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ABSTRACT 
 
This paper presents a self-learning Support Vector Regression (SVR) approach to investigate the 
asymmetric characteristic in car-following and its impacts on traffic flow evolution. At the 
microscopic level, we find that the intensity difference between acceleration and deceleration 
will lead to a ‘neutral line’, which separates the speed-space diagram into acceleration and 
deceleration dominant areas. This property is then used to discuss the characteristics and 
magnitudes of microscopic hysteresis in stop-and-go traffic. At the macroscopic level, according 
to the distribution of neutral lines for heterogeneous drivers, different congestion propagation 
patterns are reproduced and found to be consistent with Newell’s car following theory. The 
connection between the asymmetric driving behavior and macroscopic hysteresis in the flow-
density diagram is also analyzed and their magnitudes are shown to be positively related.  
 
Keywords:  Asymmetric Driving Behavior, Neutral Line, Hysteresis, Support Vector Regression 
 
1. Introduction 
 
The asymmetry in car-following has been well recognized, but few studies have been conducted 
to investigate its impact on traffic flow. The asymmetry stem from the difference of intensity 
(magnitude) between acceleration and deceleration is based upon the fact that the acceleration 
under positive relative speed of a given magnitude is not as intense as deceleration under a 
negative relative speed of the same magnitude (Leutzbach, 1988). This asymmetric characteristic 
is easy to understand since drivers pay closer attention to decreases than to increases in spacing. 
The intensity difference has been well observed and verified by Leutzbach (1988), Aron (1988) 
and Gong. (2008). Recently, Tordeux (2010) also verified the intensity difference between 
acceleration and deceleration from Next Generation SIMulation (NGSIM) data. 
 
Another well-known asymmetric characteristic is so-called hysteresis observed in stop-and-go 
traffic. Drivers are used to having a larger headway when accelerating compared to decelerating 
given the same speed in the hysteresis. Zhang (1999) proposed a theoretical approach to model 
the macroscopic hysteresis phenomenon observed from real traffic. He classified the traffic flow 
into three types: acceleration, deceleration, and equilibrium to obtain speed-concentration and 
occupancy relationships. Recently, Laval and Leclercq (2010) presented a measurement of 
hysteresis accounting for the non-stationary states and identified four types of hysteresis 
including strong, weak, negligible and negative. From the microscopic angle, Yeo (2008) 
presented an asymmetric driving behavior theory and explained some prominent macroscopic 
traffic phenomena from asymmetric properties. Ahn et al. (2012) also investigated the micro-
hysteresis by comparing the equilibrium and observed spacing. The magnitude was found to be 
smaller in positive and larger in negative loops when measured with the equilibrium spacing. 
 
In this research, the authors attempt to use a self-learning approach, namely Support Vector 
Regression (SVR), to further analyze the asymmetric property. SVR is superior at discovering 
the inherent relations among the variables in a dataset. Given a trajectory dataset, the asymmetric 
characteristics including both the intensity difference and hysteresis can be well tracked and 
learned by the SVR owing to its excellent learning ability.  
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Traditionally, the data analysis, aiming to provide an informational description of the data, 
usually adopts a multivariable regression approach, assuming a linear or nonlinear relation 
among variables. However, such a structural assumption on the mathematical formulation is 
usually appointed by experience or prior knowledge, which may lead to serious bias (Hair et al., 
1998). If a linear form is adopted, the analytical model may be too simple to represent the 
underlying complex relations among the variables. But if applying a high-order form, the model 
might become excessively complex and over-fitted, which exaggerates minor fluctuations in the 
data and results in poor generalization performance due to the Empirical Risk Minimization 
(ERM) principle (Hastie et al., 2003).  
 
The SVR approach overcomes the aforementioned drawbacks by applying the structural risk 
minimization (SRM) principle, which minimizes an upper bound on the expected risk and 
enables the tradeoff between the model complexity and empirical errors (Vapnik, 1995). This 
difference equips SVR with greater generalization abilities and allows a superior performance 
compared to conventional data analysis (Brown et al., 2000; Burbidge et al., 2001; Huang et al., 
2007). 
 
Based on the NGSIM data of U.S. Highway 101, both the intensity difference and hysteresis are 
analyzed from individual to heterogeneous drivers. At the micro-level we analyze the 
asymmetric property for an individual driver from three quantitative aspects: the neutral states of 
the intensity difference, the impacts of engaging vehicles’ states on the hysteresis, and the 
relation between the intensity difference and the hysteresis. Then we extend the analysis to the 
macro-level with an emphasis on how the microscopic asymmetric behavior affects the 
congestion propagation patterns and the macroscopic hysteresis in the flow-density diagram. 
 
The rest of the paper is organized as follows: the asymmetric car following model based on SVR 
is proposed in section 2. Section 3 presents the model’s training and validation with the NGSIM 
data. A systematic analysis of the asymmetric property and discussion of the relations between 
the intensity difference and the hysteresis are given in Section 4. Section 5 extends the analysis 
to macro-level and analyzes how the micro-level driving behavior affects the congestion 
propagation patterns and the hysteresis in a flow-density diagram. Section 6 concludes this paper. 
 
2. A self-learning approach for asymmetric driving behavior analysis 
 
Support Vector Machine (SVM) is a universal learning method based on the statistical learning 
theory developed by Vapnik (1998) and Cherkassky (Cherkassky and Ma, 2004). SVM embodies 
the structural risk minimization (SRM) principle to minimize an upper bound on the expected 
risk. This feature equips SVM with a greater generalization performance from training samples 
to the unknown state space. 
 
SVR is an application of SVM for regression problems. Given a set of training data (𝑥𝑖 , 𝑦𝑖), 𝑖 =
1,2,3 … , 𝑙, 𝑥𝑖 ∈ ℛ𝑑 ,𝑦𝑖 ∈ ℛ, a linear function regression function can be stated as: 

𝑓(𝑥,𝜔) = 𝜔𝑇𝜙(𝑥) + 𝑏                                                      (1) 
in a high-dimensional feature space ℱ, where ω is a vector. Function 𝜙(𝑥) maps the input x into 
a vector in the high-dimension space  ℱ. The ℰ-intensive loss function proposed by Vapnik takes 
the form of: 



4 

 

𝐿𝜉(𝑦,𝑓(𝑥,𝜔)) = � 0 𝑖𝑓 |𝑦 − 𝑓(𝑥,𝜔)| < 𝜀
|𝑦 − 𝑓(𝑥,𝜔)| − 𝜀 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                        (2)     

 
SVR performs a linear regression in space ℱ to minimize the empirical risk, as well as to reduce 
model complexity by minimizing ‖ω‖2, which adds a capacity control and leads to a regularized 
risk function as: 

          𝑅𝑟𝑒𝑔(𝜔) = 1
2
‖𝜔‖2 + 𝑅𝑒𝑚𝑝(𝜔) = 1

2
‖𝜔‖2 + 1

𝑛
∑ 𝐿ℰ(𝑦𝑖 ,𝑓(𝑥,𝜔))𝑛
𝑖=1                    (3) 

 
Together with Eqs. (2) and (3), SVR has the following optimization problem in its dual form 
with a set of Lagrange Multipliers 𝑎𝑖 and 𝑎𝑖∗:  

𝑚𝑎𝑥 𝐿(𝛼𝑖 ,𝛼𝑖∗) = −𝜀 ∑ (𝛼𝑖 + 𝛼𝑖∗)𝑁
𝑖=1 + ∑ (𝛼𝑖∗ − 𝛼𝑖)𝑦𝑖𝑁

𝑖=1 − 1
2
∑ (𝛼𝑖∗ − 𝛼𝑖)�𝛼𝑗∗ − 𝛼𝑗�(𝜙(𝑥𝑖) ⋅ 𝜙(𝑦𝑗))𝑁
𝑖,𝑗=1        

𝑠. 𝑡.

⎩
⎨

⎧
𝑦𝑖 − 𝑓(𝑥𝑖 ,𝜔) ≤ ℰ + 𝜉𝑖∗

𝑓(𝑥𝑖 ,𝜔) − 𝑦𝑖 ≤ ℰ + 𝜉𝑖
𝜉𝑖 , 𝜉𝑖∗ ≥ 0, 𝑖 = 1, … ,𝑛

0 ≤ 𝑎𝑖 ≤ 𝐶, 0 ≤ 𝑎𝑖∗ ≤ 𝐶

�                                           (4) 

 
The maximization problem of Eq. (4) only utilizes the dot products of 𝜙(x𝑖) ⋅ 𝜙(y𝑗), and it 
suffices to know 𝜙(x𝑖) ⋅ 𝜙(y𝑗) rather than as a mapping function of 𝜙(x𝑖). With the kernel 
technique, 𝜙(x𝑖) ⋅ 𝜙(y𝑗)  can be transformed to a nonlinear kernel function 𝐾(𝑥𝑖 , 𝑥𝑗). Eq. (4) can 
be further written as: 

𝑚𝑎𝑥 𝐿(𝛼𝑖 ,𝛼𝑖∗) = −𝜀 ∑ (𝛼𝑖 + 𝛼𝑖∗)𝑁
𝑖=1 + ∑ (𝛼𝑖∗ − 𝛼𝑖)𝑦𝑖𝑁

𝑖=1 − 1
2
∑ (𝛼𝑖∗ − 𝛼𝑖)�𝛼𝑗∗ − 𝛼𝑗�𝐾�𝑥𝑖,𝑥𝑗�𝑁
𝑖,𝑗=1        

𝑠. 𝑡.

⎩
⎨

⎧
𝑦𝑖 − 𝑓(𝑥𝑖 ,𝜔) ≤ ℰ + 𝜉𝑖∗

𝑓(𝑥𝑖 ,𝜔) − 𝑦𝑖 ≤ ℰ + 𝜉𝑖
𝜉𝑖 , 𝜉𝑖∗ ≥ 0, 𝑖 = 1, … ,𝑛

0 ≤ 𝑎𝑖 ≤ 𝐶, 0 ≤ 𝑎𝑖∗ ≤ 𝐶

�                                           (5) 

 
At the optimal solution of Eq. (5), we obtain: 

               𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥)𝑛

𝑖=1       𝑠. 𝑡.   0 ≤ 𝛼𝑖 ≤ 𝐶, 0 ≤ 𝛼𝑖
∗ ≤ 𝐶               (6) 

To note that, in Eq. (6) there is a coefficient for each of the training data. Those data with 
corresponding (𝑎𝑖 − 𝑎𝑖∗) ≠ 0 are called support vectors and contribute to the decision function. 
Given 𝑛𝑠𝑣 support vectors, Eq. (6) can be further written as: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝐾(𝑥𝑖 , 𝑥)𝑛𝑠𝑣
𝑖=1        𝑠. 𝑡.  0 ≤ 𝛼𝑖 ≤ 𝐶, 0 ≤ 𝛼𝑖∗ ≤ 𝐶                     (7) 

Based on Eq. (7), the proposed SVR driving behavior model is shown in Fig. 1. The input of the 
model is a state vector 𝑥 = (𝑑(𝑡), 𝑣𝑓(𝑡),∆𝑣(𝑡)) at time 𝑡, where the 𝑑(𝑡) is the spacing between 
the two consecutive vehicles, ∆𝑣(𝑡) is the relative speed of the two vehicles, and 𝑣𝑓(𝑡) is the 
speed of the leading vehicle. The output of the model is the velocity of the following vehicle of 
𝑣𝑓(𝑡 + 𝑇) at time 𝑡 + 𝑇, where 𝑇 is the correlation delay. Once the model is trained with samples, 
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an optimal estimation of the relation among multiple variables in car following behavior can be 
obtained as Eq. (8).  

𝑣𝑓(𝑡 + 𝑇) = ∑ (𝛼𝑖 − 𝛼𝑖∗)𝐾((𝑑𝑖(𝑡), 𝑣𝑓,𝑖(𝑡),∆𝑣𝑖(𝑡)), (𝑑(𝑡), 𝑣𝑓(𝑡),∆𝑣(𝑡)))𝑛𝑠𝑣
𝑖=1

        
(8) 
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Fig. 1 SVR based car following behavior model 

 
3. Model training and validation with NSGIM data 
 
This section discusses the training and validation process of the SVR approach with NGSIM data. 
The data selection process is introduced first to choose the suitable data for tracking the driving 
behavior through traffic disturbances. Then validations including both model test and simulation 
test are performed to evaluate the accuracy. The asymmetric property of the model is also 
verified in this section. 
 
3.1 NGSIM data preprocessing 
 
A 15 min (7:55-8:05 AM) trajectory data from lane one of Highway 101 (FHWA, 2007) is used 
in our study. The vehicle pairs whose velocities were less than 1 m/s at some time during the 
studying period were selected to guarantee these trajectories can represent the driving behavior 
in typical stop-and-go conditions. A Total of 106 vehicle trajectory data are selected and marked 
as red dots in Fig. 2. A sample of selected vehicles’ velocities and spacing are plotted in Fig. 3.  
 
Each trajectory was evenly divided into two datasets. One is used for model training and the 
other for model validation including both model test and simulation test. Data samples in each 
trajectory with even time indexes are assigned as the training samples, while that with odd time 
indexes are validation samples. It ensures the training dataset covers sufficient information under 
different driving states reflected in the trajectory. 
 

 
Fig. 2 Selected typical vehicle trajectories 
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Fig. 3 A sample of selected leading and following vehicles’ velocity and spacing 

 

3.2 Model Training and Validation 
 
The model is then trained with the calibration dataset for each trajectory using the LibSVM 
toolbox (Chang and Lin, 2011), where the regulation parameter, the coefficient of the kernel 
function and the loss function parameter are determined with the 5-fold cross-validation method 
(Cherkassky, 2004). The delay lag of 𝑇 is set to be 1.0 second in this experiment, which is close 
to the reaction time in real driving behavior and adopted in a number of car following model 
calibration and validation studies (Bham and Benekohal, 2004; Chakroborty and Kikuchi, 1999; 
Johansson and Rummer, 1971).  

To validate the model after training process, experiments including both model test and 
simulation test are performed (Sakda and Hussein, 2007). The model test is a static test, in which 
each individual sample in the validation set is fed into the model. The output is compared with 
the output of velocity in the validation dataset. Root Mean Square Error is used as one of the 
error indicators, which measures the deviation of the predicted value from the field data.  

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 = �1
𝑁
∑ (𝑦𝑛𝑠 − 𝑦𝑛0)2𝑁
𝑛=1                            (9) 

where 𝑦𝑛𝑠  is the simulated value at time 𝑛 ,  𝑦𝑛0  is the corresponding field data, and 𝑁 is the 
number of samples. Both positive and negative errors regarding 𝑦𝑛𝑠 − 𝑦𝑛0 are also calculated as 
they indicate whether the model is underestimating or overestimating compared with the 
observed values.  
 
Another error indicator is the Theil’s inequality coefficient, which is defined as:  

𝑈 =
�1
𝑁∑ (𝑦𝑛𝑠−𝑦𝑛0)2𝑁

𝑛=1

�1
𝑁∑ (𝑦𝑛𝑠 )2𝑁

𝑛=1 +�1
𝑁∑ (𝑦𝑛0)2𝑁

𝑛=1

                                             (10) 

 
The numerator of 𝑈  is the RMS error and the denominator is the sum of mean squares of 
observed and predicted values. Theil’s inequality coefficient provides a measurement of RMS 
error in relative terms, which always falls between 0 and 1. It is easy to see that if 𝑈 = 0, there is 
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a perfect fit with 𝑦𝑛𝑠 = 𝑦𝑛0. If 𝑈 =1, the performance of the model is no better than a naïve guess 
(Bham and Benekohal, 2004).  
 
The errors of the model test are listed in Table 1 including the minimum, median, mean and 
maximum errors. All the errors in the model test are very small. The median RMS error is 1.7909 
and the Theil’s inequality coefficient is only 0.0422. Even for the largest deviation, it is only 
2.6301 for RMS and 0.0736 for Theil’s inequality coefficient. The median negative RMS is 
1.9329, which is slightly higher than negative RMS. The negative mean percent error for speed 
test is a little higher than the positive mean percent error, which means that our model slightly 
tends to underestimate the speed. Overall, the model test errors are very small, which 
demonstrates that the predicted output velocity of our model closely match the field data. 

 
Table 1. Model test error 

 Root Mean Square 
Error 

Positive Mean 
Square Error 

Negative Mean 
Square Error 

Theil’s inequality 
coefficient 

Velocity 
(km/h) 

Minimum 0.3181 0.3789 0.0660 0.0053 

Median 1.7909 1.7113 1.9329 0.0422 

Mean 1.9343 1.8581 1.9774 0.0444 

Maximum 2.6301 2.7535 2.0388 0.0736 

 
Simulation test is performed as a supplement to the model test, in which the leading vehicle’s 
velocity profile, the initial spacing and initial following velocity are the input from the field data. 
The successive inputs of the model are automatically updated by the simulation itself. The output 
from the simulation is then compared with the field trajectory including the position, velocity 
and acceleration. The results are listed in Table 2. An example of simulated trajectories for the 
trajectory shown in Fig. 3, as well as the deviations, is plotted in Fig. 4. 
 

Table 2. Simulation test error 
 Root Mean Square Error Theil’s inequality coefficient 

Minimum Median Mean Maximum Minimum Median Mean Maximum 

Velocity 
(km/h) 

0.7796 2.7673 3.0415 6.6343 0.0130 0.0548 0.0601 0.1167 

Trajectory 
(meter) 

1.5132 2.7322 3.8669 8.0319 0.0181 0.0452 0.0598 0.1209 

Acceleration 
(meter/s2) 

0.5380 0.7121 0.7759 1.3711 0.3070 0.4335 0.4406 0.6171 

Deceleration 
(meter/s2) 

0.4350 0.6255 0.6456 1.0573 0.3648 0.4498 0.4837 0.6132 

 
It can be seen that the simulation errors tend to be slightly higher than model test errors since the 
inputs of the simulation are automatically updated and deviate from the field inputs. The median 
RMS error and Theil’s inequality coefficient for the trajectory are only 2.7322 meters and 0.0452, 
respectively. The mean velocity errors are also very small. For the median of RMS error, it is 
2.7322 km/h. The acceleration and deceleration are relatively higher than velocity and trajectory 
errors in terms of Theil’s inequality coefficient. The results also do not indicate obvious 
unbalanced predictions between deceleration and acceleration.  
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(a) 

 
(b) 

Fig. 4 (a) Following trajectories of simulation result and field data (b) Deviations from the trajectory  
 

3.3 Verification of the asymmetric property  
 
In this section, the asymmetric characteristics including intensity difference and hysteresis will 
be verified followed by a systematic analysis in section 4. The intensity difference is tested by 
changing the relative speed while keeping the input of following speed and spacing constant. Fig. 
5 shows the output acceleration of the model when the following vehicle’s speeds are 20 km/h 
and 30 km/h. The intensity difference can be clearly seen from the figures. For example, in the 
case the following speed is at 20 km/h and the spacing is 7.5 meters, the deceleration of the 
following vehicle is about 2 m/s2 when the relative speed is negative 10 km/h. In contrast, the 
acceleration is about 0.3 m/s2 if the relative speed is positive 10 km/h. In this case, the 
deceleration intensity is larger than acceleration. However, when the speed is 20 km/h and the 
spacing is 12 meters, the acceleration intensity is stronger than deceleration with the opposite 
relative speed. Figure 6 plots the acceleration output of fixing the spacing while changing the 
following vehicle’s speed and the relative speed. The same intensity difference is also clearly 
demonstrated between acceleration and deceleration.  

 
There is a so-called ‘neutral space’ shown as the blue dotted line in Fig. 5(a). At the ‘neutral 
space’, the intensity of acceleration and deceleration will be symmetric. If the spacing is larger 
than the ‘neutral space’, the acceleration intensity is always stronger than deceleration, and vice 
versa. A similar ‘neutral speed’ can be found in Fig. 5(d) as well. The neutral state is an essential 
feature of the driving behavior, which can indicate and reflect different driving styles. A detailed 
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discussion and analysis of the neutral state will be given in following sections for better 
understanding of the asymmetric characteristic. 
 

 
                                                    (a)                                                                                                                 (b) 

 
                                                    (c)                                                                                                                 (d) 

          Fig. 5 Accelerations produced by our model for different relative speed and headways. 
  

 
(a)                                                                                         (b) 

Fig. 6 Positive and negative loop produced by our model 

 
The hysteresis loops between acceleration and deceleration phases are verified by simulating a 
typical stop-and-go traffic scenario. The initial speeds of both vehicles and spacing are 30 km/h 
and 12 meters. Then the leading vehicle will begin to slow down at a constant deceleration, stop 
for 10 seconds, and speed up again at a constant acceleration until its velocity returns to 30 km/h.  
Fig. 6 plots the hysteresis loops produced by the model with different trajectories. The hysteresis 
loop shown in Fig. 6(a) is a typical positive loop. The spacing in acceleration is always larger 
than deceleration. Meanwhile, Fig. 6(b) shows a negative hysteresis loop produced by the model 
trained with the trajectory data of vehicle 494. However, the negative hysteresis loops are 
reproduced for only 6 training trajectories out of a total of 106 tested training trajectories, which 
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is consistent with Laval’s finding that 66% of platoons have positive direction hysteresis 
phenomena, 20% negligible, and 14% negative hysteresis (Laval, 2011). Comparing the negative 
hysteresis loop with the positive strong-level one, it seems that the negative hysteresis is not 
significant and can be classified with the weak level which can be explained by stochastic 
behavior and vehicle mix (Yeo and Skabardonis, 2009). Thus the following analysis and 
discussion will be focused on the positive direction hysteresis. 
 
4. Asymmetric behavior analysis for an individual driver 
 
4.1 Neutral line in asymmetric driving behavior 
 
The so-called ‘neutral space’ and ‘neutral speed’ in the relative speed-acceleration diagram have 
been found in Fig. 5. For every space, there is a corresponding ‘neutral speed’ and for every 
speed, there also exists a ‘neutral space’.  
 
Fig. 7 shows the neutral spaces for different following speeds as blue dots. We call the red line in 
the ‘neutral line’, which separates the speed-space diagram into two areas. The area below the 
neutral line is where deceleration is stronger than acceleration. That means in this area, the driver 
tends to have a more intensive deceleration than acceleration given the same speed and space but 
opposite relative speed. We call this area the deceleration dominant area. The other area above 
the line is the acceleration dominant area where acceleration is more intensive than the 
deceleration. 

 
Fig. 7 Neutral line 

 
We can also consider the speed on the neutral line as the desired speed for the corresponding 
space since the driver will neither accelerate nor decelerate at each point of the neutral line. If the 
leading vehicle keeps the velocity constant, the following vehicle will remain in this neutral state. 
From this perspective, the equilibrium relationship between the spacing and velocity in Newell’s 
car following (NCF) model (Newell, 2002) can be explained and determined by the neutral line. 
Figure 8 further shows an example of the distribution of differences between acceleration and 
deceleration when the relative speeds are set to be 10 and -10 km/h.  It can be seen that the 
neutral line (red curve) separates the plane into two regions. The farther from the line, the larger 
the difference grows. In the tested scenario, the largest difference in the acceleration dominance 
area is around 10 m/s2 and -12 m/s2 for the deceleration dominance area. The neutral line can be 
regarded as a basic measurement of the asymmetric property in driving behavior. In the 
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following sections, we will further show that the neutral line is directly associated with the 
hysteresis and the congestion propagation patterns in macroscopic traffic.  
 

 
Fig 8. Acceleration and deceleration differences 

 
4.2 Hysteresis analysis in the space-speed diagram 
 
This section analyzes the microscopic hysteresis phenomenon with its focus on how the states of 
the engaging vehicles affect the magnitude of the hysteresis. The impact of the leading vehicle’s 
behavior on the asymmetry is investigated at first. The leading vehicle is simulated with different 
accelerations in order to reproduce hysteresis loops with different magnitudes. The simulation 
scenario is the same as described in section 3.3 except for the leading vehicle’s accelerations. 
The results are shown in Fig. 9. 
 

  
(a)                                                                                    (b) 

Fig. 9 Hysteresis loops with different decelerations and accelerations 
 
It can be seen from the figure that the magnitude of the hysteresis loop is affected by the 
acceleration and deceleration of the leading vehicles. The internal space of the hysteresis 
becomes wider with the increase of the leading vehicles’ acceleration and deceleration. In the 
example shown in Fig. 9, for the length of the internal space, the largest value is around 12 
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meters when the leading vehicle’s deceleration is 4.5 m/s2 and 8 meters for acceleration at 4.5 
m/s2.   
 
In addition to the magnitude of decelerations, the speed at which the leading vehicle begins 
decelerating also affects the hysteresis. Figure 10 shows the hysteresis loops reproduced when 
the leading vehicle begins decelerating at different initial speeds. We can see that the external 
shape is determined by the leading vehicle’s maximum speed in stop-and-go traffic. The external 
length of the hysteresis on the speed axis is almost equal to the maximum leading speed. And the 
external length on the space axis grows with the increase of the speed length.  
 

 
Fig. 10 Hysteresis Loops with different leading speeds 

 
In the above discussion, the impact of the leading vehicle’s behavior (acceleration, deceleration 
and speed) on the hysteresis phenomenon is analyzed. Next attentions will be directed to the 
following vehicle’s impact on the hysteresis. 
 
The effect of different starting speeds of the following vehicle is examined first. In the simulated 
scenario, the initial speed of the leading vehicle and spacing are 30 km/h and 12 meters. Then the 
leading vehicle begins to slow down at a constant deceleration, stops for 10 seconds, and speeds 
up again at a constant acceleration until its speed returns to 30 km/h. Fig. 11(a) shows the 
hysteresis with different starting speeds. We can see that no matter what the starting speeds are, 
the following vehicles will eventually drop into the hysteresis loop. And its shape is affected by 
the leading vehicles’ states. For example, when the starting speed is 50 km/h and starting space is 
15 meters, the following vehicles will decelerate then fall into the curve on the loop. For the 
starting speed of 10 km/h, although the leading vehicle is decelerating, the 10 km/h speed is safe 
for the following vehicle, it will accelerate and then keep up with the loop. The impact of the 
starting space of the following vehicle is also shown in Fig. 11 (b). Similarly, with different 
starting spaces, the following vehicles will eventually drop into the hysteresis loop.  
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(a)                                                                                   (b) 

Fig. 11 Hysteresis Loops with different leading speeds 
 

4.3 Neutral line in hysteresis 
 
As two important indicators of the asymmetric driving behavior, the intensity difference and 
hysteresis have been investigated and analyzed thus far. In this section, we made an attempt to 
find how these two phenomena are related in the driving task.  
 

 
(a)                                                                                   (b) 

Fig. 12 Illustration of the hysteresis and the neutral line 
 
We put the neutral line and the hysteresis loops in one speed-space diagram shown in Fig. 12. It 
can be seen that the turning points on the hysteresis loop are always on the neutral line. The 
neutral line determined by different magnitudes of acceleration and deceleration separates the 
hysteresis loop. The top half of the loop belongs to the acceleration dominance area, and the 
bottom half belongs to the deceleration dominance area. When the following speed equals to 
zero, the stationary space on the deceleration branch of the hysteresis is less than the neutral 
space, which indicates the following vehicle stops at a jam space and does not accelerate until 
the spacing is larger than the neutral space. 
  
The intensity difference and hysteresis loops are essentially in accordance with each other. The 
magnitude distribution of the acceleration and deceleration intensity shown in Fig. 8 can also be 
explained in the hysteresis loop. Since the points are calculated in equal intervals (1 second in 
our simulation), the changes in speed between the points equal to the values of the accelerations 
or decelerations. For example, in Fig. 12(b), 𝑑1  is the deceleration value when the driver 
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decelerates from 10 km/h to 4 km/h. 𝑎1is the acceleration value when the driver accelerates from 
10 km/h to 15 km/h. The acceleration near the neutral line is smaller than those far from it. This 
is also consistent with the distribution shown in the Fig. 8, in which the difference between 
acceleration and deceleration is always smaller near the neutral line. 
 
Essentially, both kinds of asymmetric properties are related. The leading vehicle’s states affect 
the magnitude of the hysteresis while the neutral line determines the tilt angle and position of the 
hysteresis in the speed-space diagram. The neutral line reflects the inherent driving behavior, 
while the states of the leading vehicles play the role of driving stimuli.  
 
5. Asymmetric behavior analysis from a macroscopic view 
 
In previous sections, we analyzed the asymmetric characteristic based on the trajectory of 
individual vehicles. Next, we will extend our investigation to the macro-level to depict how the 
microscopic asymmetry is related to macroscopic traffic phenomena, such as congestion 
propagation and hysteresis in the flow-density diagram.  
 
5.1 Neutral line distribution 
 
The neutral line distribution based upon the tested 100 vehicles’ trajectories (6 negative 
hysteresis loops are excluded) are shown in Fig. 13. Obviously, there is a rising trend in the 
neutral space from low to high speed. Most frequent neutral spacing is between 6-12 meters 
when speed is between 0-10 km/h. When the speed goes up to 30-40 km/h, the most frequent 
neutral spacing shifts to 12-24 meters. The neutral states in lower speeds are more centered 
compared to those at higher speeds. When the velocity is 0 km/h, the neutral spaces are centered 
within 6 to 12 meters. The neutral space’s distribution for velocities between 30-40 km/h is 
smoother and more evenly distributed between 9-36 meters compared with 10-20 km/h. 
 
Up and down boundaries are found in the neutral line distribution shown as red lines in Fig. 
15(a). We call the driver along the upper boundary a cautious driver, and the driver along the 
lower boundary an aggressive driver. This is reasonable since an aggressive driver always tends 
to seek a smaller neutral space than a cautious driver. For a cautious driver, the deceleration 
dominant area is larger compared with that of an aggressive driver. The cautious driver also 
exhibits a larger stationary spacing which is about 10 meters, while for the aggressive driver, it is 
around 6 meters.  
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The Cautious 
Driver

The Aggressive 
Driver

Velocity (Km/h)           
(a)                                                                                   (b) 

Fig. 13 Neutral line distribution 
 

5.2 Impact on congestion propagations 
 
Drivers identified by different neutral lines clearly show different asymmetric properties and 
follow different acceleration and deceleration trajectories in hysteresis. Considering such 
differences from a macroscopic level, the impact of different asymmetry on the propagations of 
congestion is discussed in this section. 
 
We designed two test scenarios with a platoon of vehicles for cautious and aggressive drivers. 
The vehicle at the first position of the platoon is at a constant velocity of 30 km/h in the 
beginning, then decelerates to 0 and stops for 10 second and then accelerates to 30 km/h again. 
For the cautious drivers’ test scenario, the initial space is designed as 25 meters to ensure the 
vehicle is at a neutral state at the beginning. For the aggressive drivers’ test, the initial space is 
10 meters.    
 

  
(a)                                                                                  (b) 

Fig 14. Shockwave with only cautious and aggressive drivers. [(a): Vehicle ID: 2582  cautious driver; (b) Vehicle ID: 
2623  aggressive driver] 

 
The propagations of the shockwave caused by the interruption of the first vehicle are plotted in 
Fig. 14. The results show that different congestion propagation patterns and shockwaves are 
reproduced for drivers with different neutral lines. It can be seen that the congestion is 
propagated at about 30 km/h in the traffic composed with aggressive drivers. In contrast, the 
speed of congestion propagation in traffic with cautious drivers is comparatively slower, which is 
only 17 km/h. As discussed in Section 4, the neutral line can determine the equilibrium relation 
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of the speed and space in NCF, so the impact of the neutral line on the congestion propagation 
can also be understood by NCF. The wave speed is determined by both the jam space and the 
slope of the space-speed relation, which is given by the following equation in NCF: 

                         𝑤 = 𝜔/𝜏                                                            (11) 
where 𝜏 is the slope of the equilibrium spacing line and 𝜔 is the jam space. In our test scenario, 
the jam space for the cautious driver is about 10 meters. For aggressive drivers, it is about 6 
meters. The slope for the cautious driver is about 2 seconds, which is determined from the 
cautious driver’s neutral line. For aggressive drivers, it is about 0.2 seconds as shown in Fig. 13. 
So applying Eq. (11), we can easily derive the wave speed for the cautious drivers to be 
approximately 18 km/h, and for the aggressive driver it is about 30 km/h. This matches the 
simulation results very well. 
 
Some interesting phenomena is also observed in Fig. 14 such as the wave speed is not constant 
when the congestion propagating. In Laval’s observations (Laval and Leclercq, 2010), the 
deviations from Newell’s trajectory regarding the spacing can either be smaller or larger. When 
considering these factors, the congestion propagation will exhibit different propagation 
amplitude of time and space. Similarly, since the deviation is also implicitly integrated into (or 
learned by) our model from the real trajectory, it is not surprise that the congestion propagation 
speed is inconstant, which may imply some complex macroscopic traffic phenomena worthy of 
further investigation.  

 
5.3 Connection with the macroscopic hysteresis 
 
The macroscopic hysteresis in the flow-density diagram is also one of the most prominent traffic 
phenomena. Analysis in this section attempts to connect the micro-hysteresis in asymmetric 
driving behavior to the macro-hysteresis in flow-density diagrams. We are interested in how the 
intensity of the asymmetric driving behavior and the corresponding micro-hysteresis affect the 
macro-level hysteresis in flow-density diagrams.   
 
Equilibrium traffic has to be established as a benchmark for the macroscopic hysteresis. We 
applied the triangle fundamental diagram produced by NCF. The neutral line property extracted 
from individual trajectory is utilized to reproduce the equilibrium (Newell’s) trajectory. Let the 
neutral line learned from the field trajectory data take the form of: 

𝑠 = 𝜏𝑣𝑓 + 𝜔                                                                  (12) 
 
Then the corresponding Newell’s trajectory is: 
 

�
𝑣𝑓(𝑡) = 𝑣𝑙(𝑡 − 𝜏)

𝑥𝑓(𝑡) = 𝑥𝑙(𝑡 − 𝜏) − 𝜔
�                                              (13) 

 
where 𝑣𝑓 is the velocity of the following vehicle, 𝑣𝑙(𝑡) is the velocity of the leading vehicle, 𝑥𝑙 is 
the position of the leading vehicle, and 𝑥𝑓  is the position of the following vehicle. The 
macroscopic traffic parameters are measured from the trajectories based on Laval’s improved 
method, which uses the Edie’s generalized definitions (Edie, 1961; Laval, 2011).  
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In the equilibrium traffic, although no macro-hysteresis exists in density-flow diagrams, the 
micro-hysteresis still exists and can be observed. This is easy to understand since the driver has 
to take a relaxation time for returning to the equilibrium state when the leading vehicle 
decelerates or accelerates. That means a hysteresis at micro-level does not necessarily result in a 
macro-hysteresis in density-flow diagrams. We will refer this observed micro-hysteresis as the 
equilibrium asymmetry. However, when trajectories do not follow the Newell’s trajectory, the 
micro-hysteresis will deviate from the equilibrium asymmetry. As pointed out by Laval and 
Leclercq (2010), two types of deviations from the Newell’s trajectory can be identified in stop 
and go traffic from NGSIM data, which can be categorized as: a) the trajectory is above the 
Newell’s trajectory, indicating a comparatively smaller spacing; b) the trajectory is below the 
Newell’s trajectory, with a larger spacing. Examples of trajectories for these two groups are 
plotted in Fig. 15.  
 
Obviously, deviations from the equilibrium trajectory will lead to different micro-hysteresis. We 
are interested in how the magnitude of these deviations in micro-hysteresis from the equilibrium 
asymmetry affects the macro-hysteresis in the density-flow diagram. For reproducing different 
magnitudes of the micro-hysteresis, stop-and-go traffic scenarios are simulated with different 
accelerating and decelerating intensity of the leading vehicle. The generated trajectories are 
measured to investigate the impact on the hysteresis in the density-flow diagram. 
 

 
Fig 15. Trajectory samples comapred with Newell’s trajectory 

 
For the trajectory of which the deceleration path is closer to the leading vehicle compared with 
Newell’s trajectory, the corresponding descending branch in the density-flow diagram is above 
the equilibrium path of the triangle fundamental diagram as shown in Fig.16, which indicates a 
higher density compared with the equilibrium. It can be seen that with an increase of the 
deceleration intensity of the leading vehicle, micro-hysteresis is more deviated from the 
equilibrium asymmetry, which results in a corresponding descending path of macro-hysteresis 
with a larger drift above the equilibrium path. This implies that larger deviation in micro-
hysteresis will result in nonequilibrium states with larger departures from the equilibrium.  
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Fig 16. The micro- and macro-hysteresis for drivers following trajecotry category (a)-the deceleration branch is above 

Newell’s trajectory 
 

 
Fig 17. The micro- and macro-hysteresis for drivers following trajecotry category (b)-the deceleration branch is below 

Newell’s trajectory 
 
For the trajectory of which the deceleration path is farther from the leading vehicle compared 
with Newell’s trajectory, the corresponding descending branch in MFD is below the equilibrium 
path as shown in Fig. 17, which indicates a lower density compared with the equilibrium. 
Similarly, as we can see from Fig. 17, if the macro-hysteresis is more deviated from the 
equilibrium asymmetry, the descending path in MFD shows a larger drift above the below path. 

 
In summary, the observed equilibrium asymmetry in a space-speed diagram does not result in 
macro-hysteresis in the density-flow diagram. However, if the micro-hysteresis deviates from the 
equilibrium asymmetry, the macro-hysteresis in the density-flow diagram will be observed. The 
magnitudes of the deviations from the equilibrium states for micro- and macro-hysteresis are 
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positively related. Larger deviations from the equilibrium asymmetry in the micro-hysteresis will 
result in nonequilibrium traffic states with larger departures from the equilibrium. 
 
6. Conclusion 
 
The asymmetric characteristics in driving behavior are analyzed using an SVR approach. Due to 
the outstanding learning ability of SVR, the asymmetric driving characteristics from the NGSIM 
data can be well tracked. New insights on asymmetric driving characteristics are gained through 
a comprehensive analysis from both micro- and macroscopic levels.  
 
The intensity difference between acceleration and deceleration in driving behavior leads to a 
neutral line, which separates the speed-space diagram into acceleration and deceleration 
dominant areas. We found that the neutral line determines the tilt angle and position of the 
hysteresis in the speed-space diagram, while the leading vehicle’s states affect the internal and 
external shapes of the hysteresis. The neutral line reflects the inherent driving behavior, while the 
states of the leading vehicles play the role of environmental stimuli.  
 
At the macro-level, we found that the congestion propagates at different speeds in the traffic 
composed of drivers with different neutral lines. The relation between the neutral line and the 
wave-speed is found to be consistent with the NCF. Furthermore, new insights were also gained 
on how the micro- and macro-hysteresis are related. When the micro-hysteresis deviates from the 
equilibrium asymmetry, the macro-hysteresis in flow-density diagrams will be observed. The 
magnitudes of the deviations from the equilibrium states for micro- and macro-hysteresis are 
positively related. Larger deviations from the equilibrium asymmetry in the micro-hysteresis will 
result in nonequilibrium traffic states with larger departures from the equilibrium. 
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