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ABSTRACT 

Map-matching, which reconciles a vehicle’s location with the underlying road map, is a 

fundamental function of a land vehicle navigation system. This paper presents an improved 

Kalman filter approach whose state space model is different from the conventional ones. The 

main objective of the research is to develop and apply a proper Kalman filter-based model for 

effectively correcting the Global Positioning System errors in map-matching. Based on the 

in-depth investigation of the characteristics of the Global Positioning System errors, the authors 

presents a novel approach to update the state vector and other related parameters of the Kalman 

filter using both the historical tracks and the road map information. The performance of the 

proposed approach is thoroughly examined by sample applications with real field data. The result 

shows that it handles the biased error and the random error of the Global Positioning System 

signals reasonably well in both the along-road and cross-road directions.   
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1. BACKGROUND AND LITERATURE REVIEW 

The Global Positioning System (GPS) based vehicle navigation systems have been the focus 

of researchers and practitioners for many years. Although the accuracy of an independent GPS 

navigation system may be less promising than that of an integrated system with multiple sensors, 

it remains the mainstream civilian vehicle navigation application due in part to its low cost and 

easy installation.  

The process that a vehicle navigation system uses to translate the measured position onto the 

road map is known as map-matching (French 1986; Quddus et al., 2008). Under the assumption 

that the underlying road networks are accurate, the map-matching task is to obtain the most 

accurate vehicle location by using GPS tracks and the underlying road maps. The performance of 

a vehicle navigation device depends largely on the accuracy of the map-matching algorithm.  

Among the traditional map-matching algorithms, the most common method is the geometric 

analysis approach that utilizes the geometric information of the road network (Kim et al., 1996; 

Duan et al., 1998; Joshi 2001;). White et al. (2000) conducted a comparison analysis of existing 

geometric map-matching algorithms including point-to-point, point-to-curve, and curve-to-curve 

approaches and concluded that the accuracy problem could not be solely resolved by the 

geometric map-matching approach. Another typical method is the topological approach that 

utilizes the link’s geometry, connectivity, and contiguity in the map-matching process (Chen et 

al. 2003; Greenfeld 2002; Meng et al. 2003). Quddus et al. (2007) pointed out that most of the 

topological approaches are sensitive to outliers and unreliable at junctions where the bearings of 

the connecting roads are not similar. Honey et al. (1989) proposed a probabilistic map-matching 

algorithm that requires the definition of an elliptical or rectangular confidence region around a 

position fix obtained from a navigation sensor. Ochieng et al. (2004) further developed an 
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enhanced probabilistic algorithm that could identify the switching of the vehicle from one link to 

another. Smaili et al. (2008) used hybrid Bayesian network to further improve the accuracy.  

Researchers also use the Kalman filter (e.g., Jo et al., 1996; Kim et al., 2000), Belief theory 

(e.g., Yang et al., 2003; Najjar and Bonnifait 2003), and the Fuzzy logic model (Kim and Kim 

1999; Syed and Cannon 2004) in the map-matching process. With these efforts, the accuracy of 

these algorithms for road identification has been improved significantly and the attention now is 

focused on improving the accuracy of the mapped locations on the identified road. One of the 

most often used methods is vertical mapping, which maps the GPS tracks onto the corresponding 

road links vertically. The major limitation of vertical mapping is that it considers only the GPS 

error perpendicular to the road and does not correct its component in the road direction. Another 

popular method is to involve the map data and the vehicle’s speed and heading information from 

GPS receivers in the calculation process. There are, however, problems with this approach as 

well. One major problem is that there is no effective way to get the accurate initial position of the 

subject vehicle in real-time, which is a prerequisite of this approach. In addition, the speed and 

heading information from GPS receivers contain errors too. Indeed, the speed and heading errors 

from GPS receivers are often more serious than the GPS location errors.  

Some new methods were proposed recently. For example, Quddus et al. (2006) developed an 

improved approach to enhance the process of locating vehicles on the selected road link. It 

combines the two methods described above and gives an estimated location according to the 

covariance of different errors. Although the algorithm was designed for the navigation systems 

with two or more sensors (a GPS receiver with a deduced reckoning sensor), it could be used in 

the systems equipped with GPS only with the error variance-covariance matrix from navigation 

systems. One problem with this algorithm is that it is restricted by the accuracy of initial 
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positions of the subject vehicle in real-time. Our study of literature shows that accurately 

mapping the vehicle’s location onto the identified road link remains a challenging task in 

map-matching, especially when GPS is the sole resource for navigation.  

 The Kalman filter is one of the most effective methods to filter signals with random noise 

(Kalman 1960; Brown and Hwang 1992; Welch and Bishop 1995). Many researchers have 

applied the Kalman filter theory to their map-matching models. A notable literature is the work 

of Kim et al. (2000), in which a map-matching algorithm was proposed consisting of a model of 

biased error and a Kalman filter. Their research estimates a large bias as the main source of 

errors and uses the estimation to correct the bias error of GPS. They suggested that the GPS error 

is not a white Gaussian but instead biased due to the factors such as the atmospheric delay, 

implying that the GPS error comprises both the biased error and the white noise error. The 

algorithm reduced the GPS error by using the estimated value of the biased error obtained by the 

Kalman filter and the tracks on the crossroads or curved roads. Unfortunately, the algorithm does 

not handle random GPS error and its correction to the biased GPS error is sensitive to the angle 

of the crossroad. If the angle of the crossroad is small, the estimation of the biased error deviates 

largely from the actual value. As a result, the algorithm fails to correct the biased GPS error in 

the road direction effectively.  

 The key point of using a Kalman filter in map-matching is to design a new state space 

model that satisfies the fundamental assumptions of the Kalman filter theory. This paper presents 

an improved Kalman filter algorithm and an effective GPS error correction approach. The 

method consists of a Kalman filter and a novel method to minimize the biased error of GPS after 

the vehicles make turns. The Kalman filter state space model makes use of the characteristics of 

GPS errors and takes into consideration the white noise assumption of the Kalman filter theory in 
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the modeling process. A new method is developed to calculate the biased error in the road 

direction with improved accuracy. Additionally, the Kalman filter in the proposed map-matching 

algorithm filters the white noise error and corrects the biased error in both the cross-track and the 

along-track directions. The research benefits the land vehicle navigation industry by providing an 

algorithm of improved accuracy and reliability.      

 
2. GPS SIGNAL ERROR AND FUNDAMENTALS OF MAP-MATCHING 

2.1 GPS Signal Error 

The accuracy of the civilian GPS systems has been improved significantly since the United 

States government terminated the Selective Availability (SA) in May 2000. However, the 

accuracy of such systems is still subject to many factors such as the satellite ephemeris error, the 

satellite clock error, the ionospheric delay error, the tropospheric delay error, the multi-path error, 

and the GPS receiver error (Bao and Liu 2006). 

The position information from a GPS signal is the most important factor used to identify the 

vehicle’s exact location. The main component of the GPS location error, which is caused by the 

satellite ephemeris error, the satellite clock error, the ionospheric delay error and the 

tropospheric delay error (Jun et al., 2006), is relatively stable in the short term (Qing et al., 1998). 

This kind of stable error is called the bias error or slow drift error. On the other hand, the error 

component from the multi-path error and the receiver’s hardware error is considered to be a 

random distribution, which is known as the white noise error (Kim et al., 2000). Considering the 

overall influence of these two errors, the GPS location error is biased but not a white Gaussian 

distribution as assumed by present models. 

A distribution of the GPS location error observed from the field is shown in Fig. 1 and Fig. 2. 

The data came from several experiments in an individual vehicle in the urban area of the City of 
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Shanghai, China, using a common commercial GPS receiver (Garmin GPS 18x serial receiver 

for PC). A total of above 10, 000 position fixes were obtained. The map data, reference points 

and the driving log were used to get the accurate position of the GPS tracks and the error. When 

recording the GPS fixes, particular attention was made to avoid making lane changes so that the 

lane information logged into the driving log remained consistent. Since the road map selected for 

the study is of high accuracy (the positions of 95 percent of the all intersections are within 1 m), 

the cross-road GPS error can be eliminated by using the location of the road’s centerline, the 

information of the traveled lane and the width of the lanes and roads. The reference points are the 

points whose accurate locations are known, such as the stop lines and the edge of intersections. 

When recording the GPS tracks, the GPS fixes at the reference points were marked by the 

recorder. The GPS error in the road direction was corrected in the laboratory by translating the 

along-road tracks according to the GPS fixes at reference points. In such a way, both the 

cross-road and the along-road errors were reduced to a range of zero to one meter. Fig. 1 depicts 

the error’s mean in two directions as time elapses. The curve on the top represents the mean’s 

value in an east-west direction, and the bottom curve represents the mean’s component in a 

north-south direction. As can be seen, the GPS location error is a relatively stable value that 

changes slightly in the course of the vehicle’s movement in the short term. Fig. 2 is the 

autocorrelation of these two GPS error components. The curve on the top represents the 

autocorrelation of the error in an east-west direction, and the curve on the bottom represents the 

autocorrelation of the error in a north-south direction. The two curves are not impulse function 

graphics, which indicates that the GPS location error is not white noise.  

Fig. 1 and Fig. 2 demonstrate that directly using the GPS location information as the state 

observation is not proper because the noise of the GPS location information does not form a 
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white Gaussian distribution. Hence, it is essential to develop a new state space model in the 

Kalman filter to make the observation noises agree with the assumptions.   

As aforementioned, the GPS error is composed of the bias error and the white noise error, 

which can be expressed by  

e(k) = ebias(k) + ewhite(k) 

where e(k) is the GPS error at the time point k, ebias(k) and ewhite(k) is the component of 

the bias error and the white noise respectively. Since the bias error is relatively stable, i.e., 

ebias(T-1) ≈ ebias(T), the deviation of the GPS error, ∆e(T), can be expressed by 

 ∆e(T) ≈ ewhite(T) – ewhite(T-1) 

It was verified by the field observation that the distribution of the error deviation at two 

adjacent time points is white with zero mean normal distribution. Fig. 3 shows the changes in the 

mean of the error’s deviation along with time. The curve on the top represents the change in an 

east-west direction, and the curve on the bottom represents the same information in a north-south 

direction.  

   The curves indicate that the mean of the deviation’s components in the two directions is 

constantly zero, which verifies the assumption that the deviation has a zero mean distribution. 

Fig. 4 shows the autocorrelation of the deviation between the adjacent GPS location errors in two 

vertical directions. The curve on the top represents the autocorrelation in an east-west direction, 

and the curve on the bottom represents the autocorrelation in a north-south direction. The curves 

in Fig. 4 exhibit a similar shape to an impulse function graphic, which indicates that the 

deviation is white. Hence, the deviation’s components in both directions follow the distribution 

of N(0,R). Therefore, if the GPS location error at the last time point can be used as the 
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observation at the current time point, it agrees very well with the assumptions of the Kalman 

filter theory. 

2.2 Fundamentals of Map-Matching  

The map-matching process is a specific procedure that reconciles a vehicle's location with the 

underlying map. The problem and the variables of interest are depicted in the following in 

conjunction with Fig. 5. 

 )(kg : the vehicle track point from GPS receiver; 

 )(kp : the actual corresponding location of )(kg  on the map road; 

 )(ke : the deviation between )(kg  and )(kp , );()()( kekgkp −=    

in  and jn : the intersection points of roads on the map, kiS  (i=1,2,…) are road arcs on the 

map; 

)(kq : the nearest point from )(kg  on the arc kiS , which is the intersection of the road arc 

kiS  and its vertical path through ).(kg  

There are two different ways to decompose )(ke  orthogonally: one is to decompose )(ke  

in two directions, i.e., the road direction and the direction perpendicular to the road. The 

directions are denoted by h


 and v  in Fig. 5. The other is to decompose )(ke  in the 

north-south and the east-west directions, which are denoted by x  and y  in Fig. 5. The two 

different decompositions can be expressed by 

hkevkeke hv

 )()()( +=                                                 (1) 

xSeySnke  **)( ∆+∆=   

and  

)()()( kgkqvkev −=                                                  (2) 
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)()()( kqkphkeh −=


 

Rkev ∈)(  is the error component perpendicular to the road and Rkeh ∈)(  is the component in 

the road direction. Se∆  and Sn∆  are the error components in the direction of x   and y  

respectively. 

Obtaining )(ke  is the premise of seeking )(kp . It is relatively easier to get the error 

component )(kev  by calculating the distance between )(kg  and )(kq , but how to obtain the 

component )(keh  is the major issue of concern. Indeed, obtaining this component is a common 

problem in existing map-matching algorithms and mishandling of this process often leads to 

inaccurate navigation devices. 

3. THE PROPOSED KALMAN FILTER ALGORITHM 

3.1 The New Kalman Filter Model 

Since the noise from the GPS receivers does not meet the ideal requirements of the Kalman 

filter theory, the estimated locations are usually not accurate in the conventional models. As 

aforementioned, if the GPS error at the previous time point can be used as the observation at the 

current time point, the noise, which is white with normal distribution, will agree nicely with the 

Kalman theory’s assumptions. In the proposed algorithm, the GPS error in the two vertical 

directions are added into the state space model as state variables and their observed values are 

directly from the previous time point. The deviation of the error is decomposed into two parts 

along x  and y , which are Snv∆  and Sev∆ , respectively. Hence, the location observation can be 

expressed by 

SnnSnSn vkSkzkz ∆∆ +=− )()()(                                        (3) 

SeeSeSe vkSkzkz ∆∆ +=− )()()(                                          (4) 



Xu, Liu, Tan and Bao 10 

)(kzSn  and )(kzSe are the observation values of the GPS track location in the direction of y  

and x  at time k, respectively. Snz∆  and Sez∆  are the errors of the GPS tracks in the same 

directions at time k, which are equal to the component of )1( −ke  between the GPS track’s 

location )1( −kg  and the matched point )1( −kp at the last time point in the direction of y  

and x . )(kSn  and )(kSe  are the predicted location in the same direction at time k, 

respectively. The location observation noises are Snv∆  and Sev∆ , whose distribution agrees 

with ),0( SvRN ∆ . 

According to the above analysis, the state space is designed to be T
enenen SSVVSSx ][ ∆∆= . 

nV  is the component of the vehicle’s velocity in the sy' direction and eV  is the velocity’s 

component in the sx ' direction. )(kSn∆  and )(kSe∆  are the predicted GPS error in the same 

directions at time k, respectively; The predicting formula reads 

 wxFx kk += −1                                                    (5)                                                                  
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The observation vector is set as T
SeSnVeVnSeSeSnSn zzzzzzzzz ]))([( ∆∆∆∆ −−= . The observation 

of Snz  and Sez  are the components of the vehicle’s location (from the GPS receiver) in the 

directions of y  and x , while Vnz  and Vez  are the components of the vehicle’s velocity. 

Therefore, the observation model can be expressed by 

vHxz kk +=                                                     (6) 
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The position of )(kp  is obtained by vertically mapping the estimated location from 

)(kSn and )(kSe  onto the nearest arc. In the process of designating the new state space model 

and the observation model, e(k-1), i.e., the difference between g(k-1) and p(k-1) plays an 

important role in finding p(k-1), while e(k-1) is used as the current observation value. Therefore, 

not only the error component in the cross-road direction needs to be sought accurately, but also 

the component in the road direction as well. The detailed method is presented below. 

3.2 The Proposed Method for Correction of State Variables and Noise Variances 

Finding Snz∆  and Sez∆  from an accurate )1( −ke is essential to the problem. Because there 

is not enough historical track information at the beginning stage of map-matching, the mapped 

point can only be obtained by mapping the GPS track point onto the nearest road vertically 

without any pre-correction. As a result, the calculated )(ke  includes only the component of 

)(kev  in the cross-road direction but missing the information of the component )(keh  in the 

road direction. This )(ke  cannot give the accurate error information about the following track 

points. This problem is solved by the method presented below. 

According to the analyses of the difference between the adjacent GPS errors, the mean of 

GPS error before and after the vehicle’s turning movement is very close as Fig. 1 shows. If lastm  

and currentm  are used to denote the mean of the GPS error on the previous road arc and current 

road arc, then 
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 currentlast mm ≈                                                  (7)  

It is relatively easier to obtain the cross-road component of lastm , namely, lastvm −  and the 

cross-road component of currentm , namely, currentvm − , which is shown in Fig. 6. In order to obtain 

a more accurate result on a real-time basis, this calculation needs to be conducted when there are 

already Ceff track points mapped onto the current road arc, rather than when the vehicle just 

finishes turning and moves to the next road arc. Ceff is the number of GPS fixes defined in order 

to obtain an accurate currentvm −  , (5 in the experiments). Thus, currentvm −  is calculated from the 

Ceff track points. lasthm −  and currenthm −  are denoted as the components of the error’s mean in the 

road direction, corresponding to lastm  and currentm . α is the angle between the intersecting roads.        

According to the geometric analyses conceptualized on the upper left corner of Fig. 6, 

currentm  can be orthogonally decomposed into two directions along lastvm −  and lasthm − , which are 

αα sincos currenthcurrentvlastv mmm −−− +≈                                   (8) 

αα sincos currentvcurrenthlasth mmm −−− +≈                                   (9) 

The relationship between currenthm − , lastvm − , and currentvm −  can be derived, which reads  

αα sin]cos[ currentvlastvcurrenth mmm −−− −≈                                   (10) 

In order to ensure that the truncation error from calculation won’t affect the accuracy, this 

process is applied only in the cases in which the turning angle is larger than 15 degrees. The 

mean of the along-road GPS error, currenthm − , is used to replace the current value to calculate the 

current GPS error e(k) and identify the mapped point p(k) on the corresponding road. 

Furthermore, the observations of Snz∆  and Sez∆  at the next time point can be obtained at the 

same time. Because of the correction to e(k), the other variables in the state space need to be 
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updated synchronously for consistency. The posteriori state estimates Sn∆  and Se∆  are updated 

by Snz∆  and Sez∆  and at the same time, )(kSn  and )(kSe  are updated along the y-axis and the 

x-axis according to the mapped point p(k). The error variance matrix of the posteriori state 

kkP | (Six-dimensional) is updated with the variance SnP∆
 and 

SeP∆
 of the error differences in the 

adjacent GPS track pairs, that is: 

 Snkkkk PPP ∆== )5,5()1,1( ||                                              (11) 

 Sekkkk PPP ∆== )6,6()2,2( ||  

The along-road GPS error of the following track points are corrected effectively with the 

mean currenthm −  by the proposed Kalman filter approach. After the correction, the GPS error in 

the road direction is white with normal distribution whose mean is zero, which can be handled 

easily by the Kalman filter. In the process of vehicle navigation, the method is used to update the 

state of the Kalman filter after vehicles make turns. Thus, after the initial stage of navigation 

process, the error component )(keh  in the road direction is corrected. Though the importance of 

)(keh  for identifying the mapped point )(kp  is well recognized by many researchers, it has 

not been addressed in sufficient detail in the literature. The discovery of )(keh  is one of the 

main contributions of the proposed approach. 

4. APPLICATION AND RESULTS 

The proposed Kalman filter algorithm is one of the four primary elements of the integral 

navigation system, which was designed to improve the accuracy of the GPS’s fix location (in 

both the along-road direction and the cross-road direction). The other major components of the 

system include a computerized digital map creation algorithm that generates digital road 

networks from various resources (e.g., paper maps); a nonlinear map adjusting algorithm that 
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automatically corrects map errors during the extracting process; and a so-called virtual 

differential algorithm that performs road identification during the map-matching process.  

In the system, the virtual differential approach (Liu et al., 2008) identifies the corresponding 

road arc of )(ˆ kp  with the information of the historical matching results, the vehicle’s velocity 

and direction, and the topological structure of the map. The Kalman filter serves as a 

preprocessing tool to correct the GPS errors before mapping the point onto the identified road arc 

to get the matched point )(kp . In this section, the authors present a set of results from the 

experimental studies to demonstrate the effectiveness of the proposed Kalman filter algorithm. 

Focuses are placed on examining the performance of map-matching algorithms with and without 

the pre-correction process.   

The prototype navigation system was tested in the City of Shanghai and City of Hefei, two 

metropolitan cities in China. A data set composed of the accurate location of the recorded GPS 

tracks was first created by using the accurate map data, accurate reference points and the driving 

log. Then, the data set was used to compare with the results obtained from the map-matching 

algorithm. The number of GPS track points recorded was around 35000 and the majority of the 

data were collected continuously. As depicted in the following, the results from the experimental 

study show that the algorithm works reasonably well in correcting the GPS error and improving 

the accuracy of map-matching.  

Fig. 7(a) shows the raw track points obtained from an in-vehicle GPS receiver. It indicates 

that the GPS locations have an error with non-zero mean, because the track points have relatively 

unified deviation from the road map. Fig. 7(b) shows the corrected tracks by the Kalman filter. 

By comparing Fig. 7(a) and Fig. 7(b), one can observe that the improved Kalman filter can 

correct not only the GPS location error in the direction perpendicular to the road, but also the 
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error in the road direction. The error correction process in the road direction improves the 

accuracy of the GPS navigation system significantly, especially at the places near intersections. 

Fig. 7(c) is the final map-matching result after the pre-correction process, which is obtained by 

vertically mapping the corrected track points onto the corresponding roads. 

In the experimental study, the pre-corrected locations of the raw track data were recorded. 

Further investigation was conducted by comparing the statistics of the distances between the raw 

track points and their correct positions, and the distances of the pre-corrected locations to the 

corresponding correct positions. The along-road error of the raw GPS track locations and the 

corrected GPS track locations are shown in Fig. 8 and Fig. 9, respectively. It is worthy of note 

that the results presented in Fig. 9 were obtained after the initial stage of navigation. At the 

beginning stage, the algorithm failed to get a desired result in lack of enough track information. 

By comparing the two figures, one can observe clearly the new algorithm’s effectiveness in error 

correction along the road direction.  

The statistics of the along-road error are presented also in Table 1. The “pre-corrected tracks” 

in Table 1 demonstrates those tracks that were corrected by the improved Kalman filter. Table 2 

shows a comparison between the algorithms with and without the pre-correction process in terms 

of the number of track points that were misused or treated improperly in the map-matching 

process. The algorithm without the Kalman filter uses directly the information of vehicle’s 

direction, speed, the historical matched road, and the topological structure of the map in 

map-matching. The major difference between these two algorithms is that the one without the 

pre-correction treatment cannot effectively handle the GPS error along the road direction. Fig. 10 

shows a complete result obtained from a large portion of the City of Hefei’s network. 

 
5. CONCLUSION 
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In this paper, the authors analyzed the statistic properties of the GPS location error and 

developed an improved Kalman filter approach for preprocessing the GPS data in map-matching. 

Field observations were conducted and the observed data were used to verify that the GPS error 

is composed of the bias error and the white noise error. The difference of the GPS location errors 

at two adjacent time points and its noise were investigated. According to the analyses, the 

components of the GPS error along two vertical directions were added into the state space as 

state variables to develop an improved Kalman filter model. At the same time, the GPS error in 

the road direction was obtained by using the vehicle tracks and the information after the vehicle 

makes turns. The combination of the improved Kalman filter and the method seeking for the 

along-track GPS error makes the new algorithm advantageous in effectively dealing with both 

the bias error and the white noise error, not only in the road direction but also in the direction 

perpendicular to the road. The effectiveness of the model was then examined by experimental 

studies. The findings of this research contribute to development of accurate and reliable 

in-vehicle navigation systems. 
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Figure 1 Mean GPS location error and time 
 
 

 
          

Figure 2 Autocorrelation function curves of GPS location error 
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   Figure 3 Mean deviation of GPS location errors in two directions and time 
 

 

 
  

Figure 4 Autocorrelation of the deviation between adjacent GPS location errors  
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                  Figure 5 Procedure of map-matching 
 
 
 
 

 
 

Figure 6 Conceptual illustration of error calculation by using GPS tracks near a turning 
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Figure 7 The raw tracks, pre-corrected tracks and final map-matching results. 
a. The raw tracks 
b. The tracks corrected by the Kalman filter 
c. The final map-matching result 
 
 

 

 
 

Figure 8 The error of raw GPS track locations in the road direction 
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Figure 9 The along-track error of pre-corrected GPS track locations 
 
 
 
 

 
Figure 10 Raw and Matched GPS tracks for a large area 
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Table 1 Comparison of the along-track error of the raw tracks and pre-corrected tracks 

 
Along-track error Min(m) Max(m) Mean(m) Standard Deviation 

Raw tracks 19.1 28.3 21.7 3.625 

Pre-corrected tracks 0.1 4.5 1.6 1.505 

 
 

Table 2 Comparison of the algorithms with and without pre-correction  

Algorithms Total number of 
track points 

No. of track points near 
Intersections 

No. of misused track 
points 

With Pre-correction 35000 3927 162 
Without Pre-correction 35000 3927 523 
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