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Prediction of Transit Vehicle Arrival Time for Signal
Priority Control: Algorithm and Performance

Chin-Woo Tan, Sungsu Park, Hongchao Liu, Member, IEEE, Qing Xu, and Peter Lau

Abstract—We develop an algorithm for predicting the arrival
times of a transit vehicle at signalized intersections, with a focus
on meeting the accuracy requirement associated with signal pri-
ority control applications. The algorithm uses both historical and
real-time Global Positioning System (GPS) vehicle location data.
There are no data from other detectors, such as loops or cameras.
The arrival time prediction is formulated as an optimal a posteriori
parameter estimation problem, where the model is consisted of a
historical model and an adaptive model that adaptively adjusts its
filter gain based on real-time data. The estimates generated by
these two models are fused in a weighted average derived from
the solution of the parameter estimation problem. The prediction
algorithm adaptively adjusts its weight distribution using error
variances obtained from the two models. We include some simu-
lations of field test results and their statistics to demonstrate the
performance and convergence of the solution.

Index Terms—Error convergence, historical and real-time
adaptive models, intersection arrival time prediction, signal
priority, vehicle location data.

I. INTRODUCTION

ECENT advances in Intelligent Transportation Systems

and transit vehicle technologies, as well as other customer
service innovations, provide major opportunities to improve
transit vehicle service and reducing overall traffic congestion.
Bus Rapid Transit (BRT) has been viewed as an important ap-
plication of these technological and operational innovations. A
promising BRT concept is a transit signal priority (TSP) system.
This is an operational strategy that facilitates the movement
of transit vehicles through a signal-controlled intersection by
modifying the normal signal operation process [1]-[4]. It aims
to minimize travel times through signalized intersections while
limiting the impact on the rest of the traffic along the corridor
and maintaining pedestrian safety [5], [6]. By reducing the
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transit intersection delay time, a TSP system can reduce travel
time and improve transit service reliability, thus increasing
quality of service.

Signal priority can be implemented in a variety of ways,
such as passive priority, early green (red truncation), green
extension, actuated transit phase, phase insertion, and phase
rotation. A major challenge in designing signal priority control
algorithms is that different strategies need to be executed to
efficiently provide priority with respect to when in the signal
cycle the transit vehicle will arrive at the intersection. A critical
issue in this design problem is the ability to predict vehicle
arrival times at intersections as well as “optimal” times to
place priority requests [7]. A more “efficient” or “intelligent”
priority scheme involves collection of “better” vehicle location
information and execution of “better” controls that adapt to
traffic fluctuations. The intelligence of a TSP system includes
a travel time prediction algorithm that anticipates the arrival
of a transit vehicle at a traffic signal and gives priority to the
vehicle to minimize its delay at the intersection and impact
on nonpriority traffic and ensure pedestrian safety. Efficient
adaptive signal control critically depends on the availability and
accuracy of vehicle arrival time prediction [7], [8].

Our objective is to design a reliable and accurate real-time
arrival time prediction algorithm and integrate it with signal
priority control for deployment. The accuracy requirement
associated with signal priority application is that the prediction
time error must quickly converge to stay within a bound around
zero. Such confidence in the prediction allows a sufficiently
large lead time for a TSP system to start modifying the signal
cycle operation. Our major contribution in this paper is an
algorithm design that meets this requirement. We note that the
algorithm is “real time” in the sense that the predicted arrival
time will be updated as soon as new location data are available.
The update rate is typically 1 Hz.

The ability to predict arrival times relies on, to an extent, the
detection technologies. For instance, in a fixed-point location-
based detection system, each transit vehicle is equipped with
a transponder, which sends a unique code to the inductive
loop that identifies the vehicle. Such a system detects a transit
vehicle at a fixed time and location, it but does not provide
the vehicle’s downstream time-location information, making
prediction within second-level accuracy not possible. For ar-
rival time prediction, “continuous” time-based data are far
more useful than fixed location-based data. A wide range of
Advanced Vehicle Location (AVL) systems has been developed
for “continuously” providing location information and commu-
nicating it to a traffic management center. Their applications
include vehicle scheduling in fleet management and signal
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priority. Data obtained from our AVL systems are provided
by the Global Positioning System (GPS). The GPS signal
provides the absolute position coordinate of a vehicle and its
corresponding coordinated universal time (UTC). In this paper,
there are no data available from other detectors, such as loops or
cameras.

Researchers in [9]-[15] have used AVL data to develop
models for predicting the arrival time of the next bus. There are
also models [16]-[18] for general traffic flow prediction. These
models have virtually no sensitivity to operation strategies
such as signal priority control and do not meet the stricter
prediction accuracy requirement associated with signal priority.
Commercial systems, such as the SCATS [19] and SCOOT
[20] systems, also include a signal priority control module. Bus
detectors in SCOOT [20]-[23] are normally placed 70-150 m
or 10-12 s before stop line but after any bus stop. There is an
advantage that these detectors can be placed at optimum points,
but prediction is discretely updated only when these points are
reached. We need ‘“continuous” time-based data rather than
fixed location-based data.

We discuss how data are used in Section II. In Section III, a
historical model is developed for predicting the time-till-arrival
(TTA) at a signalized intersection solely based on historical
data. An adaptive recursive least-squares (LS) prediction model
is developed in Section IV that adaptively adjusts its filter
gain based on real-time AVL data. The estimates from the two
models are fused to obtain a real-time TTA prediction. This
is formulated as an optimal a posteriori parameter estimation
problem in Section V. The solution is a weighted combination
of the TTA predicted by the historical and adaptive models,
where the weights are adaptively adjusted using statistical error
variances obtained from the two models. The historical model
has slow convergence but provides a good initial estimate and
compensates for the large initial error of the adaptive model.
On the other hand, the adaptive model has fast convergence
and guides the convergence of the fused model. In Section VI,
we demonstrate the performance with simulations of field test
data. Some statistical characteristics of the error distributions
are obtained. The simulations show that the algorithm performs
well for the empirical data.

II. AVL DATA FOR ARRIVAL TIME PREDICTION

The prediction of transit vehicle travel times between sig-
nalized intersections and bus stops is challenging, since the
travel times depend on a number of unpredictable factors [6].
These factors include stochastic traffic flow uncertainties along
the route, queue length in front of a traffic light, route length,
ridership variation at bus stops (hence the uncertainties in dwell
times), weather conditions, time of the day, statistical fluctu-
ations in historical data (with large standard deviations), and
GPS data errors. Furthermore, for signal priority application,
the predicted arrival time at an intersection must be within
a required strict level of tolerance (e.g., within a +5-s error
bound) after a priority request is executed. That is, the error
between the actual and predicted arrival times computed at the
current time ¢, i.e., Af,(t), satisfies a condition |Af,(t)| <
5 s for all ¢ > T, where T is the priority request time. This

requirement ensures that the system will have a sufficiently
large lead time to start modifying its normal signal cycle.

Many prediction algorithms involve a data structure that
combines historical and real-time AVL data [12], [15]. Long-
term prediction models rely more on historical data and typi-
cally require minute-level accuracy since they involve longer
times and more uncertainties. Short-term prediction models, on
the other hand, require second-level accuracy and rely more
on real-time data and downstream traffic conditions [24]. Our
prediction algorithm has a historical model that uses historical
data to estimate an average travel time. It gives a good initial
prediction, but the convergence is slow. This slow convergence
is compensated and fine-tuned by an adaptive model that uses
real-time data. The arrival time predication is then formulated
as a maximum a posteriori (MAP) parameter estimation prob-
lem in which the estimates from the historical and adaptive
models are fused in a weighted combination. The weights are
adjusted using statistical error variances obtained from the two
models.

The real-time GPS position data have an error of +15 m
as specified by the manufacturer. Thus, the position error has
approximately a Gaussian distribution [25] with zero mean and
a standard deviation of 04 = 15 m. The data accuracy is also
affected by uncertainties in communication delays and data
packet losses during transmissions between onboard computers
and the server. We use wheel speed data to compensate for data
inaccuracies and obtain relative positions between GPS up-
dates. Thus, they complement the absolute positions provided
by the GPS. Since there are communication delays and data
packet losses, the GPS data were carefully processed to extract
accurate location data that matched with the UTC.

The data were collected in collaboration with the San Mateo
County Transit District. The test site is a section of the
El Camino Real in San Mateo, CA which is about 6 mi south of
the San Francisco International Airport. It spans approximately
4 km (or 2.48 mi), including ten northbound and eight south-
bound bus stops. There are 15 signalized intersections. Bus
stops and intersections are called nodes, with links connecting
them. The GPS coordinates of the nodes, and hence the dis-
tances between them, are recorded and stored in a database for
simulations and field tests.

The current location of a transit vehicle indicates how far
it is from its next intersection. Historical data can be used to
calculate an “average” travel time to cover the remaining dis-
tance between the current location and the next intersection, but
are insufficient to obtain a reasonably accurate prediction of the
actual arrival time. This is evidenced by the statistics shown in
Fig. 1. These are the means and standard deviations of the link
travel times between successive intersections for northbound
traffic. The standard deviations are large, and the percentages
of standard deviations over means are also large. Similarly,
large second-moment statistical deviations are present in the
average link travel times for southbound traffic. Historical
data are useful for calculating an average travel time, but this
prediction needs to be “continuously” fine-tuned using real-
time data as the vehicle travels downstream. This is computed
in an adaptive model that adapts to the flow (average speed)
condition downstream.
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Fig. 1. Mean and standard deviations of northbound link travel times.

III. PREDICTION USING HISTORICAL AVL DATA

In this section, we construct a prediction model that uses
only historical AVL data. We call this the historical model.
Transit vehicle trajectories are separated into drive and stop
sections, and we construct a statistical model for each of them.
A drive section is defined as a continuous section of a transit
vehicle travel timeline when the vehicle moves at nonzero
speed. Typically, this is the time when the vehicle travels along
a link connecting two neighboring nodes. In general, this is
a section of the timeline when the vehicle starts from zero
speed and stops again. A stop section of a transit vehicle travel
timeline is the time when the vehicle stops at zero speed at
a bus stop or in front of a traffic light. For a drive section,
a simple first-order average speed model fits the statistical
data reasonably well. We first construct historical models for
traveled time as a function of traveled distance and for waiting
times at traffic lights and bus stops. An algorithm for predicting
the TTA using historical AVL data is then presented.

A. Linear Model for Historical AVL Data

A typical space—time diagram for a transit vehicle travelling
downstream is shown in Fig. 2, where it takes T seconds to
travel a drive section of length D meters. The vertical portions
of the plot indicate that the vehicle spends some dwell times at
bus stops or waiting times in queues. The pair (D, Tp) is for
one drive section, with the understanding that the vehicle starts
from zero speed at the beginning of this drive section and stops
at the end of it. The variable ¢4, is the dwell time at a bus stop
or the waiting time in a queue before a traffic light. Thus, ¢4y
represents a stop section of the vehicle travel timeline. If the ve-
hicle has traveled a distance d from the previous node, the time
to travel the remaining distance D — d until it reaches the
next node is the TTA t,. Here, the distance d is the straight-
line distance between the current vehicle location and the GPS
location of the start node. Note that ¢, is referred to as the
predicted arrival time computed at the current time t or at the
current location d meters from the start node.

The first question we investigate is whether there is a rela-
tionship between D and Tp. Can we express 1p as a function
of D that “best fits” the historical data? We assume that the
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Fig. 3. Linear regression for section lengths and travel times.

driving conditions (e.g., speed limit) are homogeneous for the
entire test route. If this does not hold, we can divide the route
into homogeneous sections and develop a historical model for
each section. Thus, the relationship D +— Tp, if exists, holds
for all the links along the test route. The set of observed data
(D, Tp) for all the drive sections for northbound at 7-9 A.M.
on weekdays are extracted and plotted in Fig. 3. Since D and
Tp are two random variables, the observations or sample points
in Fig. 3 form a joint distribution for the pair (D,Tp). This
distribution might change as more data become available. It
is clear that the sample points do not fall on a straight line;
thus, we apply regression analysis to obtain an approximate
functional relationship between the variables D and Tp. This
statistical technique determines the values of parameters for
a function that cause the function to best fit a set of data. In
linear regression [26], the function is a linear equation that
best predicts Tp from D. A simple first-order linear average
speed model is a good fit for the historical data. This linear
relationship for (D, Tp) has the form

Tp = aD + 3. (3.1)
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The “hat” indicates that it is a “best fit” estimate using linear
regression. This is the solid line labeled as (R) in Fig. 3.
The variables D and Tp are the regressor (or predictor) and
response variables, respectively. The parameters « and 3 are
chosen so that the regression error |Tp — Tp||? is minimized
over the region of the regressor variable D in the observed data.

For a drive section length D, the travel time T'p has a certain
conditional distribution that depends on D. This distribution
can be modeled as a statistical error so that for each D, the
sample points (D, Tp) are modeled as a linear regression with
a distance-dependent error. That is

Tp = aD + 3+ wrp. (3.2)
The term ( is a bias, and wrp is a Gaussian-distributed
error with zero mean and variance o2, (D) that depends on
the distance D. We use the notation wrp ~ N (0,024 (D)).
The variance is determined by the observed data distribution
and varies if observations at different times of the day are
considered and when more data are collected.

To gain more insight into the linear model, we consider a
drive section of length D. The accuracy of the length D is
affected by the location uncertainty of bus stop or signalized
intersection. This is the GPS data uncertainty. The GPS mea-
surement error has a Gaussian distribution N(0,07), where
o4 = 15 m. From (3.1), the conditional expectation of the travel
time for a given length D = Dis

E(Tp|D = D) = aD + 4. (3.3)
If we assume that the uncertainty in D and the error process

wrp are independent, then the variance of Tp for the given
D=Dis

o7(D)

The linear regression model in (3.1), i.e., TD =aD + 0,isa
line of mean values; that is, the coordinate on the regression
straight line (3.1) at any value of D is simply the expected
value of Tp for that given D. The slope « is interpreted as
the change in the conditional expectation of 7Tp for a unit
change in D. The variance of T, is determined by the GPS data
accuracy and the variance of the error component in (3.2). If
the GPS measurement error is smaller, o4 will also be smaller,
thus implying a more accurate estimate of Tp. The linear
relationship (3.1) generated by the “Linear-in-the-Parameters
Regression” module in MATLAB is the solid line labeled
as (R) in Fig. 3. The program also calculates the variance
02.5(D). For northbound traffic between 7 and 9 A.M., this
linear relationship is given as follows:

1) northbound, 7-9 a.y.: Tp = 0.109D + 8.0177;
2) northbound, all day: Tp = 0.1072D + 8.1614.

A second-order regression model has the form Tp =
a2D2 + a1D + (3. From the historical data, o is on the order
of 107%. In addition, the regression error for the second-order
model is larger than that for the first-order model. Thus, the sim-
ple first-order model fits reasonably well for our observed data.

= Var(Tp|D = D) = a%0% + 0c2,(D).  (3.4)

B. Prediction of TTA Using Historical Data

The space—time diagram in Fig. 2 roughly reveals the “aver-
age” vehicle speed between nodes. Historical data are useful for
predicting an average travel time to reach the next traffic light.
The empirical data also suggest that for each drive section, the
average speed can be modeled as a constant with an additive
uncertainty. This is our historical model for predicting the TTA.
Let D = D be the length of a drive section, the predicted
travel time for this section using linear regression is T, where
(ﬁ TD) satisfies the linear relationship (3.1). We model the
average speed along this section as the constant speed D / 1o
plus a Gaussian error term, i.e.,

v wUNN(OU).

v

(3.5)

Tp

Variations are modeled as first-order perturbations. Then by
taking derivatives, the approximate variation in v = D/Tp at
operating point (D,Tp) = (D, Tp) is

oV = =
Tp 5

at (D, Tp) = (D, Tp). (3.6)
The variation in the drive section length 6D is due to the
GPS location uncertainty, which has a distribution N(0,02),
where 04 = 15 m. The error in the travel time 07p has a
distribution with variance o2 given in (3.4). The “quality” of
an estimate can be measured by its variance. Assume D and Tp
are independent, then by (3.6), the variance of v for D = Dis

1\? Y\
02 = Var(v|D = D) ~ () o2+ | =] o%& (3.7
Tp T2

The conditional expectation of the average speed given that
D =Dis

(D) = E(w|D = D) = =

(3.8)

A historical model for predicting TTA can now be con-
structed. We will denote it by #,5 to distinguish it from the TTA
predicted by a real-time adaptive model that will be developed
in the next section. Referring to Fig. 2, if the drive section length
is D = D and the vehicle has traveled a distance d, the time to
travel the remaining distance D — d s the TTA. (Our interest is
when the end node is an intersection.) Since the speed is mod-
eled as a constant average speed plus an uncertainty, the TTA is
thus modeled as the time to complete the remaining distance at
the constant average speed v plus an error term. That is

D—d
ton(d)=——— *wign,  wign~N (0,0%4(d). (3.9
By using the same first-order perturbation analysis for ob-

taining o2 in (3.7), the variation in 4 is

D—d
72

Ston = —6D - féd - Sv. (3.10)
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The variance of ¢4y for the given D = Dis given by
2 p-da\’
st = S+ (2) o

where 04 = 15 m, and o2 is given by (3.7). The TTA predicted
by the historical model is the conditional expectation of tyy
given D = D. This is given by

(3.11)

. . D—-d . d
te(d)=E(tgn|D = D) = — = Tp <1 - D) . (3.12)

This is expected since we use a constant average speed
model. The most important step in developing the historical
model is to calculate the variations in the observed data.
The variances are 0%, o2, and Ung obtained in (3.4), (3.7),
and (3.11), respectively. The variance ang will be used in a
weighted combination of a prediction algorithm to be developed
in Section V.

We also developed a historical dwell time model by consider-
ing the dwell time distribution at each bus stop. The dwell time
taw 18 modeled by extracting the historical dwell times at the
north- and southbound bus stops from the observed data. For
each bus stop, we calculate the mean tq, and variance afdw
of the observed dwell times. As suggested by the law of large
numbers, the accuracies of the mean and variance will improve
and converge as more data are available.

IV. ADAPTIVE PREDICTION MODEL

The historical model predicts the TTA in one calculation by
using a constant speed given in (3.8) for the drive section. It
does not capture any real-time speed variations. In this section,
we develop another prediction model to complement the
historical model. This is an adaptive model that uses real-time
AVL data to adaptively estimate the downstream average
speed. To correct for the GPS location error due to unknown
GPS latency and transmission delay and data packet loss, we
use wheel speed data to obtain a more accurate estimate of
the current vehicle location and the traveled distance from the
start node. Suppose the section length is D = D and a transit
vehicle has traveled a distance of d(t) from the start node in
t seconds. The average speed is roughly d(t)/t, subject to
statistical errors. We propose an adaptive average speed model.
If it takes an average speed a(t) to cover a distance d(t) in ¢
seconds, the time to cover the remaining distance, predicted
at the current time ¢, is (D — d(t))/a(t). In contrast to the
constant average speed in the historical model, the average
speed a(t) is adaptively tuned to speed variations as the vehicle
travels downstream. In this adaptive average speed model, we
express the traveled distance as

d(t) = alt)t + b(t) + wa(t) = HOz(t) + wa(t). @1

Here, a(t) is the average speed at time ¢, b(t) is the distance
residual, H(t) = [t 1],and x(t) = [a(t) b(t)]7 is the state.
The traveled distance is calculated using the current real-time

GPS location, which has an error standard deviation of o4 =
15 m. Thus, we assume that wy(¢) is an independent identically
distributed measurement noise process with zero mean and
variance o2. The observation d(t) is updated every At =1 s;
thus, d(k) is the kth observation at time ¢, = kAt. For real-
time implementation, the discrete-time adaptive model is

d(k) = a(k)kAt + b(k) + wa(k)

=H(k)z(k) +wq(k), k=1,2,3,.... 42)

We formulate it as a linear LS estimation problem, where
at step k, it is desirable to estimate the state z(k) from the
observations {d(1),...,d(k)} such that the quadratic error is

minimized, i.e.,
k
. ~ . . . 2
LS estimator & (k) = arg mlnz |[d(5) — H(j)z|”. (4.3)
j=1

The LS estimator that minimizes (4.3) is obtained by setting its
gradient with respect to x to zero and has a recursive form [23]
given by

#(k)=2(k-1)+W(k)[dk)— Hk)z(k—-1)]. (44

In the standard LS estimation, the recursive update estimate
#(k) is equal to the previous estimate plus a correction term.
The correction term consists of a gain W (k) multiplied by the
residual, which is the difference between the observation d(k)
and the predicted value of this observation from the previous
k — 1 measurements. The filter gain W (k) is

W(k) = P(k—1)H(k)'S(k)™". 4.5)

Here, S(k) is the residual covariance (i.e., covariance of the
residual in (4.4)), and P(k) is the covariance of the estimator
Z(k). They can recursively be expressed as

S(k) =H(k)P(k— 1)H (k)T + 02 (4.6a)

P(k) =P(k—1) - W(k)S(k)W(k)T.  (4.6b)

Next, we develop an adaptive TTA prediction model. Since
the optimal state is #(k) = [a(k) b(k)] and a(k) is the av-
erage speed at time kAt, we model the TTA as the time to
complete the remaining distance at the average speed a(k) plus
an error term, i.€.,

toA (d(k‘)) = + WigA, Wiga ~ N (O,Utng) .

A.7)

We approximate variations in ¢z by the first-order perturba-
tion method used in deriving ang in (3.11), i.e.,

Stgr = ~6D — L5d <D; d) da.
a a a

(4.8)
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The variance of tg5 for D = D is thus given by

Tiga (d(k)) = Var(tga| D = D)

A 2
~ 2 03+<D_d(k)> P(1,1) (4.9

a(k)? a(k)?

where o4 = 15 m. The variance of a(k) is P(1,1), i.e., the
(1, 1) entry of the covariance matrix P(k). The TTA predicted
by this adaptive model is the conditional expectation of Zga
given D = D. From (4.7), this is

D —d(k)

alk) (4.10)

fia (d(K)) = B (tea (d(k)) |D = D) =

In the next section, we develop a TTA prediction algorithm
that fuses the historical and adaptive models in a weighted com-
bination with weights inversely proportional to the variances
Op and o, 5.

V. ALGORITHM FOR ARRIVAL TIME PREDICTION

Again, we consider a situation when the section length is
D =D and the vehicle has traveled a distance d from the
beginning of the section. The historical model developed in
Section III-B predicts the TTA in a single calculation using
a constant speed model. This is given by tyu(d) in (3.12),
computed at the current location. The adaptive model developed
in Section I'V adaptively adjusts some parameters using the past
and present data. The adaptive TTA given by fg A(d) in (4.10)
computes a speed that adapts to real-time traffic conditions
as the vehicle travels downstream. We can think of #,4 as an
updated measurement of ng as the vehicle travels toward the
end node of the drive section. Given the measurement fg A, wWhat
is the “best a posteriori estimate” of the historical TTA? This
“best estimate” will be our predicted TTA. To generalize the
TTA prediction problem, we can formulate it as a parameter
estimation problem. Consider a measurement ¢,, of the un-
known parameter ?,5 in the presence of an additive Gaussian
measurement noise weg, where wig ~ N(0,07,), and o, 4 is
the right-hand side of (4.9). That is

b = tgH + Wig- (5.1)

Note that the process wy, is different from wiga for the
adaptive model in (4.9). That process has a variance that is only
approximately given by the right-hand side of (4.9). We want
to find the “best a posteriori estimate” of tg;; when ¢, = ng.
The prior information about ¢,y is that it is Gaussian with mean
ng and variance ang given in (3.12) and (3.11), respectively.
We assume that ¢,,, and ¢,g are independent. The a posteriori
probability density function (pdf) given the measurement ¢,,, is
P(tgti|tm). The MAP estimator [27] is a realization of ¢4 that
maximizes the a posteriori pdf, which is defined as

MAP estimator := arg max p(tgp|tm). (5.2)

This estimator, which depends on the measurements ¢,,, and,
through them, the realization of ¢4y, is a random variable. It can

be shown that the a posteriori pdf of ¢4 is also Gaussian [27]
with mean and variance given by

Ut?gA ; Ut?gH
pi(t) = g+ 2, (5.3a)
UtgA + thH UtgA + UtgH
2 UtgAU‘cng
Otg 3 (5.3b)

The mean pi(t,,) of the a posteriori pdf is therefore the MAP
estimator since a Gaussian distribution has the maximum at
its mean. The MAP estimator fuses the historical TTA and the
measurement ¢,,,. If the measurement is ¢,,, = {ga, we get

2 2
thH
2 2
UtgA + UtgH

tan. (5.4)

This is our TTA prediction algorithm. We note that the MAP
estimator is a weighted combination of estimates from the
historical and adaptive models, and the weights of the prior
mean and the measurement are inversely proportional to their
variances.

VI. SIMULATIONS AND PERFORMANCE

The performance of the algorithm (5.4) is examined by
means of simulation. The simulations are compared with the
actual TTA calculated from the empirical data. Fig. 4 is a
simulation of a sample run between two nodes for northbound
traffic during 7-9 A.M. The section length is D = 1083 m, and
the actual travel time is Tp = 89 s. The difference between the
predicted and actual TTA, i.e., Afg = fg — tg, is the prediction
error. We also superimpose the prediction errors from the
historical and adaptive models, which are Ang = ng —tg4and
Afg A= fg A — tg. Recall that the predicted arrival time must be
within a required strict level of tolerance (e.g., within a £5-s
error bound) after a signal priority request is executed. We note
that Afgy is within the error bound when the vehicle is about
200 m from the end node. In terms of travel time, it is about
20 s from the end node. Thus, the convergence of the historical
model is slow. The respective cutoffs for Afg are about 650 m
and 50 s, allowing priority requests to be made as soon as the
vehicle is 650 m from the end node. The TTA predicted by
the fused model converges faster than that predicted by the
historical model alone. Indeed, the adaptive model is crucial
in guiding the convergence and accuracy of the fused model.
In the weighed algorithm (5.4), the adaptive model improves
the convergence rate by including real-time data. The relatively
fast rate of convergence allows the system to have a sufficiently
long lead time to start modifying its signal operation.

The adaptive algorithm (4.10) tends to have large initial
errors, as evidenced in Fig. 4. This is because, initially, the
vehicle starts at zero speed; thus, the initial speed a(t) is small,
and f4a is large. A drawback of the LS algorithm is that
the initial phase of convergence is not monotonic; thus, the
parameter update is initially “not good.” This initial inaccuracy
is compensated by the historical TTA in the weighted algorithm.
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Fig. 4. Comparisons of prediction time errors (top) versus distance traveled
and (bottom) versus time elapsed for a sample run.

The historical model provides a fairly good initial estimate of
the average flow condition, but the convergence is slow. The
adaptive model has good convergence and is crucial in guiding
the convergence of the prediction algorithm (5.4).

The simulations presented in Fig. 4 are for one sample run.
It will be useful to obtain some statistics for the entire set of
field test data. We next obtain some statistics of the prediction
error At, for a link connecting two successive intersections,
with no bus stop in between. We consider Barneson and Hobart
Avenues (cross street numbers 8 and 9) in the northbound
direction. The distance between these two nodes is 257 m. The
middle solid line in Fig. 5 shows the mean prediction error
versus the time it takes to arrive at the end node. We note
that the standard deviation quickly gets smaller as the vehicle
travels downstream. Fig. 6 is a 3-D plot of the prediction error
histogram. There is a large peak around the “zero coordinate”
(TTA =0 s; Afg = 0 s), indicating that the solution almost
surely always converges. The prediction error also quickly
converges to stay within the £5-s bound. The algorithm has
been implemented and integrated with a signal priority control
scheme [8]. Field test results show that the algorithm works
well with the application.

MNorth bound: Hobart Ave
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Fig. 5. Mean and standard deviations of the prediction time error for transit

vehicles approaching Hobart Avenue in the northbound direction.
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Fig. 6. Prediction time error histogram for transit vehicles approaching
Hobart Avenue in the northbound direction.

VII. CONCLUDING REMARKS

A critical issue encountered in implementing TSP control is
to predict the time it takes for a transit vehicle to arrive at the
next signalized intersection if the current distance from the in-
tersection is known. This paper has addressed this issue and has
proposed a prediction algorithm that can be implemented and
integrated with signal priority control. Specifically, it requires
the arrival time prediction error to be no more than £5 s after a
priority request is made. This is necessary so that a TSP system
has a large lead time to start modifying its normal signal cycle.

The problem in question is the time it takes to travel the
distance between the current location and the next signalized
intersection. A plot of the historical data for the traveled dis-
tance versus its corresponding travel time in Fig. 3 suggests
that a linear regression model fits the data reasonably well. This
is given by (3.1), i.e., TD —aD + 0, where it is interpreted
that the average time to travel a distance of D = D is Tp.
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The historical model assumes a constant average speed for the
entire drive section, where the constant speed is given in (3.8),
and the predicted arrival time is given by ng in (3.12). The
estimate ng uses a constant speed for the entire drive section
and does not capture any fluctuations in downstream traffic flow
and speed that might affect the actual arrival time. An adaptive
model is developed to complement the historical model. This
is an adaptive average speed model that uses real-time AVL
data to adaptively estimate the downstream average speed. It
is formulated as a linear LS problem in Section IV, and the
predicted arrival time is given by ng in (4.7).

The predicted arrival time is obtained by fusing the estimates
from the historical and adaptive models. The adaptive estimate
tunes the historical estimate; thus, we think of fg A as an updated
measurement of ng as the vehicle travels downstream. This is
formulated as a parameter estimation problem in which we seek
the “best a posteriori estimate” of f,1 given the estimate 44
This MAP estimator is the predicted arrival time fg given in
(5.4). It is a weighted combination of the estimates ng and fg As
where the weights are inversely proportional to the variances
ot and o7, ,, respectively. We have included simulations of
field test data to demonstrate the performance of the solution.
The algorithm has since been implemented and integrated with
a signal priority control scheme discussed in [8].

The derivations of the historical and adaptive estimates in
Sections III-IV assume a drive section of length D. If the
transit vehicle stops after it has traveled a distance d < D,
the algorithm restarts with the new drive section length D — d
when the vehicle moves again. This occurs, for example, when
a transit vehicle joins the back of a queue and stops. In these
situations, the error might not converge to stay within the
£5-s bound fast enough to allow the system to modify the
normal cycle. Thus, the algorithm probably might not perform
as good in situations of heavily congested stop-and-go traffic.
It will be useful to include models of queue length and queue
discharge rate so that the prediction includes the additional
time the vehicle might spend in a stop-and-go traffic. We agree
that travel time predictions that deal with great uncertainties in
downstream traffic conditions are more complex. However, we
emphasize that we have designed an algorithm that works well
for the test site and under most traffic conditions. In general,
stochastic systems with highly fluctuated and unpredictable
behaviors, such as a stock market, are difficult to analyze.
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