
LEPA vs LESA Budget Comparison 2013

<table>
<thead>
<tr>
<th>PER ACRE GROSS INCOME</th>
<th>LEPA</th>
<th>LESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Total</td>
<td>Quantity</td>
</tr>
<tr>
<td>Cotton lint</td>
<td>1165</td>
<td>$ 873.75</td>
</tr>
<tr>
<td>Cotton seed</td>
<td>0.84</td>
<td>$ 235.19</td>
</tr>
<tr>
<td>PER ACRE TOTAL GROSS INCOME</td>
<td>$ 1,108.94</td>
<td>$ 978.53</td>
</tr>
<tr>
<td>PER ACRE TOTAL OF ALL COST</td>
<td>$ 924.94</td>
<td>$ 906.33</td>
</tr>
<tr>
<td>PER ACRE NET PROJECTED RETURNS</td>
<td>$ 184.00</td>
<td>$ 72.20</td>
</tr>
<tr>
<td>Percent Increase</td>
<td>155%</td>
<td></td>
</tr>
</tbody>
</table>

WATER APPLIED - INCHES

- Lint lbs per acre-in of water applied:
 - LEPA: 70.6
 - LESA: 62.3
- Percent Increase:
 - LEPA: 13.3%
 - LESA: 13.3%
Solution Aids

“Water is Our Future”
TAWC–Solutions
Resource Allocation Analyzer

- To be used as a planning aid

- Captures changes in commodity price, water availability, and production costs

- Generates several options which maximize net returns/acre
The procedure used to determine:

- When to apply
- How much water to apply
- Specific Management Goals
Potential Evapotranspiration

Wind at 2 meters

Over 75 West Texas Mesonet Stations
Relationship between Cotton Yield and Percent Water Demand

Project Sites 2006–2010

Lbs per Acre

% Crop Water Demand
New Crop Water Balance Track

Site:
Gomez-1
Select the site where this crop is located.

Crop Type:
NHP-Corn
Select the type of crop and crop coefficients. Currently only Northern High Plains (NHP) coefficients are supported.

Select Planting Date:
Feb 21 2011

Weather Station:
Abernathy
Select the nearest or preferred weather station.

Crop Acreage: *
120
Total acreage for this crop, not necessarily the irrigated area.

Starting Moisture [in]: *
0
The initial estimate for moisture in the soil at planting time.

Initial Effective Rain [%]: *
100
This is the initial effective rain percentage, which can be adjusted at a later date if necessary.

Initial Effective Irrigation [%]: *
100
This is the initial effective irrigation value, which can be changed at a later date.

Initial Et [%]: *
100
This is the percentage of predicted evaportranspiration to use. This can be changed at a later date as well.

Create New Crop Water Balance Track Cancel
Crop Summary

<table>
<thead>
<tr>
<th>Site</th>
<th>Weather Station</th>
<th>Acreage</th>
<th>Type</th>
<th>Last Et</th>
<th>Moisture Balance</th>
<th>Growth Stage</th>
<th>Total Irrigation</th>
<th>Total Rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Mill-1</td>
<td>Abernathy</td>
<td>120</td>
<td>Cotton</td>
<td>0.01</td>
<td>0.69</td>
<td>Strip</td>
<td>0.00</td>
<td>12.21</td>
</tr>
</tbody>
</table>

Daily Measurements

<table>
<thead>
<tr>
<th>Date</th>
<th>Effective Irrigation</th>
<th>Effective Rain</th>
<th>Percent Et</th>
<th>Irrigation</th>
<th>Rain</th>
<th>Daily Et</th>
<th>Moisture Balance</th>
<th>Growth Days</th>
<th>Growth Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2010-05-11</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>Planting Day</td>
</tr>
<tr>
<td>1 2010-05-12</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>2.99</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 2010-05-13</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>2.98</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3 2010-05-14</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>1.03</td>
<td>0</td>
<td>3.75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4 2010-05-15</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.01</td>
<td>0</td>
<td>3.76</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5 2010-05-16</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>3.75</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6 2010-05-17</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.54</td>
<td>0.01</td>
<td>4.15</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7 2010-05-18</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8 2010-05-19</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.13</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9 2010-05-20</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10 2010-05-21</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.11</td>
<td>10</td>
<td>Emerge</td>
</tr>
<tr>
<td>11 2010-05-22</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>4.09</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12 2010-05-23</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.08</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13 2010-05-24</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.08</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14 2010-05-25</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.07</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15 2010-05-26</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.08</td>
<td>0.02</td>
<td>4.11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16 2010-05-27</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>4.1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17 2010-05-28</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>4.08</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18 2010-05-29</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>4.06</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19 2010-05-30</td>
<td>0.90</td>
<td>0.75</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>4.04</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Maximizing Water Use Efficiency
The Goal of Production Agriculture
Thank You!

Texas Alliance for Water Conservation