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Understanding the cascade dynamics of delay propagation under inclement weather is cru-
cial to proactive railway management. In this paper, we proposed a Switching Max-Plus
System (SMPS) to model the delay propagation on railway networks, which extends the
conventional MPS by incorporating multiple system matrices to capture the dynamic
impacts of inclement weather. An algorithm based on the All-Paired Critical-Path (APCP)
graph was developed to solve the SMPS, which calculates secondary delays without
backtracking the precedent events. The proposed model and its solution algorithm were
validated using discrete-time simulations on both artificial and empirical networks. The
robustness of railway services was also analyzed using the concepts of vulnerability and
diffusivity.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, with the rapid development of rail infrastructure, the railway system is becoming one of the busiest transporta-
tion modes in China with over 1.4 billion trips taken every year (Chou et al., 2011; Zheng, 2010). As China’s railway network
spans through numerous diverse climate regions, its operation is always subject to inclement weather, such as strong rain-
storms and blizzards. Under such conditions, the operating speed is constrained by the Rail Transportation Weather Index
(RTWI) and relevant safety regulations (China Meteorological Administration, 2007). The reduction in operating speed may
result in severe primary and secondary delays over the entire railway network (Cui and Zhang, 2010; Ma et al., 2011; Zeng
et al., 2012). For example, on February 4th 2013, due to snowstorms in northern China, three major railway services among
Beijing, Tianjin, Shanghai, and Guangzhou suffered from severe delays; some services were even canceled, leaving thousands
of passengers stranded in Shanghai Station for over three hours. On December 15th 2012, more than 10 high-speed rail ser-
vices from Beijing Station were delayed for nearly 2 h in the morning due to heavy fog and snowstorms. The operating speed
was reduced from 300 to 100 km per hour (km/h), resulting in severe primary and knock-on delays over the network.

Although the delay caused by severe weather is inevitable, understanding the underlying cascade dynamics of delay
propagation is crucial for the effective management of a railway network. Due to the shared infrastructural resources, the
primary delay of an arrival or departure may propagate to its subsequent events. Such propagation of train delays at the
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network scale could be rather complicated and often exhibits a cascade pattern, where the delay of a single service may lead
to a catastrophic cascade of delays over the entire network (Zhou and Zhong, 2007).

Usually, train delays are grouped into two categories: the primary delay and the secondary (knock-on) delay. The primary
delay is directly caused by incidents such as the malfunctioning of the infrastructure and inclement weather. The secondary
delay, on the other hand, is due to the propagation of delays incurred by other services because of track sharing, operational
constraints, and safety regulations such as the minimum running headway and speed limit (Kliewer and Suhl, 2011).

To capture the propagation of primary delays, several stochastic delay models have been developed with the objective of
estimating stationary distributions of secondary delays. For instance, Carey and Kwiecinski (1994) investigated multiple
train services on single-track lines with stochastic running and dwell times. Probability density functions of successive arri-
val and departure times were derived in a recursive way. Higgins and Kozan (1998) presented another stochastic delay
model of urban railway networks, where they assumed that source delays were due to frequent random events (e.g., long
dwell times) and followed certain distributions (e.g., the Erlang distribution). An implicit expression was proposed to derive
the expectations of secondary delays. Recently, Meester and Muns (2007) extended the model by using phase-type distribu-
tions. The objective of these stochastic models was to derive the stationary distributions of train delays given the primary
delays that follow certain probability distributions. Since inclement weather is a type of small probability event, these
stochastic models can only provide statistical properties of train delays in the long run. They are unable to predict train
delays when the network is affected by inclement weather with a specific spatial–temporal coverage. Therefore, it is unfea-
sible to compare these stochastic models with the proposed method due to the different modeling objectives and applicable
scenarios.

In contrast to stochastic models, the deterministic approach applies the max-plus algebra, wherein movements of trains
are depicted as a discrete-event system. For example, Braker (1993) developed a recursive system using the max-plus
algebra for periodic timetables of the Dutch railway network. Subiono (2000) extended Braker’s model to accommodate net-
works with mixed train types. Based on these Max-Plus System (MPS) models, De Schutter et al. (2002) and van den Boom
and De Schutter (2006) proposed several control models to reschedule train services for mitigating secondary delays.

However, these static MPS models (Braker, 1993; De Schutter et al., 2002; Goverde, 2007; Subiono, 2000) can only be
applied in situations when initial delays are known and their propagation is governed by static constraints in normal
conditions. When railway networks suffer from inclement weather that changes in both temporal and spatial scales, the con-
straints are no longer static; instead, they evolve accordingly to time. Delay propagation exhibits a more intricate pattern. On
the one hand, additional primary delays may be coupled into the system while earlier primary delays are still propagating. In
this case, the propagation of earlier delays no longer follows normal regulations, and therefore, a single system matrix with
normal constraints is insufficient. On the other hand, even if the weather condition is assumed static, primary delays still
cannot be readily obtained as dependencies may exist among primary delays themselves.

In this paper, we present a Switching Max-Plus System (SMPS) to model the delay propagation under the dynamic impact
of inclement weather. In contrast to existing MPS methods, the SMPS introduces a system matrix for each operation scenario,
describing the impacts of the inclement weather at different stages. The railway network is switching between different
operating modes with the dynamics of hazardous weather. An algorithm based on the All-Paired Critical-Path (APCP) graph
is developed to solve the SMPS and has two main advantages: first, it enables a direct calculation of the delay of a certain
event without the need of backtracking its precedent events; second, measures of service robustness, such as vulnerability
and diffusivity, can be readily determined from the APCP graph. For a comparison, an iterative algorithm is also presented
based on the precedence graph of the slack time matrix. Case studies on both artificial and empirical networks are conducted
to validate the model and its solution algorithm.

The proposed model contributes to the state-of-the-art railway operation research in two ways: (1) it successfully
modeled the delay propagation through an SMPS approach. SMPS is a significant extension of MPS, in which the structure
of SMPS is not constant but rather evolving with time. To the best knowledge of the authors, very few, if any, studies have
taken into account the dynamics of constraints (inclement weather, in this study) in modeling the delay evolution in railway
networks; and (2) an APCP graph based algorithm was developed to replace the iterative approach for improving the com-
putational efficiency. More importantly, robustness measures of railway services, i.e., the vulnerability and the diffusivity,
can be derived from the APCP graph.

The rest of the paper is organized as follows. Section 2 presents the SMPS model for delay propagation under inclement
weather. Section 3 proposes the APCP algorithm for solving the SMPS model, as well as robustness measures derived from
the APCP graph. Section 4 presents cases studies on both artificial and empirical railway networks. Section 5 concludes the
paper.
2. Model formulation

In this section, we first define the problem and introduce the basic notation. Then, the fundamentals of the max-plus alge-
bra are presented. We demonstrate how operational constraints of a railway system can be expressed using the max-plus
algebra. Then, we propose a Switching MPS (SMPS) approach for modeling the cascade dynamics of railway networks under
the impacts of inclement weather.
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2.1. Problem statement

A railway network is represented by an undirected multigraph, in which the nodes of the graph represent stations
denoted by V ¼ v1; . . . ;vnvf g, where nv is the number of stations. The edges of the graph represent rail links between stations
denoted by L ¼ l1; . . . ; lnl

� �
, where nl is the number of links. The route of a train is specified by a sequence of adjacent links

from the origin to the destination.3 The scheduled arrival and departure times are denoted by an ne � 1 column vector T, where
ne is the total number of arrivals and departures.4 Assume that train operations are subject to multi-stage inclement weather. In
each stage (time interval), the inclement weather has a certain spatial coverage and affects a subset of links with different levels
of intensity. Operating speeds on these links have to be reduced to certain thresholds based on safety rules defined in RTWI. The
objective of the proposed model is to determine the primary and secondary delays of each arrival and departure, considering the
dynamic impacts of the multi-stage inclement weather. Basic variables and parameters are listed in Table 1. Other notation used
for definitions and theorems are explained in the context.

2.2. Max-plus algebra

The max-plus algebra is a mathematical approach that can be used to describe a discrete event system. This section out-
lines the fundamentals of the max-plus algebra. We refer to Baccelli et al. (1992) and Butkovic (2010) for a systematic
introduction.

Usually, the max-plus algebra is introduced as follows. Let � ¼ �1 and e ¼ 0. For elements a; b 2 Rmax where Rmax ¼ R [ �,
the operations � and � are defined as:
3 Mu
stations

4 The
a� b ¼ aþ b ð1Þ
a� b ¼maxða; bÞ ð2Þ
a� � ¼ �� a ¼ a ð3Þ
a� � ¼ �� a ¼ � ð4Þ
a� e ¼ e� a ¼ a ð5Þ
Let Rn�n
max denote the set of n� n matrices with entries in Rmax. The matrix multiplication and addition are defined as:
P� Q½ �ij ¼ �n
k¼1 pik � qkj

� �
¼ max

k¼1;...;n
pik þ qkj

� �
ð6Þ

P� Q½ �ij ¼ pij � qij

� �
ð7Þ
where P;Q 2 Rn�n
max . The kth (k P 1) power of P is defined as:
Pk ¼ �k
i¼1P ð8Þ
In the max-plus algebra, an n� n matrix can be uniquely associated with a precedence graph, which is defined as:

Definition 1 Baccelli et al., 1992. The precedence graph GðPÞ associated to a matrix P 2 Rn�n
max is a weighted digraph

G ¼ ðC;E;xÞ with C ¼ 1; . . . ;nf g and an arc ðj; iÞ 2 E with weight xðj; iÞ ¼ pij; pij – �.
Definition 2. A path W in GðPÞ is a sequence of adjacent arcs W ¼ ðn1; . . . ; nmÞ; ðm P 1Þ such that the head of ni is the tail of
niþ1; ð0 6 i 6 m� 1Þ. The length of a path W is the number of arcs it contains. The weight of the path is the sum of the arc
weights, i.e., cðWÞ ¼ �ni2Wwi, where xi is the weight of arc ni. Letting nþi and n�i denote the head and the tail of ni, respectively,
a path W can also be specified as W ¼ ðn�1 ; . . . ; nþmÞ.
2.3. Max-plus system for a railway network

In this section, we introduce the MPS model to lay a logical ground for the later development of the SMPS approach. As a
scheduled system, railway operations are subjected to several constraints such as minimum arrival and departure headways.
Using the max-plus algebra, these constraints are expressed as follows.

Running time constraint: the travel time between two successive stations cannot be smaller than the minimum running
time determined by the speed limit. Let tv ;r;0 and xv ;r;0 be the scheduled and actual arrival times of train r at station v, respec-
tively. Let xv 0r ;r;1 denote the actual departure time of train r at station v 0r (i.e., the preceding station of v on the route of train r).
This running time constraint can be expressed by Eq. (9). Here, j denotes the link that connects station v 0r and v. Mr;j is the
minimum running time of train r on link j.
ltiple links may exist between two stations. Therefore, specifying the route of a train using the sequence of links is more precise than using a sequence of
.
elements of T do not need to be arranged in a specific order as long as the order is consistent throughout the system.



Table 1
List of variables and parameters.

Notation Description

Notation used for describing operational constraints
tv ;r;0 Scheduled arrival time of train r at station v
tv ;r;1 Scheduled departure time of train r at station v
xv ;r;0 Actual arrival time of train r at station v
xv ;r;1 Actual departure time of train r at station v
v 0r Preceding station of train r at station v
Mr;l Minimum travel time of train r on link l
gr;l Travel time of train r on link l without considering the impacts of inclement weather

hð0Þra ;rb ;v Minimum headway between arrivals of train ra and rb at station v

hð1Þra ;rb ;v Minimum headway between departures of train ra and rb at station v

hð2Þra ;rb ;v Safety time at station v between the departure of train ra and the arrival of train rb

hð3Þr;v Minimum dwell time of train r at station v

sðHÞr;l Maximum operating speed of train r on link l in normal conditions

sð0Þr;l Operating speed of train r on link l in normal conditions

Að0Þne�ne
System matrix in normal conditions with entries að0Þij ; i; j ¼ 1; . . . ;ne

Bð0Þne�ne
Slack time matrix in normal conditions with entries bð0Þij ; i; j ¼ 1; . . . ;ne

Cne�ne APCP matrix with entries cij; i; j ¼ 1; . . . ;ne

Notation used for describing inclement weather and its impacts on train operations
b�k Starting time of stage k
bþk Ending time of stage k
Nb Total number of time intervals (stages) of inclement weather

sðkÞr;l Maximum operating speed of train r on link l under inclement weather at stage k

AðkÞne�ne
System matrix at stage k with entries aðkÞij ; i; j ¼ 1; . . . ;ne

BðkÞne�ne
Slack time matrix at stage k with entries bðkÞij ; i; j ¼ 1; . . . ;ne

Dne�1 Delay vector with entries di; i ¼ 1; . . . ;ne

Xne�1 Vector of actual times of events with entries xi; i ¼ 1; . . . ;ne
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xv;r;0 ¼ Mr;j � xv 0r ;r;1
� �

� tv;r;0 ð9Þ
Arrival headway constraint: if train ra and rb have the same inbound route at station v and if rb is scheduled to depart after

ra, their arrival headway cannot be smaller than a minimum constant hð0Þra ;rb ;v . This can be expressed as:
xv;rb ;0 ¼ hð0Þra ;rb ;v � xv;ra ;0

� �
� tv;rb ;0 ð10Þ
Departure headway constraint: assuming that two trains, ra and rb, have the same outbound route at station v, if rb is

scheduled to depart after ra, their departure headway cannot be smaller than a minimum constant hð1Þra ;rb ;v . This can be
expressed as:
xv;rb ;1 ¼ hð1Þra ;rb ;v � xv;ra ;1

� �
� tv;rb ;1 ð11Þ
Safety time at stations: two trains, ra and rb, are assumed to share the same platform at station v. The arrival of rb is sched-
uled after the departure of ra. The headway between the departure of ra and the arrival of rb cannot be smaller than a min-

imum constant hð2Þra ;rb ;v . This is expressed as:
xv;rb ;0 ¼ hð2Þra ;rb ;v � xv;ra ;1

� �
� tv;rb ;0 ð12Þ
Dwell time constraint: the departure of train r at the station v cannot be earlier than hð3Þr;v time units after its arrival, which
can be expressed as:
xv;r;1 ¼ hð3Þr;v � xv;r;0

� �
� tv;r;1 ð13Þ
Let Ane�ne denote the set of constraint elements corresponding to a set of ne events. The scheduled times of the events are
denoted by a vector of Tne�1, while the realized arrival and departure times are represented by Xne�1. For example, letting
ti ¼ tv ;r;1; xj ¼ xv ;r;0 and xi ¼ xv;r;1, Eq. (13) can be rewritten as:
xi ¼ aij � xj
� �

� ti ð14Þ
where aij ¼ hð3Þr;v . If the punctuality of event i does not depend on event j, then aij ¼ �. For periodic timetables, let xiðjÞ denote
the actual time of event i at period j (j P 0). By extending Eq. (14), Goverde (2007) developed an MPS for periodic timeta-
bles in the form of:
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XðjÞ ¼ A� XðjÞ � T� Xðj�Þ ð15Þ
where Xðj�Þ represents actual times of events before the propagation of delays at period j. Primary delays, if any, are
included in Xðj�Þ for the propagation in period j. The precedence graph of the system matrix A indicates the dependencies
among the events. If there exists an arc from node j to i, i.e., aij – �, then event i depends on event j and the earliest possible
time of event i is aij time units after event j occurs.

To understand Eq. (15), below we give a simple example. Assume the system only involves one period and contains two
events: the departure of a train at a station and its arrival at the next station. The minimum travel time is assumed to be
100 min. This constraint is satisfied by the following equation:
x1

x2

� 	
¼ A�

x1

x2

� 	
¼

e �
100 e

� 	
�

x1

x2

� 	
ð16Þ
where x1 and x2 are the actual departure and arrival times, respectively. From Eq. (16), we obtain x2 P x1 þ 100, and there
exist infinitely many solutions. However, the actual times cannot be earlier than the scheduled times T, so Eq. (16) needs to
be expanded to:
x1

x2

� 	
¼ A�

x1

x2

� 	
� T ¼

e �
100 e

� 	
�

x1

x2

� 	
�

t1

t2

� 	
ð17Þ
where t1 and t2 are the scheduled departure and arrival times, respectively. The solutions of Eq. (17) are
x2 ¼maxðt1 þ 100; t2Þ and x1 ¼ t1, which satisfy both the travel time constraint and the schedule. Now, we assume that
the departure has incurred a primary delay of 5 min, which can be incorporated into the system as:
x1

x2

� 	
¼

e �
100 e

� 	
�

x1

x2

� 	
�

t1

t2

� 	
�

t1 þ 5
t2

� 	
ð18Þ
The solutions of Eq. (18) are then x1 ¼ t1 þ 5 and x2 ¼maxðt1 þ 105; t2Þ. If the scheduled arrival time is larger than t1 þ 105,
then the actual arrival time is the same as the scheduled time, i.e., x2 ¼ t2. Otherwise, the arrival would incur a secondary
delay of t1 þ 105� t2.

In the following discussions, we do not explicitly integrate periods for cyclic timetables, i.e., events of cyclic services in
different periods are treated as if they were acyclic. On one hand, it would simplify the SMPS model and allow less complex
algorithms in delay prediction. On the other hand, it is also easy to transform periodic to non-periodic timetables using the
unfolding technique, where the dependency between events in different periods is still reserved (Goverde, 2007; van der
Meer, 2008). Additionally, partially periodic and non-periodic train services are also being adopted in practical train opera-
tions in Europe and China to cope with the non-uniformly distributed demand and exceptional situations, where the
non-periodic expression would be applicable (Caimi et al., 2011; Forsgren et al., 2011; Wong et al., 2008; Canca et al.,
2014; Cacchiani et al., 2014).

2.4. Modeling cascade dynamics of railway network under inclement weather

As one can identify in Eq. (15), the static MPS adopts a constant matrix A to define operational constraints in normal con-
ditions. Primary delays are assumed to propagate based on these static constraints. However, due to the dynamic impacts of
inclement weather, operational constraints are expected to evolve accordingly. In such cases, the delay propagation cannot
be predicted using the static MPS.

In this section, we propose the SMPS model, where the system matrix is switching among different operation modes
based on the intensity of the inclement weather. It is assumed that the inclement weather spans over Nb (Nb P 1) stages.
At each stage, the inclement weather has a certain spatial coverage and affects a subset of links with different levels of inten-
sity. A system matrix is determined for each stage to represent the operational constraints. Therefore, there exist Nb þ 1 sys-

tem matrices including one normal system matrix and Nb abnormal system matrices AðkÞ ði ¼ 1; . . . ;NbÞ corresponding to

each stage of the inclement weather. To simplify the expression below, let Að0Þ denote the system matrix in normal condi-
tions. The following max-plus system is proposed to incorporate multiple system matrices:
XðtÞ ¼ Að/ðtÞÞ � XðtÞ � T� Xðt�Þ ð19Þ
where XðtÞ denotes the actual times of events at time t. Xðt�Þ denotes the actual times of events that are already known at
time t. /ðtÞ ¼ 0;1;2; . . . ;Nb is the index of the corresponding system matrix at time t. Let b�k denote the starting time and bþk
the ending time of stage k (k ¼ 1; . . . ;Nb). If t 2 ½b�k ; b

þ
k �, then Að/ðtÞÞ ¼ AðkÞ. Eq. (19) establishes a multilevel MPS model with a

dynamic system matrix that switches between different operation modes. We take the previous example used for Eq. (15) to
explain Eq. (19). The departure is also assumed to incur a 5-min primary delay, but the minimum travel time increases to
150 min due to the inclement weather at stage k. Based on Eq. (19), we have:
x1

x2

� 	
¼ AðkÞ �

x1

x2

� 	
�

t1

t2

� 	
�

t1 þ 5
t2

� 	
¼

e �
150 e

� 	
�

x1

x2

� 	
�

t1

t2

� 	
�

t1 þ 5
t2

� 	
ð20Þ



100 D. Wei et al. / Transportation Research Part E 80 (2015) 95–122
The solutions of Eq. (20) are x1 ¼ t1 þ 5 and x2 ¼ maxðt1 þ 155; t2Þ. If the scheduled arrival time is larger than t1 þ 155, then
the actual arrival time is the same as the scheduled time, i.e., x2 ¼ t2. Otherwise, the arrival would incur a delay equal to
t1 þ 155� t2.

Now, we need to determine constraint elements in AðkÞ. In the kth stage, the speed limit on an affected link l has to be

reduced to sðkÞr;l < sð0Þr;l . Here, sð0Þr;l is the operating speed of train r on link l in normal conditions and sðkÞr;l is the maximum oper-

ating speed at stage k. Moreover, let sH
r;l denote the speed limit in normal conditions for train r on link l.

To facilitate the derivation below, let xj denote the actual departure time of train r at station v 0r and xi the corresponding
arrival time at station v r . If the departure event j is delayed by dj (dj P 0) time units, then the travel time of train r on link l is:
gr;l ¼
fl=sð0Þr;l � dj dj þ fl

sH
r;l
� fl

sð0Þ
r;l

6 0

fl=sH
r;l dj þ fl

sH
r;l
� fl

sð0Þ
r;l

> 0

8><
>: ð21Þ
where fl is the length of link l. As illustrated in Fig. 1a, the first case in Eq. (21) indicates that the departure delay dj is recov-
ered due to the difference between the maximum speed and the normal speed. The arrival event i is still punctual and the

travel time is fl=sð0Þr;l � dj. In the other case shown in Fig. 1b, the train has to travel at the maximum speed on the entire link

and the travel time is fl=sH
r;l.

If xj P bþk or xj 6 b�k � gr;l, the arrival event i is not affected by the inclement weather at stage k, and therefore, aðkÞij ¼ að0Þij .

However, if b�k 6 xj < bþk , then the departure event j happens after stage k starts. The constraint element aðkÞij is given as:
aðkÞij ¼
fl=sðkÞr;l sðkÞr;l bþk � xj

� �
P fl

bþk � xj þ fl � bþk � xj
� �

sðkÞr;l

� �.
sðHÞr;l sðkÞr;l bþk � xj

� �
< fl

8<
: ð22Þ
As shown in Fig. 2a, the first case in Eq. (22) represents the scenario that the train has arrived at station v r before stage k

ends, and the minimum travel time is then fl=sðkÞr;l . The second case indicates that the train is still traveling on link l when

stage k ends, and therefore, the train operates at the maximum speed sðHÞr;l on the remaining segment of link l. The minimum

travel time is then bþk � xj þ fl � bþk � xj
� �

sðkÞr;l

� �
=sðHÞr;l as shown in Fig. 2b.

If b�k � gi;j < xj < b�k , then the departure event j happens before stage k starts. In this case, the train has already traveled a
distance of f0l:
f0l ¼
sðHÞr;l ðb

�
k � xjÞ dj þ fl

sH
r;l
� fl

sð0Þ
r;l

> 0

sðHÞr;l min
sð0Þ

r;l
dj

sðHÞ
r;l
�sð0Þ

r;l

; b�k � xj


 �
þ sð0Þr;l max b�k � xj �

sð0Þ
r;l

dj

sðHÞ
r;l
�sð0Þ

r;l

;0

 �

dj þ fl
sH

r;l
� fl

sð0Þ
r;l

6 0

8>><
>>:

ð23Þ
The first case in Eq. (23) indicates that the train has to travel at the maximum speed on the entire link to compensate the

departure delay dj. Therefore, when stage k starts, the train has traveled a distance of sðHÞr;l ðb
�
k � xjÞ as illustrated in Fig. 3a.

In the second case, the train only needs to travel at the maximum speed for a period of sð0Þr;l dj

.
sðHÞr;l � sð0Þr;l

� �
as shown in

Fig. 3b. If b�k � xj is less than sð0Þr;l dj

.
sðHÞr;l � sð0Þr;l

� �
, then the train has traveled a distance of sðHÞr;l b�k � xj

� �
when stage k starts.

Otherwise, f0l is the sum of the distance traveled at the maximum speed, i.e., sðHÞr;l

sð0Þ
r;l

dj

sðHÞ
r;l
�sð0Þ

r;l

, and the distance traveled at the nor-

mal speed, i.e., sð0Þr;l b�k � xj �
sð0Þ

r;l
dj

sðHÞ
r;l
�sð0Þ

r;l


 �
. Given f0 from Eq. (23), the constraint element in this scenario can be determined as:
aðkÞij ¼
fl � f0l
� �

=sðkÞr;l þ ðb
�
k � xjÞ f0l þ sðkÞr;l b�k � bþk

� �
P fl

fl � f0l � sðkÞr;l b�k � bþk
� �� �.

sðHÞr;l þ ðb
�
k � xjÞ f0l þ sðkÞr;l bþk � bþk

� �
< fl

8<
: ð24Þ
In Eq. (24), the first case indicates the train has arrived at station vk before stage k ends as shown in Fig. 4a. After stage k

starts, the train has to lower the speed to sðkÞr;l for the remaining segment of the link, i.e., fl � f0l. The minimum travel time

is then fl � f0l
� �

=sðkÞr;l þ ðb
�
k � xjÞ. The second case in Eq. (24) corresponds to the scenario that the train is still traveling on link

l when stage k ends. As illustrated in Fig. 4b, the train operates at the maximum speed sðHÞr;l on the remaining segment of link l

after stage k ends. Therefore, the minimum travel time in this case is fl � f0l � sðkÞr;l b�k � bþk
� �� �

=sðHÞr;l þ ðb
�
k � xjÞ.

Now we define matrix BðkÞ as the slack time matrix with its entries being:
bðkÞij ¼ tj þ aðkÞij � ti ð25Þ



Fig. 1. Graphical illustration of the calculation of gr;l using Eq. (21).
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Using the slack time matrix would allow us to reformulate the SMPS so that delays can be directly incorporated into the sys-

tem. Because aðkÞij represents the minimum time interval between event i and event j; bðkÞij indicates the slack time between the

scheduled and earliest possible time of event i. Given a timetable that satisfies all the constraints, we have bð0Þij 6 0 and

bðkÞij P bð0Þij . If bðkÞij > 0, event i will incur a primary delay, and di is larger than dj. Otherwise, dj will be mitigated due to the
negative slack time. From Eq. (25), the SMPS Eq. (19) can be transformed into a system represented by the delay and the
slack time matrix as:
DðtÞ ¼ Bð/ðtÞÞ � DðtÞ � 0� Dðt�Þ ð26Þ
Fig. 2. Graphical illustration of the calculation of aðkÞij using Eq. (22).



Fig. 3. Graphical illustration of the calculation of f0l using Eq. (23).
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where DðtÞ is the ne � 1 delay vector with the entries being the delays of arrivals and departures at time t. Dðt�Þ denotes

delays of events that are known at time t. 0 is the zero matrix in the max-plus algebra. If t 2 b�k ; b
þ
k

� 

, then Bð/ðtÞÞ ¼ BðkÞ.

Eq. (26) can be interpreted using the same example for Eq. (19). Assuming the scheduled travel time is t2 � t1 ¼ 140 min,
the slack time between the arrival and departure at stage k is then t2 þ 150� t1 ¼ 10 min. Based on Eq. (26), we have:
d1

d2

� 	
¼ BðkÞ �

d1

d2

� 	
�

e

e

� 	
�

5
e

� 	
¼

e �
10 e

� 	
�

d1

d2

� 	
�

e

e

� 	
�

5
e

� 	
ð27Þ
Hence, d1 ¼ 5 and d2 ¼ d1 þ 10 ¼ 15, which indicates that the arrival of the train incurs a 15-min delay. The same results can
also be obtained by taking t2 � t1 ¼ 140 into Eq. (20).
3. Solution algorithm

To solve the SMPS defined in Eq. (26), an intuitive approach would be an iterative algorithm, which rearranges the events
in a topological order and calculates the actual times based on their precedent events. This algorithm is presented in
Section 3.3. However, the iterative algorithm has an obvious drawback. Calculating the delay of a certain event requires that
all its precedent ones have to be visited. In this section, we propose the All-Paired Critical-Path (APCP) algorithm that enables
a direct calculation of any secondary delay without backtracking the precedent events.
3.1. The All-Paired Critical-Path (APCP) algorithm

In the precedence graph GðBð0ÞÞ, if a path W ¼ ðqn; . . . ; q1Þ;n > 1 exists from node qn to q1, we call the operation in Eq. (28)
a tracing operation from qn to q1 on path W:
�n�1
i¼1 bð0Þqiqiþ1

� �
� dqn

� 0 ð28Þ
where dqn
is the delay of event qn. Here, �n�1

i¼1 bð0Þqiqiþ1

� �
is termed as the Cumulative Slack Time (CST) of path W.



Fig. 4. Graphical illustration of the calculation of aðkÞij using Eq. (24).
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Definition 3. If there exists more than one path from node qn to node q0 in the precedence graph GðBð0ÞÞ, then the critical
path is defined as the path with the largest weight.
Definition 4. Let PðqÞ ¼ pkf g; k ¼ 1;2;3 . . . ;n denote a set of events with primary delays of dpk
, where each event connects to

node qðq R PÞ with a critical path qðmkÞ
k ; qðmk�1Þ

k ; . . . ; qð1Þk ; qð0Þk

n o
ðqð0Þk ¼ q and qðmkÞ

k ¼ pkÞ. Then, the Critical Primary Event (CPE)

of event q, denoted by pðCÞq , is defined as:
pðCÞq ¼ arg max
pk2PðqÞ

�mk�1
j¼0 bð0Þ

qðjÞ
i

qðjþ1Þ
i


 �
� dpk


 �
ð29Þ
With the preparation of Definitions 3 and 4, we give the following theorem.
Theorem 1. The secondary delay of any arrival or departure event can be determined by a tracing operation to its CPE on the
critical path.
Proof. Let Ci denote the set of the precedent nodes of event i. If j 2 Ci, then we have bð0Þij – �. From Eq. (25), one obtains:
di ¼ bð0Þ
iqð1Þ

i

� dqð1Þ
i
� 0 ð30Þ
where
qð1Þi ¼ arg max
j2Ci

bð0Þij � dj

� �
ð31Þ
To facilitate the derivation below, we let qð0Þi denote i. Recursively applying Eq. (30) until dqðmÞ
i
ðm P 1Þ is a primary delay, we

have:
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di ¼ �m
j¼1bð0Þ

qðj�1Þ
i

qðjÞ
i


 �
� dqðmÞ

i
� 0 ð32Þ
Eq. (32) is a tracing operation from qðmÞi to qð0Þi on path W ¼ qðmÞi ; . . . ; qð0Þi

n o
. To prove Theorem 1, one needs to show: (1) W is

the critical path from qðmÞi to i and (2) qðmÞi is the CPE of i.
Assume wðnÞi ; . . . ;wð0Þi

n o
with wðnÞi ¼ qðmÞi and wð0Þi ¼ i is another path from qðmÞi to i. From Eq. (31), one obtains:
bð0Þ
iqð1Þ

i

� dqð1Þ
i

P bð0Þ
iwð1Þ

i

� dwð1Þ
i

P �n
j¼1bð0Þ

wðj�1Þ
i

;wðjÞ
i


 �
� dqðmÞ

i
ð33Þ
Taking Eqs. (30) and (32) into Eq. (33), we have:
�m
j¼1bð0Þ

qðj�1Þ
i

qðjÞ
i


 �
� dqðmÞ

i
P �n

j¼1bð0Þ
wðj�1Þ

i
wðjÞ

i


 �
� dqðmÞ

i
ð34Þ
Hence,
�m
j¼1bð0Þ

qðj�1Þ
i

qðjÞ
i

P �n
j¼1bð0Þ

wðj�1Þ
i

wðjÞ
i

ð35Þ
Eq. (35) shows that W ¼ qðmÞi ; . . . ; qð0Þi

n o
is the path with the largest weight, and therefore, it is the critical path from qðmÞi to i.

Now, we need to prove that qðmÞi is the CPE of i. Let PðiÞ ¼ pkf g ðk ¼ 1;2;3 . . . ;nÞ denote the set of events with primary
delays of dpk

. Each event in PðiÞ connects to i with a critical path qðmkÞ
k ; qðmk�1Þ

k ; . . . ; qð1Þk ; qð0Þk

n o
ðqð0Þk ¼ i and qðmkÞ

k ¼ pkÞ. From Eq.
(31), one obtains the following inequality:
bð0Þ
iqð1Þ

i

� dqð1Þ
i

P bð0Þ
iqð1Þ

k

� dqð1Þ
k

ð36Þ
Because qðmkÞ
k ; qðmk�1Þ

k ; . . . ; qð1Þk ; qð0Þk

n o
is the critical path from qðmkÞ

k to qð0Þk , the right hand side of Eq. (36) equals to:
bð0Þ
iqð1Þ

k

� dqð1Þ
k
¼ �mk�1

j¼1 bð0Þ
qðj�1Þ

k
qðjÞ

k


 �
� dqk

ð37Þ
Taking Eqs. (32) and (36) into Eq. (37), one obtains:
�m
j¼1bð0Þ

qðj�1Þ
i

qðjÞ
i


 �
� dqðmÞ

i
P �mk�1

j¼1 bð0Þ
qðj�1Þ

k
qðjÞ

k


 �
� dqk

ð38Þ
Therefore,
qðmÞi ¼ arg max
pk2PðiÞ

�mk�1
j¼1 bð0Þ

qðj�1Þ
k

qðjÞ
k


 �
� dqk


 �
ð39Þ
and qðmÞi is the CPE of event i. This completes the proof of Theorem 1. h

According to Theorem 1, to determine the secondary delay of any arrival or departure event, one only needs to find the
delay of its CPE and the CST of the critical path. Now, let’s define an all-paired critical-path graph to determine the critical
paths between the events.

Definition 5. The all-paired critical-path graph associated with the precedence graph GðBð0ÞÞ is a weighted digraph
Gs ¼ C;E;xsð Þwith C ¼ 1;2; . . . ;nef g and an arc ðj; iÞ 2 E. The weight of an arc ðj; iÞ equals the weight of the critical path from
j to i in the precedence graph, i.e., xsðj; iÞ ¼ cðWj;iÞwhere Wj;i is the critical path from j to i in GðBð0ÞÞ. If there is no path from j
to i, then xsðj; iÞ ¼ �.

Based on the APCP graph, we define the APCP matrix C with the entries being cij ¼ xsðj; iÞ; i; j ¼ 1;2; . . . ;ne. Using the arc
weight of the APCP graph, Eq. (32) can be written as:
di ¼ wsðqðmÞi ; iÞ � dqðmÞ
i
� 0 ð40Þ
where qðmÞi satisfies Eq. (39). Combining Eqs. (39) and (40), we have:
di ¼ �pk2Pwsðpk; iÞ � dpk

� �
� 0 ð41Þ
where P is the set of primary delays. Eq. (41) is the central result of the algorithm, which states that only primary delays and
arc weights on the APCP graph are required for determining secondary delays.

Based on Eq. (41), the APCP algorithm is programmed into two parts. In the first part, primary delays are calculated based
on slack time matrices at different stages. Then, by using Eq. (41), all the secondary delays can be readily determined. The
pseudo-code is illustrated in Fig. 5. Rowðp1Þ indicates the index of event p1 in X. Arðp1Þ represents the arrival event of depar-
ture p1. At each stage, we first determine a set of possible departures whose outbound links will be affected by the inclement
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weather. This is implemented in function DepartðIðkÞÞ. If the departure occurs before stage k ends, the actual time of its arrival
is updated by using the constraints at stage k. If the arrival delay is caused by the inclement weather at stage k instead of the
propagation of primary delays, it will be added into Q as a new primary delay. Once primary delays are determined, sec-
ondary delays can be simply obtained using Eq. (41).

Base on the iteration structure, the time complexity of the APCP algorithm is:
T APCPðne;NbÞ ¼ OðNbneÞ ð42Þ
where ne is the number of events and Nb is the number of stages. The merit of the algorithm is that, when determining a
secondary delay, the backtracking operation is avoided. If we change the sign of arc weights, the APCP graph can be easily
generated from the precedent graph GðBð0ÞÞ by well-known shortest-path graph algorithms, such as the Floyd–Warshall algo-
rithm (Floyd, 1962; Warshall, 1962) or the Johnsons algorithm (Johnson, 1977). Since Bð0Þ is a typical sparse matrix, the
Johnsons algorithm would be less time-consuming than the Floyd–Warshall algorithm.

3.2. Identification of vulnerability and diffusivity using the APCP graph

As shown in the previous section, the APCP algorithm enables a direct calculation of any secondary delay without back-
tracking the precedent events. Moreover, the APCP graph also explicitly indicates the vulnerability and diffusivity of each
arrival and departure event in a railway network.

If a certain arrival or departure is closely related to other events, a small primary delay can result in a large amount of
secondary delays over the entire network. We call this departure or arrival highly diffusive.

Definition 6. Let dðdiÞ
k denote the secondary delay of event k given a primary delay di ¼ d� incurred by event i. Let Hi denote

the set of events excluding event i. The diffusivity of event i at intensity d� is defined as the sum of secondary delays it causes
over the entire network, i.e., Fiðd�Þ ¼ �k2Hi

dðdiÞ
k .

The diffusivity can be readily determined from GsðBð0ÞÞ as:
Fiðd�Þ ¼ �k2Hi
xsði; kÞ � d� � 0ð Þ ð43Þ
The diffusivity measures an event’s capability to propagate the primary delay incurred by itself to other events. A highly dif-
fusive event can be viewed as a hub in the precedence graph, whose punctuality is critical to the entire network. From Eq.
(43), one can find that:
d� 6 ��k2Hi
xsði; kÞ ! Fiðd�Þ ¼ 0 ð44Þ
Here, ��k2Hi
xsði; kÞ indicates the maximum absorptive capacity of event i. If d� is less than this threshold, it can be absorbed

by event i and will not cause any knock-on delays. Otherwise, d� will be spread to other events.
If a certain event heavily relies on the punctuality of other events, a small primary delay incurred by other events may

easily propagate to and affect this event. We call this event highly vulnerable.

Definition 7. Let dðdkÞ
i denote the secondary delay of event i given a primary dk ¼ d� incurred by event k. The vulnerability is

defined as the sum of secondary delays incurred by i if a primary delay happens to any other event in the network, i.e.,
Uiðd�Þ ¼ �k2Hi

dðdkÞ
i , where Hi is the set of all events excluding i.

A high vulnerability means the event is more likely to be affected by a primary delay incurred by an arbitrary event in the
network. Using the APCP graph, the vulnerability of event i can be derived as:
Uiðd�Þ ¼ �k2Hi
xsðk; iÞ � d� � 0ð Þ ð45Þ
From Eq. (43), one can find that:
d� 6 ��k2Hi
xsðk; iÞ ! Uiðd�Þ ¼ 0 ð46Þ
Here, ��k2Hi
xsðk; iÞ indicates the maximum primary delay event i can resist. If d� is less than this threshold, event i will not

be affected. Otherwise, event i would incur a secondary delay.
Diffusivity and vulnerability measure the robustness of railway services from two complementary perspectives.

Vulnerability measures the capability to resist the primary delay, while diffusivity indicates the capability to propagate
the primary delay to other events. The vulnerability of an event depends on the inbound arcs of its corresponding node
on the APCP graph. Reducing the weights of its inbound arcs, i.e., increasing slack times regarding its precedent events,
would diminish its vulnerability. On the other hand, the diffusivity of an event depends on the outbound arcs. Reducing
the weights of the outbound arcs, i.e., increasing the slack times with respect to its subsequent events, would lower its dif-
fusivity due to the increased absorptive threshold defined in Eq. (44).

Therefore, the role of an event in delay propagation can be viewed as a filter, where only severe primary delays can pass
and propagate. The capability of the filter can be quantified using two thresholds derived from Eqs. (44) and (46). The first
threshold is the same as the absorptive capability defined in (46):



Fig. 5. The APCP algorithm.
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Hlow ¼ ��k2Hi
xsði; kÞ ð47Þ
It is impossible for any primary delay to affect event i if it is smaller than this threshold. The second threshold is:
Hhigh ¼ ��k2Hi
xsðk; iÞ � �k2Hi

xsði; kÞ ð48Þ
If the primary delay is less than Hhigh, it may affect event i but cannot be propagated further to any subsequent event. Those
two thresholds provide importation information to evaluate the severity of a primary delay with respect to a subsequent
event. As long as the primary delay is less than Hhigh, the delay propagation can be eliminated for any subsequent event
of i. It is noteworthy that the diffusivity and vulnerability are two different measures. They do not have explicit relations.
The diffusivity cannot be determined from the vulnerability, and vice versa. Given the same primary delay, for some events,
the diffusivity is higher than the vulnerability (e.g., the event highly relies on the punctuality of other events, but it has little
impact on its subsequent events), while for others, it may not.
3.3. Iterative algorithm

For comparison purposes, we also present an iterative algorithm in this section. The basic idea is to backtrack the prece-
dent events through expanding the precedence graph GðBð0ÞÞ. The details of the algorithm is given in Fig. 6.

At each stage, a set of departure and arrival events are determined that are likely to be affected by the inclement weather.

This is implemented in function CandidateðIðkÞÞ. If it is an arrival event, its delay will be determined using the system matrix
at stage k. Then, all its precedent nodes are visited to ensure all the constraints are satisfied. Any subsequent event that
depends on this arrival will be updated as well. After primary delays are determined, calculations of secondary delays are
implemented by backtracking its precedent nodes. The algorithm is carefully designed in a chronological order so that before
calculating the delay of a certain event, its precedent events have already been visited. The time complexity of the iterative
algorithm is:
T Iterativeðne;NbÞ ¼ O Nbn2
e

� �
ð49Þ
Compared with Eq. (42), the iterative algorithm is obviously more time-consuming than the APCP algorithm because each
precedent event has to be visited to determine a secondary delay.



Fig. 6. Iterative algorithm.

Fig. 7. An artificial network.
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4. Experiments and discussions

In this section, case studies are presented on both an artificial and a real network. The purpose of the experiments is two-
fold. First, the proposed model and the solution algorithm, i.e., the APCP algorithm, are validated using a discrete-time sim-
ulation program. The description and workflow of the simulation program are provided in Appendix A. Second, the
robustness of the arrival and departure events in both networks are analyzed in terms of diffusivity and vulnerability.
4.1. Case study on an artificial network

A small tractable network is designed, which includes five stations and four services, as shown in Fig. 7. The link length
between stations is 166 km. The minimum travel time on each link is 100 min. The speed limit in normal conditions is
assumed to be 100 km/h. The minimum departure headway, the minimum arrival headway, the safety time at stations,



Table 2
Timetable of the artificial network.

Service 1 Service 2 Service 3 Service 4

Arrival at S1: 8:10(x1) Arrival at S3: 8:45(x3) Arrival at S1: 9:50(x5) Arrival at S2: 12:40(x13)
Departure at S1: 8:20(x2) Departure at S3: 8:55(x4) Departure at S1: 10:00(x6) Departure at S2: 12:45(x14)
Arrival S2: 10:20(x7) Arrival at S2: 10:55(x9) Arrival at S2: 11:50(x11) Arrival at S5: 14:45(x16)
Departure at S2: 10:35(x8) Departure at S2: 11:10(x10)
Arrival at S4: 12:35(x12) Arrival at S5: 13:10(x15)

Table 3
Train delays under the acyclic timetable (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

Service 1 Arrival at Station 2 (Primary delay) 155 155 155
Service 1 Departure at Station 2 145 145 145
Service 2 Arrival at Station 2 130 130 130
Service 2 Departure at Station 2 120 120 120
Service 3 Arrival at Station 2 (Primary delay) 85 85 85
Service 1 Arrival at Station 4 125 125 125
Service 4 Arrival at Station 2 45 45 45
Service 4 Departure at Station 2 40 40 40
Service 2 Arrival at Station 5 (Primary delay) 187 187 187
Service 4 Arrival at Station 5 (Primary delay) 97 97 97

Fig. 8. (a) Vulnerabilities of arrivals and departures in the artificial railway network and (b) vulnerability of the departure of service 1 at station 2.
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and the minimum dwell time are assumed to be 5 min. Moreover, we assume these train services share the same platforms
at stations. Suppose the network is subjected to a two-stage inclement weather event. The first stage begins at 8:00 and ends
at 12:00, during which the maximum operating speed on the link between station 1 and station 2 has to be reduced to
30 km/h. The second stage begins at 12:00 and ends at 15:00, during which the maximum operating speed on the link
between station 2 and station 5 has to be reduced to 30 km/h.



Fig. 9. (a) Diffusivity of arrivals and departures in the artificial railway network and (b) diffusivity of the departure of service 1 at station 2.

Table 4
Primary delays under the cyclic timetable (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

Service 1 Arrival at Station 2 (Train 1) 155 155 155
Service 1 Arrival at Station 2 (Train 2) 115 115 115
Service 3 Arrival at Station 2 (Train 1) 95 95 95
Service 1 Arrival at Station 2 (Train 3) 80 80 80
Service 3 Arrival at Station 2 (Train 2) 70 70 70
Service 2 Arrival at Station 5 (Train 1) 187 187 187
Service 1 Arrival at Station 2 (Train 4) 55 55 55
Service 2 Arrival at Station 5 (Train 2) 132 132 132
Service 4 Arrival at Station 5 (Train 1) 102 102 102
Service 2 Arrival at Station 5 (Train 3) 82 82 82
Service 4 Arrival at Station 5 (Train 2) 52 52 52
Service 2 Arrival at Station 5 (Train 4) 32 32 32

Table 5
Primary and secondary delays of service 1 under the cyclic timetable (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

Arrival at Station 2 (Train 1) 155 155 155
Departure at Station 2 (Train 1) 145 145 145
Arrival at Station 2 (Train 2) 115 115 115
Departure at Station 2 (Train 2) 105 105 105
Departure at Station 2 (Train 3) 80 80 80
Arrival at Station 4 (Train 1) 125 125 125
Departure at Station 2 (Train 3) 70 70 70
Arrival at Station 4 (Train 4) 55 55 55
Departure at Station 2 (Train 4) 45 45 45
Arrival at Station 4 (Train 2) 85 85 85
Arrival at Station 2 (Train 5) 30 30 30
Arrival at Station 4 (Train 3) 50 50 50
Departure at Station 2 (Train 5) 20 20 20
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Fig. 10. Delays of service 2, 3 and 4 under the cyclic timetable.

Fig. 11. (a) Vulnerabilities of arrivals and departures in the artificial railway network and (b) vulnerability of the arrival of train 1 in service 3 at station 2.
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4.1.1. Case study on an artificial network with an acyclic timetable
Assume the services operate according to an acyclic timetable listed in Table 2. Each service only operates once for 24 h.

The slack time matrix Bð0Þ and the APCP matrix are shown in Appendix B. The results from the APCP algorithm are listed in
Table 3, which are exactly the same as the outputs from the iterative algorithm and the simulation program.

As we can see from the results, the inclement weather has caused primary delays on all the services. The arrival of service
1 at station 2 incurs a primary delay of 155 min due to the reduced operating speed between station 1 and station 2 at the
first stage of the inclement weather. This primary delay propagates to the subsequent events of service 1, service 2 and ser-
vice 4 with gradually reduced intensity. For example, the slack time between the arrival and departure of service 1 at station
2 is 10 min, therefore, the departure delay of service 1 at station 2 is reduced to 145 min. The arrival of service 2 at station 5
incurs the most severe delay of 187 min. This is the result of both the secondary departure delay at station 2 and the addi-
tional primary delay due to the inclement weather between station 2 and station 5.

The vulnerabilities of selected services under the acyclic timetable are plotted in Fig. 8. As we can see, the vulnerability
increases with the primary delay in a piecewise manner, which agrees with the mathematical structure of Eq. (45). Taking
the departure of service 1 at station 2 as an example, its vulnerability is composed of four segments, separated at points of



Fig. 12. (a) Diffusivity of arrivals and departures in the artificial railway network and (b) diffusivity of the departure of train 1 in service 1 at station 2.
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10, 30 and 35, which are equal to xsð7;8Þ;xsð2;8Þ and xsð1;8Þ in the APCP graph, respectively. When the primary delay d� is
between 10 and 30 min, only xsð7;8Þ � d� is positive and thus we have Uiðd�Þ ¼ �10� d�, which corresponds to the first
segment of the vulnerability curve in Fig. 8b.

The diffusivities of selected events are plotted in Fig. 9a. Similarly, the diffusivity increases with the intensity of the pri-
mary delay in a piecewise manner since Eq. (43) has a similar structure as Eq. (45). As shown in Fig. 9b, the diffusivity of the
departure of service 1 at station 2 is composed of 8 segments, separated by points of 15, 20, 25, 45, 60, 105 and 125, which
can be found from the eighth column of the APCP matrix. When the primary delay is below 15 min, it does not propagate to
any other event and its diffusivity equals zero. When the primary delay is between 15 and 20 min, it will affect the arrival of
service 2 at station 2. Similarly, each point of discontinuity in the curve indicates an additional arrival or departure event is
affected by the primary delay.
4.1.2. Case study on an artificial network with a cyclic timetable
In this section, the proposed model is validated under a cyclic timetable. We assume the periodicity is 1 h for each service.

The departure and arrival times of the last train of each service are as follows:

� The last train of service 1 departs from station 1 at 18:20 and arrives at station 4 at 20:35.
� The last train of service 2 departs from station 3 at 18:55 and arrives at station 5 at 21:10.
� The last train of service 3 departs from station 1 at 20:00 and arrives at station 2 at 21:50.
� The last train of service 4 departs from station 2 at 20:45 and arrives at station 5 at 22:45.

Assume the network is subjected to the same two-stage inclement weather as introduced in the previous section. The
resulting primary delays are listed in Table 4. Secondary delays of service 1 are listed in Table 5, while delays of other
services are plotted in Fig. 10. The consistency among the results from the APCP algorithm, the iterative algorithm and
the simulation program again proved the validity of the SMPS model and the APCP algorithm under cyclic timetables.

As shown in Table 4, in our example, the inclement weather has resulted in much more severe delays under the cyclic
timetable compared to the acyclic one due to more frequent services and more strict constraints. For example, four trains
in service 1 have incurred primary delays upon arrival at station 2, which result in a total of 13 secondary delays in service
1. It is noteworthy that, in a periodic timetable, a primary delay could propagate to successive trains in the same service. For
example, the arrival of train 5 of service 1 at station 2 is delayed due to the knock-on impact from the preceding train, i.e.,
train 4, in the same service. The propagation of primary delays can also be clearly identified from Fig. 10. The arrivals of



Fig. 13. An empirical regional network in northern China.

Table 6
Primary delays in the empirical network in scenario 1 (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

K148 Arrival at BeijingXi 67 67 67
K974 Arrival at Bazhou 191 191 191
K126 Arrival at Bazhou 110 110 110
K106 Arrival at Bazhou 75 75 75
K546 Arrival at Bazhou 55 55 55
K600 Arrival at Shijiazhuang 195 195 195
K370 Arrival at Shijiazhuang 214 214 214
K386 Arrival at Shijiazhuang 205 205 205
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trains 1, 2, 3 and 4 in service 2 at station 2 are delayed due to the departure delays of multiple trains in service 1. However,
the severity of the delay propagation is not necessarily linked to the periodicity of the timetable. Instead, it should be
examined on a case-by-case basis.

Compared with the acyclic timetable, the arrival and departure events under the cyclic timetable are much more vulner-
able, as shown in Fig. 11. This is easy to understand since more frequent services result in more strict constraints. For exam-
ple, as shown in Fig. 11b, the arrival of the first train of service 3 will be affected by a total of 12 events if the primary delay
exceeds 80 min. Similarly, arrivals and departures in a cyclic timetable also tend to be more diffusive as shown in Fig. 12.
Nevertheless, the vulnerability and diffusivity of an event in a cyclic timetable are not necessarily greater than that in an
acyclic timetable.



Fig. 14. (a) Service delays in the empirical railway network; (b) cumulative secondary delays in the empirical railway network; and (c) cumulative
secondary delays grouped by service in the empirical railway network.

Fig. 15. Service delays in the empirical railway network in scenario 2.
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Table 7
Specifications of the inclement weather in scenarios 2 and 3.

No. Periods in
scenario 2

Periods in
scenario 3

Affected links Maximum
operating speed
(km/h)

1 3:00–6:00 3:00–11:00 Between Datong and Zhangjiakou; Between Beijing and Zhangjiakou; Between Tangshan
and Zhangjiakou; Between Tianjin and Tangshan

20

2 6:00–9:00 11:00–20:00 Between Datong and Beijing; Between Beijing and Tianjin; Between Bazhou and Beijing;
Between Bazhou and Tianjin; Between Beijing and Shijiazhuang

20

3 8:00–12:00 20:00–3:00
(2nd day)

Between Bazhou and Shijiazhuang; Between Henghui and Bazhou; Between Dezhou and
Tianjin

20

4 12:00–
14:00

3:00–11:00
(2nd day)

Between Shijiazhuang and Zhenzhou; Between Hengshui and Dezhou; Between Dezhou
and Yanzhou

30

5 14:00–
17:00

11:00–15:00
(2nd day)

Between Hengshui and Zhengzhou; Between Hengshui and Heze; Between Yanzhou and
Xuzhou

40

6 17:00–
21:00

15:00–23:00
(2nd day)

Between Xuzhou and Heze; Between Heze and Shangqiu; Between Shangqiu and
Zhenzhou Between Shangqiu and Xuzhou

50

Table 8
Primary delays in the empirical network in scenario 2 (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

K386 Arrival at Tangshan 55 55 55
K7726 Arrival at Tangshan 174 174 174
K1450 Arrival at Tangshan 170 170 170
K956 Arrival at Tangshan 143 143 143
K180 Arrival at BeijingXi 59 59 59
K148 Arrival at BeijingXi 67 67 67
K974 Arrival at Bazhou 47 47 47
K600 Arrival at Shijiazhuang 118 118 118
K908 Arrival at Heze 118 118 118
K908 Arrival at Xuzhou 120 120 120
K206 Arrival at Shangqiu 24 24 24
K378 Arrival at Xuzhou 104 104 104
K292 Arrival at Xuzhou 99 99 99
K1028 Arrival at Xuzhou 38 38 38
K206 Arrival at Xuzhou 41 41 41

Table 9
Primary delays in the empirical network in scenario 3 (in minutes).

Events Simulation results Iterative algorithm APCP algorithm

K386 Arrival at Tangshan 55 55 55
K7726 Arrival at Tangshan 246 246 246
K1450 Arrival at Tangshan 242 242 242
K956 Arrival at Tangshan 268 268 268
K974 Arrival at Tianjing 151 151 151
K126 Arrival at Tianjing 165 165 165
K106 Arrival at BeijingXi 211 211 211
K546 Arrival at Tianjing 170 170 170
K600 Arrival at BeijingXi 127 127 127
K2286 Arrival at Tianjing 261 261 261
K370 Arrival at Bazhou 370 370 370
K386 Arrival at Bazhou (2nd train) 277 277 277
K1450 Arrival at Tianjing (2nd train) 229 229 229
K180 Arrival at Shijiazhuang 22 22 22
K956 Arrival at Tianjing (2nd train) 158 158 158
K372 Arrival at Dezhou 239 239 239
K126 Arrival at Shijiazhuang (2nd train) 147 147 147
K908 Arrival at Heze 9 9 9
K908 Arrival at Shangqiu 47 47 47
K378 Arrival at Shangqiu 103 103 103
K292 Arrival at Shangqiu 109 109 109
K1028 Arrival at Shangqiu 106 106 106
K908 Arrival at Xuzhou 95 95 95
K206 Arrival at Shangqiu 99 99 99
K378 Arrival at Xuzhou 130 130 130
K292 Arrival at Xuzhou 126 126 126
K1028 Arrival at Xuzhou 72 72 72
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Fig. 16. Delays from selected services in the empirical railway network in scenario 3.

Table 10
Computation times of the APCP algorithm, the iterative and the simulation program (average of 10 runs, in seconds).

Computation time APCP algorithm Iterative algorithm Simulation program

Scenario 1 1.51 2.12 40.87
Scenario 2 1.77 2.43 44.12
Scenario 3 1.90 2.78 50.21
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4.2. Case study on an empirical network

This section presents a case study on a real-world railway network in northern China as shown in Fig. 13. The timetable
and link distances are shown in Appendix C, which contains 14 stations and 22 selected services sharing the same railway
links and platforms at stations. The speed limit in normal conditions is 100 km/h. The minimum arrival headway and the
minimum departure headway are both 5 min. The minimum dwell time and the safety time at stations are assumed to
be 2 min.
4.2.1. Delay propagation under inclement weather
In the first scenario, we assume the railway network is impacted by a three-stage inclement weather. The first stage

begins at 3:00 and ends at 9:00, during which the maximum operating speeds on the links between Bazhou Station and
Tianjing Station and between Bazhou Station and Beijing Station have to be reduced to 30 km/h. The second stage begins
at 9:00 and ends at 15:00, during which the maximum operating speeds on the links between Henghui Station and
Bazhou Station and between Shijiazhuang Station and Bazhou Station have to be reduced to 30 km/h. In the third stage that
starts at 15:00 and ends at 21:00, the inclement weather has the same intensity and affects the links between Shijiazhuang
Station and Hengshui Station and between Zhengzhou Station and Hengshui Station.

A total of eight primary delays occur as listed in Table 6. The primary delays of K148, K974, K126, K106, K546 and K600
are gradually recovered by slack times and do not propagate to any other services as shown in Fig. 14a. However, K370’s
primary delay at Shijiazhuang Station causes a secondary delay on K7726 since the arrival of K7726 at Tianjin Station is
scheduled after K370’s arrival. Similarly, the primary delay of K386 propagates to K1450 due to the safety time constraint
at Tianjin Station (see Fig. 15).

Fig. 14b and c further shows the cumulative delays of the railway network. In Fig. 14b, the cumulative delay is the sum of
the delays of all departures and arrival events. As one can see from the figure, once a primary delay occurs, the cumulative
delay will increase first and then remain stable after the primary delay being absorbed by slack times. Fig. 14c shows the
cumulative delays grouped by service. For example, when the primary delay of K370 causes a secondary delay on K7726,
the cumulative delay sharply increases at first and then gradually decreases due to slack times. After all the primary delays
being absorbed, all services return to the scheduled timetable.

To show the delay propagation in more complex scenarios, we extend the inclement weather with larger spatial–
temporal coverages. The time periods, the spatial coverages, and the maximum operating speeds are listed in Table 7. The
inclement weather in both extended scenarios includes six stages that last for 18 and 44 h, respectively.

The primary delays in the second scenario are listed in Table 8. A total of 15 arrival and departure events in 14 services
have incurred primary delays, resulting in 27 knock-on delays over the network. Compared with the first scenario, more
services have incurred primary delays due to the larger spatial coverage of the inclement weather. Some services suffer both
primary and secondary delays. For example, due to the departure delay of K292, K1028 incurs a secondary delay of 31 min
when arriving at Shangqiu Station. However, after it departs from the station, the operating speed is reduced to 50 km/h due
to the inclement weather from 21:00 to 23:00, and consequently, it suffers another primary delay of 38 min.



Fig. 17. (a) Diffusivity of K732’s arrival at BeijingXi; (b) diffusivities of arrivals and departures for the real-world railway network with a primary delay of
200 min; and (c) Boxplot of diffusivities of arrivals and departures.
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In the third scenario, the inclement weather lasts for 44 h. A total of 27 arrival and departure events in 17 services have
incurred primary delays, resulting in 104 knock-on delays. The primary delays are listed in Table 9. Delays of selected ser-
vices are plotted in Fig. 16. It is noteworthy that because of the extended duration of the inclement weather, multiple trains
in a service on consecutive days could be affected. For example, K386 incurs primary delays in two consecutive days because
of the inclement weather at the first and third stages. The primary delays obviously have more profound impacts on the net-
work, and their propagation cannot be fully eliminated until the end of the third day.

The above experiments for the empirical network are performed on a workstation configured with Intel Core i7 2.67 GHz
and 8 Gb RAM. The computation times of the APCP algorithm, the iterative algorithm, and the simulation program are listed
in Table 10. The APCP graph was computed using the QuickGraph package (De Halleux, 2007). It is apparent that the sim-
ulation program is the most time consuming since it has to simulate movements of trains at each time step (1 s in our
experiments). Not surprisingly, the APCP algorithm outperforms the iterative algorithm in all three scenarios by 50%. The
advantage is expected to be more significant for railway networks with more frequent services as implied by the time
complexities in Eqs. (42) and (49).

4.2.2. Vulnerability and diffusivity of the empirical network
As pointed out in the artificial network case, both vulnerability and diffusivity increase with the intensity of the primary

delay in a piecewise manner. Fig. 17a plots the diffusivity of the arrival of K732 at Beijing Station, which is composed of



Fig. 18. (a) Vulnerability of K600’s departure at BeijingXi; (b) vulnerability of arrivals and departures for the real-world railway network with a primary
delay of 200 min; and (c) Boxplot of vulnerability of arrivals and departures.
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multiple linear segments. Each point of discontinuity in the curve indicates that the primary delay propagates to an addi-
tional departure or arrival. For example, when the primary delay exceeds 151 min, the delay propagates to the departure
of K608 at Zhangjiakou Station since the weight of the critical path to this event is �151 in the APCP graph. Fig. 17b further
shows the diffusivities of all events given a primary delay of 200 min and the most diffusive event is the arrival of K370 at
Zhengzhou Station. It indicates that if this event incurs a primary delay of 200 min, it would cause the most severe secondary
delays over the network.

Fig. 17c shows the box-plot of the diffusivities of all arrivals and departures. It can be seen that with the growth of the
primary delay, both the median and the largest diffusivities increase. The box-plot also indicates that the distribution of the
diffusivity is asymmetric and skewed to the larger values. Moreover, the growth of secondary delays is clearly faster than a
linear growth. Similarly, vulnerability also increases with the primary delay in a piecewise manner, as shown in Fig. 18a. For
example, when the primary delay of K106’s departure at Zhengzhou Station exceeds 235 min, the departure of K600 at
Beijing Station will be affected due to the limited slack time between these two events. If the primary delay exceeds
291 min, a total of 15 events can propagate their primary delays to this departure event, as can be seen in Fig. 18a.

The vulnerabilities of all arrivals and departures under a primary delay of 200 min are shown in Fig. 18b. The most
vulnerable event is the arrival of K206 at Xuzhou Station. It indicates that, when a primary delay of 200 min is imposed
on other events, the arrival of K206 at Xuzhou Station is the most susceptible event and would incur the largest secondary
delay. The box-plots for vulnerabilities of all arrivals and departures are shown in Fig. 18c. The median and the largest



Fig. A.19. Work-flow of the simulation program.
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vulnerabilities increase with the primary delay. The distribution shown in the box-plot is also asymmetric and skewed to the
larger values. The growth of the vulnerability is faster than a linear growth rate, which can be easily understood from the
nonlinearity of Eq. (45).
5. Conclusion

This paper presented an SMPS model to capture the cascade dynamics of delay propagation on railway networks
under inclement weather. The APCP algorithm was developed to solve the SMPS model with improved computational
efficiency. The SMPS model and the APCP algorithm were tested on both artificial and empirical railway networks.
The results indicated that the SMPS model is a viable method to predict delay propagation on railway networks under
inclement weather. The APCP algorithm is able to successfully solve the SMPS system. The experiments have also shown
that the APCP algorithm is much more efficient than the discrete-time simulation program. The improved efficiency is



Fig. B.20. (a) Slack time matrix and (b) APCP matrix.
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particularly valuable for predicting delay propagation in larger-scale networks with busy services. More importantly,
based on the APCP graph, the robustness of railway services can be readily evaluated using the concepts of vulnerability
and diffusivity.

Compared to the classical MPS (Braker, 1993; Subiono, 2000; Goverde, 2007), the new model is able to incorporate
multiple system matrices so as to capture the dynamic impacts of inclement weather. Delays obtained from the proposed
model can be utilized for proactive train re-scheduling and management. The vulnerability and the diffusivity derived from
the APCP graph can be applied as key performance measures to design resilient timetables.

Based on the proposed model, the future work will be focused in two directions. On the one hand, proactive railway
re-scheduling models can be developed to alleviate the interruptions of inclement weather by minimizing train and travel
delays. In these control models, the proposed SMPS can serve as the basic system dynamic model, and various control strate-
gies, e.g., predictive control, can be applied. On the other hand, the proposed model, particularly the APCP graph and the
robustness measures, can be further utilized to design robust timetables that are able to withstand the propagation of
disturbances.
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Table C.11
Timetable of the regional railway network.

Station Arrival time Departure time Distance (km)

K600
Zhengzhou 10:30 0
Shijiazhuang 16:16 16:22 412
Beijing 19:55 20:22 277
Zhangjiakou 23:38 23:46 190
Datong 2:24 178

K180
Zhengzhou 22:12 0
Shijiazhuang 3:13 3:21 412
Beijing 6:16 277

K7726
Shijiazhuang 20:40 0
Beijing 0:20 0:42 277
Tianjin 2:42 2:50 127
Tangshan 4:23 123

K370
Zhengzhou 15:02 0
Shijiazhuang 20:21 20:31 412
Bazhou 23:49 23:52 300
Tianjing 1:23 1:33 87
Tangshan 2:55 123

K974
Zhengzhou 2:08 0
Hengshui 10:50 10:54 606
Bazhou 12:49 12:53 182
Tianjing 14:42 14:57 87
Tangshan 16:39 123

K148
Hengshui 4:37 0
Bazhou 7:15 7:19 182
Beijing 8:28 92

K732
Hengshui 6:53 0
Bazhou 8:59 9:01 182
Beijing 10:02 10:24 92
Zhangjiakou 13:51 14:03 190
Datong 16:53 178

K615
Beijing 15:40 0
Zhangjiakou 18:52 19:02 190
Datong 21:48 178

K608
Tianjin 8:42 0
Zhangjiakou 14:02 14:13 299
Datong 17:06 178

K386
Zhenzhou 15:10 0
Shijiazhuang 20:38 20:42 412
Bazhou 0:09 0:13 300
Tianjin 1:43 1:53 87
Tangshan 3:16 123

K1450
Yanzhou 18:00 0
Dezhou 22:09 22:12 249
Tianjin 1:56 2:18 224
Tangshan 4:32 134

K956
Dezhou 0:14 0
Tianjin 3:17 3:28 225
Tangshan 5:03 123

K126
Zhenzhou 5:05 0
Shijiazhuang 10:53 11:13 412
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Table C.11 (continued)

Station Arrival time Departure time Distance (km)

Bazhou 14:23 14:25 198
Tianjin 16:00 16:07 87
Tangshan 17:30 123

K106
Shangqiu 8:39 0
Heze 9:51 9:53 95
Hengshui 13:17 13:20 105
Bazhou 15:14 15:16 182
Beijingxi 16:20 92

K546
Shijiazhuang 12:13 0
Bazhou 15:38 15:46 198
Tianjin 17:11 17:37 87
Tangshan 18:59 123

K908
Shijiazhuang 12:23 0
Hengshui 14:02 14:08 99
Heze 17:50 17:52 222
Shangqiu 19:08 19:28 76
Xuzhou 21:17 109

K2286
Shijiazhuang 16:09 0
Hengshui 17:46 17:52 122
Dezhou 18:42 19:07 62
Tianjin 23:03 23:09 239
Tangshan 0:30 123

K378
Zhenzhou 17:48 0
Shangqiu 20:02 20:06 203
Xuzhou 21:48 146

K1028
Zhenzhou 18:13 0
Shangqiu 20:30 20:35 203
Xuzhou 22:54 23:14 146
Yanzhou 1:20 173

K206
Zhenzhou 19:15 0
Shangqiu 20:30 21:32 203
Xuzhou 23:14 23:38 146
Yanzhou 1:37 173

K292
Zhenzhou 17:48 0
Shangqiu 20:02 20:06 203
Xuzhou 21:48 146

K372
Xuzhou 23:59 0
Yanzhou 2:51 2:55 163
Dezhou 7:18 7:29 274
Hengshui 8:25 8:30 62
Shijiazhuang 10:04 122
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Appendix A. The work-flow chart of the simulation program

A discrete-time simulation program was developed using the C-sharp language to validate the SMPS model and its solu-
tion algorithm. The program first reads the input data from a Microsoft Access Database, including the network data, the
inclement weather information and the timetable. After the objects of trains, stations and links being initialized, the simu-
lation will iteratively calculate train movements until all the trains have arrived at the destinations. The arrival and depar-
ture times are recorded at each stations to compute train delays. In each time step, the train speed is updated based on the
safety constraints and the operating speed limit. A Boolean signal variable is designed in the programmatic objects of sta-
tions to indicate whether the safety constraints are satisfied. For example, when a train departs from a station, the signal
variable is set to false and will not be set back to true until a period that is larger than the safety time at stations has elapsed.
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The arrival and departure headway constraints are implemented similarly. Details of the simulation process are described in
the work-flow in Fig. A.19.

Appendix B. Slack-time matrix and APCP graph of the artificial network with an acyclic timetable

The slack time matrix and the APCP matrix for the acyclic timetable in the artificial network are shown in Fig. B.20.

Appendix C. The timetable of the regional railway network

The timetable of the regional railway network is listed in Table C.11.
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