
Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

Detection and tracking of pedestrians and vehicles using roadside
LiDAR sensors
Junxuan Zhaoa, Hao Xub, Hongchao Liua,⁎, Jianqing Wub, Yichen Zhengb,
Dayong Wua
aDepartment of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, USA
bDepartment of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV, USA

A R T I C L E I N F O

Keywords:
Infrastructure-based LiDAR
Pedestrians and Vehicles
Clustering
Classification
Trajectory Extraction

A B S T R A C T

Light Detection and Ranging (LiDAR) is a remote sensing technology widely used in many areas
ranging from making precise medical equipment to creating accurate elevation maps of farm-
lands. In transportation, although it has been used to assist some design and planning works, the
application has been predominantly focused on autonomous vehicles, regardless of its great
potential in precise detection and tracking of all road users if implemented in the field. This paper
explores fundamental concepts, solution algorithms, and application guidance associated with
using infrastructure-based LiDAR sensors to accurately detect and track pedestrians and vehicles
at intersections. Based on LiDAR data collected in the field, investigations were conducted in the
order of background filtering, object clustering, pedestrian and vehicle classification, and
tracking. The results of the analysis include accurate and real-time information of the presence,
position, velocity, and direction of pedestrians and vehicles. By studying the data from infra-
structure-mounted LiDAR sensors at intersections, this paper offers insights into some critical
techniques that are valuable to both researchers and practitioners toward field implementation of
LiDAR sensors.

1. Introduction

Surveillance, control, and management of road traffic all rely on effective sensing and detection technologies. Among many
commercially available infrastructure-based sensor technologies, inductive loop, microwave radar, and video camera are probably
the most popular ones for long- and short-term traffic detection. Although each technology has its inherent strengths and weaknesses,
a common problem of these detection means lies in their inability of getting trajectory-level data and low performance in accurate
detection and tracking of pedestrians and vehicles. Besides, the number of onboard sensors has been increasing continuously in recent
years because of their proved benefits in safety improvement. The ultimate goal along this line is obviously the autonomous vehicles
which use a system of accurate sensors, sophisticated algorithms, and powerful computing to take over the driving task in the future.

Although general use of autonomous vehicles is likely years away, there should be no doubt the technology will eventually get
matured and sophisticated enough for widespread use on public roads. Future deployment of these vehicles however, raises the
question about whether and how future infrastructure-based detection systems should be developed in alignment with the self-
driving technology to make the roads and all road users a seamless and cooperative system. Pedestrians for instance - the most
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vulnerable road users, are only “passively” protected in an autonomous driving environment because the current vehicle-based
sensing system lacks strategic real-time interaction with non-motorized road users, which may cause hazardous situation when
vehicle-mounted sensors fail to detect their presence due to malfunction or system failure, as is evidenced by the recent fatal accident,
in which a pedestrian was killed by a self-driving Uber vehicle (The New York Times, 2018).

To fill this gap, a real-time cooperative system will be needed in the long run to entail non-motorized road users receiving
situational awareness and taking evasive actions through infrastructure-mounted sensors. In the short run, getting real-time tra-
jectory data of all road users will be a big leap in traffic detection, which will greatly help researchers and practitioners elevate their
capabilities in improving highway safety and enhancing traffic operation and control, traffic management, and performance mea-
surement. First and foremost, the initial step towards infrastructure-based human-in-the-loop or all road users’ detection requires a
reliable sensing technology. In the past decade, researchers have used LiDAR and vision-based approaches for this purpose with
vehicle-mounted sensors and most of the works were primarily focused on improving detection range and accuracy, as well as
reducing computational cost (Premebida et al., 2007; Premebida et al., 2009; Ismail et al., 2009; Sivaraman and Trivedi, 2013; Ai and
Tsai, 2016; Chavez-Garcia and Aycard, 2016; Du et al., 2017). Although both video and LiDAR can fulfill the request, the reason why
this research picked LiDAR is two folds: firstly, analyzing infrastructure-based video data requires much more processing and
computing power; secondly, it is more expensive to outfit an intersection with cameras at all angles and with full coverage of both
short and long distances. Additionally, the illumination condition has a significant effect on video quality – video recorded at night
cannot provide as much valid information as video recorded during the daytime (Mukhtar et al., 2015). Generally speaking, the
roadside LiDAR-based and onboard vision-based sensing systems are different in data quality, platform, and expected performance
aspects: (1) Data collected from on-board vision sensing systems are mainly images (high-resolution), while data from LiDAR sensors
are cloud points (high-accuracy but relative lower density); (2) Onboard vision-based sensing systems can only detect the en-
vironment around the vehicle, while roadside LiDAR-based sensing systems can cover a much wider detection range; (3) Onboard
vision-based sensing systems need to work with other sensors like LiDAR, and depend on some other supportive data sources, such as
high-resolution 3D maps and GPS information. However, roadside LiDAR sensing systems are expected to work individually.

Background filtering, object clustering, object classification, and real-time tracking the movement of an object are the four major
steps for processing LiDAR data, regardless of where the sensors are installed. However, models developed for onboard sensors may
not be suitable to infrastructure-based detection. Besides the complexity issue, the working environment is quite different. In terms of
background filtering for instance, since the background always changes with the movement of vehicles, the onboard sensing systems
usually extract an object’s information from raw data using patch segmentation and classification (Wang et al, 2012). The visual-
based methods, such as the mixtures of Gaussians (MoG) method (Stauffer and Grimson, 2000), statistical background modeling
(Wang et al, 2012) and convolutional neural network deep learning method (Sakkos et al., 2017; Babaee et al., 2018) cannot be used
since the LiDAR data are point clouds instead of pixel information.

Density-based spatial clustering of applications with noise (DBSCAN) and K-means clustering methods and their variations are
among the most popular ones for object clustering of LiDAR data (Morsdorf et al., 2004; Shackleton et al., 2010; Tonini and Abellan,
2014). In this arena, clustering two nearby objects into a single object and efficient clustering of objects at far distances are the
common issues that still need to be addressed. In terms of object identification, a major approach is feature-based machine learning
classification (Wojke and Häselich, 2012; Azim and Aycard, 2012; Lee and Coifman, 2012; Cheng et al., 2014; Zangenehpour et al.,
2015). The performance of existing feature-based methods/algorithms heavily depends on the density of cloud points that provide
detailed descriptions or specific characteristics of the objects. Onboard detection systems usually use both LiDAR and video sensors
with higher resolution (thus higher cost) for perfect accuracy (Premebida et al., 2007; Himmelsbach et al., 2008; Premebida et al.,
2009; Gao et al., 2018). While for infrastructure-based LiDAR sensors, although accuracy is also a critical factor, cost must be
considered.

According to Miyasaka et al. (2009), Azim and Aycard (2012) and Wang et al. (2017), the mainstream methods for object tracking
with LiDAR data include but are not limited to the nearest neighbor (NN) method, Kalman Filtering (KF), multiple hypothesis
tracking (MTH), and so on. Zhao and Shibasaki (2005) proposed a novel tracking system aimed at real-time monitoring of pedes-
trians’ behavior in a shopping mall by scanning the feet of pedestrians using a number of single-row LiDAR sensors. Less time-
consuming and low computational cost (compared to video detection) are among their major findings from the study. They have also
applied LiDAR to monitoring traffic at an intersection using a network of horizontal LiDAR sensors (Zhao et al., 2012) and ac-
complished an excellent tracking ratio of 92.9%. Worthy of note is they manually integrated the data from multiple sensors without
considering the scenario when the same object was scanned on different sides in two frames. Additionally, a few critical parameters
were estimated based on experience and not presented, which makes the study lack of generality and weak in adaptability.

This article presents a systematic approach to detection and tracking of both pedestrians and vehicles by using infrastructure-
based LiDAR sensors. As part of the study, a test site of three intersections were instrumented with 16-laser LiDAR sensors and
communication devices. For each of the object clustering, pedestrian/vehicle classification and object tracking process, it investigates
critical technical issues associated with roadside LiDAR data and explores solution methods and algorithms. In data clustering, a
modified DBSCAN method was developed, along with an ingenious design of dividing the detection range into subareas based on the
distance from the sensor to improve accuracy and reduce computational cost. In vehicle/pedestrian classification, a backpropagation
artificial neural network (BP-ANN) was applied, and the direction of the distribution of the clustered points was found to be the key
feature to distinguish pedestrian and vehicle clusters when the collected LiDAR data cannot give a fine description of objects.
Tracking was conducted by a discrete Kalman filter model and a distance-based object association process. In the end, the proposed
methods and algorithms were integrated into a systematic approach for processing and analyzing infrastructure-based roadside
LiDAR data. Using the data collected from the test site, experimental study shows the accuracy of the proposed approach for
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detection, classification and tracking is above 95% in average, and the detection range for this level of accuracy is about 30m (in one
direction) for 16-laser LiDAR sensors. The error was mainly caused by occlusion and the outlier’s issue.

This pilot study of processing roadside LiDAR data could be a valuable input for various traffic research, especially for the
intelligent transportation field. The outputs of the proposed systematic approach are real-time trajectory data of all road users, which
can be applied to: (1) Connected/Autonomous vehicles: detect traffic changes and risks around the corners by receiving real-time
movement status of each road user in extended distances; (2) Near-crash analysis: study vehicle interactions at multiple scales and
extract near-crash events to identify traffic safety issues, as well as recommend countermeasures; (3) Automatic pedestrian-crossing
warning signals: pedestrians’ crossing detection and potential vehicle-pedestrian crash prediction can be made based on historical
trajectory and real-time location/speed/direction.

To the best knowledge of the authors, there are currently only a few efforts in systematically addressing the technical issues as
well as the solution algorithms associated with infrastructure-based LiDAR sensors. Although this study was based on 16-laser LiDAR
sensors, the proposed approach is applicable to other types of LiDAR sensors with adjustment of some parameters, such as the number
of lasers, rotation frequency, vertical resolution of lasers and so on.

The rest of the paper is structured as follows: Section 2 introduces the LiDAR sensors and data. Section 3 presents the technical
issues and proposed methods for processing and analyzing data from roadside LiDAR sensors. The case study is presented in Section 4
and Section 5 concludes the article with summary of contributions and limitations, as well as the perspectives on future work.

2. LiDAR sensor and data

LiDAR sensors use pulsed laser to detect objects. A LiDAR instrument principally consists of a laser, a scanner, and a specialized
GPS receiver (Velodyne LiDAR, 2016). Laser channels, vertical field of view, and vertical resolution of laser beams are the common
specifications for model selection. Models with more laser channels provide better coverage and higher accuracy but also come with
higher price. Installation also plays an important role in the overall performance of roadside LiDAR applications, a good installation
plan can be achieved based on a combined consideration of the technical features of the selected LiDAR model and the objective of
the application (Zhao et al., 2019). In this study, LiDAR sensors were installed 6 ft above the ground without inclination.

The rotation frequency (5–20 Hz in general) of the LiDAR sensors can be customized by users. One data frame is generated after
the sensor completes a 360°, three-dimensional (3D) scan (with line scan pattern) and the collected point clouds are stored in the
packet capture (pcap) format (Velodyne LiDAR, 2016). The size of the data file is determined by the time of data collection and the
number and complexity of the surrounding objects, usually about 2–3 megabytes per second per unit in our experiments. The output
data from a LiDAR sensor include the location of each point (in X, Y, Z coordinates) and their distance to the sensor, intensity, laser
ID, azimuth, adjusted time, and timestamp. Based on the GPS location of the LiDAR sensor and a reference point, all the points can be
matched to their exact locations in the real world.

Fig. 1(a) demonstrates a selected frame of raw 3D LiDAR point clouds from the VeloView software; Fig. 1(b) shows one of the
three intersections equipped with LiDAR sensors and communication devices for an on-going development of a connected system
with all road users, and a snapshot of actual intersection scene. Details about the test site will be presented in the case study section.

Fig. 1a. Raw LiDAR point clouds from VeloView.
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3. Detection and tracking of pedestrians and vehicles

In this study, the LiDAR data collected from the test site were processed in the order of the following steps: background filtering,
clustering, object classification, and tracking of movements. Background filtering is a prerequisite but rather independent process, the
researchers have developed models prior to reaching the current stage of work. After the background filtering process, an inter-
mediate process was developed to select the region of interest (ROI) so that the focus of the following steps can be placed on the
selected ROIs such as a road segment or an intersection. The focus of this study is therefore placed on the clustering algorithm,
identification of pedestrians and vehicles, tracking, and the examination of the effectiveness of the integrated approach. The flow
chart in Fig. 2 depicts the systematic approach used in this research for processing and analyzing roadside LiDAR data.

3.1. Background filtering

A complete set of raw LiDAR data include everything it detected such as buildings, trees, surface of the ground, and road users. A
good background filtering model should keep the data points of road users to the maximum, while at the same time exclude as many
as possible the points from the background objects. As part of this research project, an automatic 3D statistic background filtering
algorithm (Wu et al., 2017, 2018a) has been developed by a group of researchers from the same team prior to the current stage of the
work. The background filtering itself is a rather complicated process, this section briefly introduces their work with an aim to give
readers a systematic view of our study without making this paper abundant and duplicative.

The background filtering algorithm involves frame aggregation, points statistics, threshold learning, and real-time filtering. It
starts from aggregating multiple LiDAR data frames and divides the 3D space into continuous tiny cubes, subsequently a corre-
sponding 3D matrix is built to store the number of points in each cube in the space. The analysis is then directed to detailed
investigation of the cubes: if the number of total laser points in a cube is greater than a threshold that is automatically learned, this
cube will be identified as a background space cube, and the identified background cubes are used to exclude background points. In
the next interval, those laser points falling in the background cubes are excluded. The number of aggregated data frames for
background identification was 3000 and the edge of each cube was 5 cm. The point thresholds were different, depending on the
distance of the point from the LiDAR sensor: 19 (0–5m), 10 (5–10m), and 7 (> 10m). Fig. 3(a) and (b) demonstrate the performance
of the algorithm by showing the data before and after background filtering. In the experimental study, approximately 99.2% of
background data points were successfully excluded from the raw data.

After background filtering, ROI was selected according to the boundary coordinates of the study area, usually the boundary of an
intersection or a road segment (Wu et al., 2018b). The background filtering and ROI selection processes are helpful to increase
detection/classification accuracy and reduce computational cost.

Fig. 1b. LiDAR sensor with other equipment and snapshot at one of the three intersections.
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3.2. Object clustering and referencing

3.2.1. Clustering
The principle of object clustering is to categorize various entities into clusters based on their similarities such that the entities in

the same cluster present more similar properties than those in other clusters. The internal relationships between points in a cluster
can be centroid, density, connectivity, distribution and so on, and what property determines a cluster and how to find clusters
efficiently and effectively are the basic problems an algorithm needs to address (Theodoridis and Koutroumbas, 2009). The density-
based spatial clustering applications with noise (DBSCAN) is by far one of the most popular density-based methods for clustering
(Ester et al., 1996; Aggarwal and Reddy, 2013). It divides a dataset into three categories – core points, border points, and noise points
within a predefined searching radius, with core points and border points being clustered points which describe the shape of the
objects. Minimal Points (MinPts) and searching radius (ɛ) are the two primary parameters of the traditional DBSCAN algorithm (Ester

Fig. 2. Flowchart of the LiDAR data process.

Fig. 3. Background filtering.
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et al., 1996), which are critical to the performance of the clustering process. If the number of data points within a searching area is
greater than or equal to a predefined MinPts value, those data points will be clustered to form an object. A major advantage of the
DBSCAN method is that it does not need to predefine the number of clusters or the number of objects, which is especially useful in
transportation applications because it is almost impossible to predict the number of pedestrians or vehicles.

Due to the angled laser beams of LiDAR sensors and the shape/size of pedestrians and vehicles, the numbers of 3D points of
pedestrians and vehicles may be different even at the same distance from the sensor. Also, if an object is located near the LiDAR
sensor, denser data points can be collected to give a fine description of the object; otherwise, as distance increases, only sparse data
points can be collected, especially for pedestrians (Li et al., 2016). To demonstrate, Fig. 4(a) and (b) show the total number of 3D
points of pedestrians located at different distances: there are only 12 points of a pedestrian 26m away from the LiDAR, while two
other pedestrians who are only three meters away received 484 and 512 data points, respectively.

Because of the unique features of roadside LiDAR data, it is difficult to obtain accurate clustering results by using fixed MinPts and
searching radius as introduced in the traditional DBSCAN algorithms. To effectively adjust the MinPts and searching radius at
different locations, a modified DBSCAN clustering algorithm with adaptive MinPts values and searching radii was developed.

Firstly, the searching radius was chosen based on the LiDAR sensor’s mechanical structure. As shown in Fig. 5(a), if the 2D
distance between point A and the LiDAR sensor is d meters and B (with same distance d) is the nearest adjacent point to point A, then
the vertical height H between point A and point B is expressed in Eq. (1). This height is the minimum searching radius in a vertical
direction (elevation) for clustering point A and point B into a same cluster.

=H d2 *tan( /2) (1)

where H is the vertical height between two adjacent points at the same distance d (meter), d is the 2D distance between the data point

Fig. 4. Comparison of the numbers of clustered points at different distances.

Fig. 5. Determine searching radius in DBSCAN algorithm.
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and the LiDAR sensor (meter), and θ is the vertical angular resolution of LiDAR sensor (For VLP-16, θ= 2°).
Secondly, the horizontal distance between two adjacent points scanned by the same laser beam can also be calculated. As illu-

strated in Fig. 5(b), the horizontal angular resolution of the LiDAR sensor needs to be determined first, which is:

= ° f n
N

360 * *
0 (2)

where α is the horizontal angular resolution of the LiDAR sensor (for VLP-16 with 10 Hz, α= 0.2°), N0 is the data rate (total number
of points per second collected by all lasers), f is the rotation frequency of the LiDAR sensor (Hz), and n is the number of laser pairs.

Then the horizontal distance between two adjacent points collected by the same laser beam can be obtained by Eq. (3), and this
distance is the minimum searching radius in a horizontal direction for clustering point A and point B into the same cluster.

=L d2 *sin( /2) (3)

where L is the horizontal distance between two adjacent points collected by the same laser beam (meter), d is the 2D distance
between the data point and the LiDAR sensor (meter), and α is the horizontal angular resolution of the LiDAR sensor (Eq. (2)).

To get reliable detections, the vertical distance between the points scanned by two adjacent laser beams needs to be shorter than
the minimum height of a road user, or the object may fall between the two laser beams without being detected. At a 30m distance,
the vertical height between two adjacent points is: = = °H d2 *tan( /2) 2*30*tan(2 /2)=1.047m (≈1m), the pedestrians (an adult
higher than 1m) within 30m from the LiDAR can be detected successfully. If a searching sphere (e.g., ɛ= 1m) proposed by the
traditional DBSCAN algorithm is used for clustering a crowd of pedestrians, pedestrians standing near each other (e.g., the distance
less than 1m) may be clustered into one group. To solve this problem, the adjusted method uses different radii in both vertical and
horizontal directions and generates an ellipsoid searching space. The lengths of the semi-major axis and semi-minor axis are chosen
based on the vertical height H and horizontal distance L calculated by Eqs. (1) and (3).

In addition, the value of MinPts was estimated based on the maximal number of points collected from the searching ellipsoid. For
an ellipsoid with a semi-major axis (R1) and a semi-minor axis (R2), the maximum collectable number of points (TP) is approximated
by Eqs. (4)–(6). When the laser beams shoot the ellipsoid perpendicularly, the number of points reaches maximum and the ellipsoid
can be treated as an oval.

The oval is first approximated as a rectangle (size: 2R1 * 2R2) and the total number of laser beams shooting on the rectangle is:

= +NL R
H

2 11
(4)

and the total number of points from each laser within the rectangle area is:

= +NP R
L

2 12
(5)

and TP can be presented by Eq. (6):

= + +

= + +
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0 (6)

where

TP is the maximum number of points,
N0 is the data rate,
f is the rotation frequency of LiDAR sensor (Hz),
n is the number of laser pairs,
d is the 2D distance between point and LiDAR sensor (meter),
R1 is the semi-major axis of the ellipsoid (meter),
R2 is the semi-minor axis of the ellipsoid (meter), and
θ is the vertical angular resolution of LiDAR sensor (degree).

Considering the angles between the laser beams and the objects in real situations, the total collectable number of points of an object
should be equal to or less than the calculated TP value. The value of MinPts can be determined based on the calculated TP and field
data analysis, as to be introduced in the case study section.

When MinPts and searching radii change over distance, calculation of every LiDAR point may lead to heavy computation. To solve
this problem, the proposed procedure divides the sensor’s detection range into three sub-areas (I, II, III) based on the distances from
the sensor (as shown in Fig. 6). Each subarea uses the same searching radius and the MinPts value that are determined by the outer
edge (farthest to the sensor) of the subarea. Each subarea is extended to form an overlapped ring, with the ring’s width larger than the
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width of a vehicle or a pedestrian. The overlapped ring method can avoid an object at the border of the subareas being identified as
two different targets. Fig. 6 shows an example of three divided areas with two overlapped rings (r). After clustering, clusters (e.g., the
vehicle pointed by red arrow in Fig. 6) within the overlapped ring areas are compared to determine whether any of them needs to be
merged. If the distance of the center points of two clusters is less than a predefined threshold, those two clusters are merged as one.
Fig. 7(a) and (b) demonstrate the clustering results of a pedestrian standing in an overlapped area with/without checking the merging
criteria. With the modified DBSCAN method, the accuracy of object clustering is greatly improved, especially for the objects away
from the sensor and close to each other.

3.2.2. Referencing
After clustering, all detected objects are represented by clusters in 3D space. A reference point on the XY plane needs to be found

to locate the position of each cluster. This reference point will later be used for tracking clusters and extracting trajectory in-
formation. For pedestrian clusters, the mean center of each cluster can be used as its reference point, while for vehicles, bounding
boxes need to be determined for better referencing. This method is introduced below.

For each cluster, all clustered points are projected onto the XY plane to find the bounding box, i.e., the minimum rectangle that
covers all clustered points based on the minimal and maximal values projected in X and Y direction. In an ideal situation depicted in
the upper right corner of Fig. 8, four vertices (A, B, C, and D) of the rectangle can be used to estimate the corresponding corners of a
vehicle, and the center point O can be used to indicate the location of a vehicle. In real world however, the data points of a vehicle are
usually collected from different angles and the coverage of every corner cannot be guaranteed. For instance, when a vehicle (Veh1) is
on the left side of the LiDAR (approaching), A, B, and C points can be detected; when a vehicle (Veh2) is in front of the sensor
(crossing), only A and B points may get detected; when a vehicle (Veh3) is on the right side of the sensor (leaving or departing), only

Fig. 6. DBSCAN area division.

Fig. 7. Examples of merging clusters in an overlapped area.
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A, B, and D points can be detected. Nonetheless, it is clear that the corner closest to the LiDAR sensor provides the most reliable and
accurate information of an object’s location. Therefore, for approaching vehicles, we use the inner front corner (i.e., the corner closer
to the sensor) of the bounding box as the reference point (Point B for Veh1); for departing vehicles, we use the inner back corner of a
bounding box for cluster referencing (Point A for Veh3); for crossing vehicles, we use the inner side of both front and back corners as
the reference points (Point A and B for Veh2). If the vehicles have different reference points between two continuous frames, the
reference point for trajectory extraction (e.g., speed calculation) will be chosen as the same corner of the associated cluster from the
previous or the next frame. In other words, the proposed process continuously tracks inner front and back corners from each frame,
and selects inner front or inner back corner based on the relative location of the LiDAR sensor and the vehicle. This position
information will then be used in tracking to guarantee the reference point is attached to the object consistently.

The quality of a cluster’s reference point highly depends on the accuracy of the bounding box. “Cluster Deficiency” is a common
issue caused by occlusion and/or perspective shadow, which affects the integrity of a cluster, and thus the accuracy of a bounding
box. Since the bounding box is designed to bound the cluster, the position of the reference point may be shifted if the corresponding
corner of a cluster cannot be detected. Fig. 9 demonstrates such an issue: the target vehicle was leaving the LiDAR sensor and the
inner back corner was selected as the reference point for positioning; as the side and partial rear portions of the vehicle were not
detected from the frame 88, the bounding box for this frame could not be accurate. In this study, we tackled this problem by data

Fig. 8. Reference point of a cluster based on bounding box.

Fig. 9. Reference point and cluster deficiency.
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training and by continuously checking the bounding box’s length-to-width ratio. Usually, this ratio can only be slightly changed
around the ground truth under non-occlusion conditions due to the factors such as the vibration of LiDAR sensors. If the ratio changes
abruptly and goes beyond the common range calculated by the training data, this cluster is considered as incomplete and the
calculated reference point will not be used in the following tracking procedure.

Another cause for getting inaccurate position referencing point is the outliers (e.g., the point A in Veh3 cluster in Fig. 8) from the
clustering process. An outlier filtering method that considers the distribution of the density of clustered points in 3D space is applied
to reduce the error caused by outliers. In each cluster, the 3D clustered points are divided into a series of continuous 3D cubes, and
the number of 3D points in each cube is counted as the density of that cube. A density threshold is then determined to judge whether a
cube is an outlier cube or not. The selection of the threshold is based on the size of the cube and the total number of points in a
cluster, in this study, a threshold of 5 points per 50 cm-edge cube was used for outlier filtering. Therefore, if a cube density is less than
5, the points in that cube are considered as outliers and deleted. Fig. 10 shows a vehicle cluster with some sparse points after the
clustering process. The selected/reserved points were in small purple circles and the others were considered as outliers. Outlier
filtering also enhances the performance for getting accurate reference points for positioning, thus improving the accuracy of clas-
sification and tracking in the following process. Both outlier filtering and the treatment for incomplete clusters can improve the
accuracy of position reference points to some extent. However, the occlusion issue could not be resolved at 100 percent as this study
only uses single LiDAR sensor. Better performance is expected after an ongoing implementation of multiple sensors at the same site.

3.3. Pedestrian and vehicle classification

With clustering and referencing process described, attention can now be directed to pedestrian and vehicle classification. For this
purpose, three features were extracted from the clusters obtained from the previous clustering process:

(1) Total number of points in a cluster: at the same location, the number of points in a vehicle cluster should be more than that in a
pedestrian cluster.

(2) 2D Distance: the distance of the position reference point of each cluster to the location of the LiDAR sensor can be calculated with
the X, Y values.

(3) Direction of the clustered points’ distribution: analysis of the distribution of the clustered points in the 3D space revealed that the
distribution of pedestrian clustered points is mainly along the vertical direction (z-axis), while the distribution of vehicle clus-
tered points is primarily along the horizontal direction (parallel to the x-y plane). With the least-square linear regression method,
a linear function can be generated to describe the main distribution direction of each cluster.

Fig. 11 shows the relation among the three features. In Fig. 11(a), the number of points in one cluster decreases as the distance
between the object and the LiDAR sensor increases. In general, vehicle clusters have more points than pedestrian clusters at the same
distance. The difference between pedestrian clusters and vehicle clusters in terms of the direction of the clustered points’ distribution
can be observed from Fig. 11(b), when the direction angle of a cluster is less than 20°, this cluster has a high possibility to be classified
into vehicle category. Among these three features, the total number of points in a cluster is affected by the distance from an object to
the LiDAR sensor and occlusion, while the direction of distribution does not have a direct connection with the number of points and
distance. Although only three features were identified, it is worthy of note that linear regression might not work in such a case as the
boundary lines for classifying vehicles and pedestrians in Fig. 11 are not linear.

Taking these three features as inputs, a classification model based on backpropagation artificial neural network (BP-ANN) was
developed to distinguish pedestrians and vehicles in the detection range. As shown in Fig. 12, the BP-ANN is a multilayer feed-
forward neural network composed of an input layer, a hidden layer, an output layer, and neurons in each layer. Input data are fed into
the input layer. The activity of each hidden layer is determined by the inputs and the weights that connect the input layer and hidden

Fig. 10. Filtering outliers in a vehicle cluster.

J. Zhao et al. Transportation Research Part C 100 (2019) 68–87

77



layer. A similar process takes place between the hidden layer and the output layer, and the transmission from one neuron in one layer
to another neuron in the next layer is independent. The output layer produces the estimated outcomes. The comparison information
(error) between the target outputs and the estimated outputs is given back to the input layer as a guidance to adjust the weights in the
next training round. Through each iteration, the neural network gradually learns the inner relationship between the input and the
output by adjusting the weights for each neuron in each layer to reach the best accuracy. When the minimum error is reached, or the
number of iterations is beyond a predefined range, the training process is terminated with fixed weights.

The activation function, training function, transfer function, performance function all play important roles in model training.
Training functions refer to different training algorithms; while the transfer function activates input signals to output signals, learning
linear and non-linear relationships between them; and the performance function is used to measure the error. It is not intuitive to find
the best combination of the structural parameters and the key functions for a neural network (influencing factors include data size,
data complexity, network structure, network functionality, etc.). The case study section provides more information of the training
process and details about how the BP-ANN model parameters and functions were determined.

Fig. 11. Extracted features for classification.
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3.4. Tracking

The last step in LiDAR data processing is tracking, in which the speed and trajectory of each object are obtained. Tracking is a
process of identifying the same object in continuous data frames (Coifman et al., 1998; Allodi et al., 2016; Wang et al., 2017;
Granström et al., 2018), in this research, a discrete Kalman filter tracking method was applied. The state vector xt is composed of four
state parameters, which can be expressed as:

=x x y v v( )t t t x y0 0 (7)

where x t0 and y t0 are the horizontal and vertical coordinates of a cluster’s reference point; vx and vy represent the horizontal and
vertical speeds of the cluster’s reference point. The measurement vector zt extracted from the clusters is summarized in the following
form:

=z x y( )t t t0 0 (8)

Besides, the transition matrix A and measurement matrix H can be described as:

=A
t

t
1 0 0
0 1 0
0 0 1 0
0 0 0 1 (9)

= ( )H 1 0 0 0
0 1 0 0 (10)

where t is the time interval between two adjacent frames (t≈ 0.1 or 0.2 s in this research). For the Gaussian process noise and
measurement noise, their corresponding uncertainty matrices (Q and R) need to be adjusted empirically.

In the model, the position and speed of an object in the current frame are estimated based on its information from the previous
frame. Then, an object association process is conducted within a searching area to find the associated objects from two consecutive
frames, the size of the searching area is determined by the estimated position of the object. In the case when there are multiple
candidate objects in the searching region, the object with the shortest distance will be used to match the object in the previous frame
and update the measurement. Otherwise, object matching will depend on the time when next qualified candidate objects will be
found, if no object can be found within the searching region after a certain time interval (e.g., 1.5 s= 15 frames for a 10 Hz LiDAR
sensor), the tracking of this target object stops. If the target object cannot be detected from a frame due to factors such as occlusion or
failure of clustering, the predicted status is used as the position of the missing object to update the state vector and Kalman gain.

The shortest distance-based object association process is robust in that the actual distance a vehicle traveled in real world is
always larger than that traveled along the frames. Fig. 13 shows the comparison of the frame-to-frame travel distance and the actual
distance in the same lane. Assuming under different speeds there are three time-headways of 1, 2, 3 s respectively, the frame-to-frame
distance at 10 Hz presents the travel distance of the same vehicle between the adjacent frames (recorded at 10 Hz) at different travel
speeds. For example, for a vehicle traveling at 20mph, the travel distance during one second headway is 29.34 ft, while the same
vehicle only travels 2.934 ft (20mph * 0.1 s= 2.934 ft) during one frame. The comparison shows that the travel distance between
adjacent frames (at 10 Hz) is much shorter than the distance between vehicles in the same lane, which indicates that the object
association based on the shortest distance works in this frame-to-frame mechanism. Although the chart is the comparison of the
distance of vehicles in the same lane, similar vehicle headways are needed when vehicles change lanes. Therefore, this tracking
method can be used to track the same vehicle efficiently in different frames.

Fig. 12. Structure of BP-ANN model.
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With the trajectory of each road user successfully identified, their position, velocity, and direction can be obtained. Speed can be
calculated by using the distance and time information of two consecutive frames, and the maximum allowable speed (speed limit in
this study) was used to filter the outliers of the calculated velocity. Then, the accuracy of speed reporting was evaluated by a testing
vehicle. To get the direction information in a polar coordinate system, the direction and distance from the cluster’s position reference
point to the LiDAR sensor (whose location is at the origin) were calculated and summarized in directional polar plots.

4. Case study

With the help of the City of Reno and the Regional Transportation Commission (RTC) of Washoe, Nevada, three 16-channel LiDAR
sensors (VLP-16) were installed at three intersections located at (39.543 N, −119.818W), (39.538 N, −119.818W), and (39.537 N,
−119.816W), respectively in the city of Reno, Nevada. Table 1 summarizes the sites and the information associated with data
collection, Fig. 14 shows the map of the three data collection sites. The research team uses the data collected from the three sites
extensively to investigate the properties of roadside LiDAR data, as well as develop and evaluate the methods and algorithms de-
scribed in the previous sections.

4.1. Evaluation of the clustering process

The modified DBSCAN method was evaluated against a wealth of data obtained from the three sites. For illustrative purpose, a set
of data with four close-by pedestrians were used in this section. Fig. 15 shows an example frame of the clustered points with three
vehicles and nine pedestrians. As can be seen, the four close-by pedestrians (presented by red, green, black, and blue dots) were
clearly clustered, although the space between pedestrians in green and black was only about 50 cm. In the analysis, the detection
range was divided into three subareas: d1= 0–10m, d2=8–25m, and d3=23–40m, with an overlapped area of two meters in
width. The MinPts values for the three subareas were tested with 30–60% (with a 1% interval) of the calculated TP values using field
data. It was found that approximately 40% of the TP values (i.e., 40, 25, and 10 for the corresponding three subareas) could achieve
the best clustering accuracy (i.e., 98.0%, 96.6%, and 94.8%, respectively). Table 2 shows another example of the evaluation results
from three sites, which makes comparison between the number of extracted clusters from LiDAR data and the recorded videos for 100
data sample frames. In average, the accuracy of the proposed clustering process achieves 96% from the data obtained from the three

Fig. 13. Comparison of the frame-to-frame travel distance and the distance between adjacent vehicles in the same lane.

Table 1
Data collection site information.

Location LiDAR rotation frequency (Hz) Data collection period Speed limit (mph)

N Virginia St@15th St (Site 1) 10 19,860 frames (33min) 25
Sierra St@11th St (Site 2) 10 18,000 frames (30min) 25
N Virginia St@10th St (Site 3) 5 18,000 frames (60min) 25
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sites, as discussed earlier, the error was mainly caused by distance and occlusion.

4.2. Evaluation of the classification process

After clustering, the next step is to classify clusters into either vehicle or pedestrian datasets using the BP-ANN model. To train the
ANN model, LiDAR data were recorded and reviewed, then they were divided into three groups for training (70%), validation (15%),
and testing (15%). A testing dataset that has not been seen by the trained model was used to validate and evaluate the trained
network.

Use the Site 1 data as an example: a total of 6800 clusters were randomly selected from a total of 19,860 frames data and divided
into three sub-datasets, with 4800 clusters for training, 1000 clusters for validation, and 1000 clusters for testing. For the training
data, the optimal number of neurons in the hidden layer needs to be determined first. An experiment was designed for this purpose, in
which the number of neurons was changed from 1 to 20 and meanwhile the classification accuracy was recorded to find the best
match. The results in Table 3 show that seven hidden neurons could give the best accuracy rate for both training and testing sessions
(i.e., 97.2% and 96.5%, respectively). Once the optimal number of neurons was determined, the authors tested different training
functions and transfer functions. It was found that the performance of the ANN model did not change significantly.

The scaled conjugate gradient backpropagation for training function, the sigmoid for activation function, the soft max transfer
function, and the mean squared error performance function were selected as the functions of the ANN model. In general, the per-
formance of the model will improve with more epochs/iterations of training, however, the error might start to increase on the
validation set after a period of training due to the overfitting issue of the training set. Fig. 16 shows that the best performance for
validation was achieved at epoch 14 with a 0.018 mean squared error. To summarize, the structure and functions of the ANN model
are listed as follows:

• feature selection: total number of points, 2D distance, and direction
• the number of hidden layers: 1
• the number of hidden neurons: 7
• training function: scaled conjugate gradient backpropagation
• activation function: sigmoid
• transfer function: soft max transfer function

Fig. 14. Google map of data collection sites.
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• performance function: mean squared error performance function
Table 4 demonstrates the performance of the classification process at the three sites. In general, an approximately 96% classi-

fication accuracy can be guaranteed within about 30m detection range (in one direction) from the LiDAR sensor, at this range, failure
was mainly caused by vehicle occlusion.

4.3. Evaluation of the tracking process

For tracking, a total of 1023 vehicles and 48 pedestrians were detected and tracked from 19,860 frames data collected at Site 1.
Fig. 17 presents part of the extracted vehicle and pedestrian trajectories, in which the red and blue dots represent the trajectories of
vehicles and pedestrians at a 10 Hz frequency. As can be seen, all movements including the through/left-turn/right-turn movements
of vehicles, and the crossing movement of pedestrians were clearly tracked. Table 5 shows the tracking results from 1000 data sample
frames at three sites, approximately an accuracy of 95% can be reached within about 30m detection range (in one direction) from the
LiDAR sensor, and failure was caused by the same issues such as occlusion and distance.

4.4. Evaluation of speed

Speed validation was conducted by a testing vehicle with an onboard diagnostics (OBD) logger. Worthy of note is the frequency of
LiDAR data is 10 Hz, while the OBD speed can only be measured at 2 Hz, indicating the speed can be calculated every 0.1 s by LiDAR

Fig. 15. Clustering results.

Table 2
Evaluation of the clustering process.

Location Total frames Clusters from the proposed algorithms Clusters from the video Detection accuracy

N Virginia St@15th St 100 315 305 96.8%
Sierra St@11th St 100 356 338 95.0%
N Virginia St@10th St 100 243 234 96.2%
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data and the OBD logger could only update every 0.5 s. Therefore, validation was conducted by comparing the space mean speed
calculated from the LiDAR data (in every 0.5 s) with the speed measured by the OBD logger. Fig. 18 shows the basic statistics of speed
validation: the testing car was running at a relatively stable speed between 25 and 35mph, the orange bars show the speeds obtained
from the OBD logger, and the blue points depict the calculated speeds from the LiDAR data. Our investigation found the error was
mainly caused by: (1) the onboard logger cannot provide accurate speed information at a high frequency; (2) speed calculated from
the LiDAR sensor may not be accurate due to the timestamp and position errors between frames.

Occlusion issue is always a problem exists in the real situations. The LiDAR location is higher than most light-weight vehicles
(passenger cars), so sensors can at least scan the top of vehicles if they are blocked by passenger cars. Complete occlusion normally
happens with trucks and buses. Our solution is to install multiple LiDAR sensors at different corners of intersections and along both
sides of roads, thus providing better quality LiDAR data of all road users. Fig. 19 shows an example of partial and full occlusion cases.

Table 3
Determine the number of neurons for ANN model.

Number of neurons Training accuracy Testing accuracy

1 95.2% 93.8%
2 95.5% 93.5%
3 94.0% 94.0%
4 96.7% 96.2%
5 94.8% 93.7%
6 95.8% 94.5%
7 97.2% 96.5%
8 96.8% 95.3%
9 96.3% 94.7%
10 96.5% 94.8%
11 96.7% 94.8%
12 94.5% 93.7%
13 94.3% 94.2%
14 96.3% 94.5%
15 96.0% 95.3%
16 94.7% 95.8%
17 94.3% 94.3%
18 95.8% 93.3%
19 96.8% 94.7%
20 96.2% 94.7%

Fig. 16. Error convergence curve for BP-ANN model.
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After data registration, the second pedestrian in Fig. 19(a) can be seen more clearly. In Fig. 19(b), the second vehicle was totally
blocked by the first vehicle when using one LiDAR sensor, but it can be detected using two LiDAR sensors at different locations.
Therefore, the LiDAR sensor network will extend the detection range and reduce the possibility of objects being blocked.

5. Conclusion and perspective

This paper presents a systematic approach to the detection and tracking of both pedestrians and vehicles at intersections by using
infrastructure-based LiDAR sensors. The roadside LiDAR data processing procedure includes background filtering, object clustering,
pedestrian/vehicle classification, object tracking, and finally obtaining the presence, position, velocity, and direction information of

Table 4
Evaluation of object classification.

Location N Virginia St@15th St Sierra St@11th St N Virginia St@10th St

Total clusters 1000 1000 1000
Pedestrians (P) 403 389 284
Vehicles (N) 597 611 716
Identified Pedestrians (TP) 385 370 275
Identified Vehicles (TN) 581 593 690
Unidentified Pedestrians (FP) 16 18 26
Unidentified Vehicles (FN) 18 19 9
Pedestrian Identification Rate (TP/TP+ FN) 95.5% 95.1% 96.8%
Vehicle Identification Rate (TN/TN+FP) 97.3% 97.1% 96.3%
Classification Accuracy (TP+TN/P+N) 96.6% 96.3% 96.5%

Fig. 17. Example of extracted vehicle and pedestrian trajectories.

Table 5
Evaluation of tracking.

Location Total frames Trajectories from the proposed algorithm Trajectories from the video Tracking accuracy

N Virginia St@15th 1000 40 42 95.2%
Sierra St@11th St 1000 35 37 94.6%
N Virginia St@10th St 1000 34 35 97.1%
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pedestrians and vehicles. Modified DBSCAN method and ingenious design of area division improve the accuracy of object clustering
with LiDAR data, as well as reduce computational expense. Three straightforward but effective features are extracted for classifi-
cation. Direction of clustered points’ distribution is the key feature to distinguish pedestrian and vehicle clusters when the collected
LiDAR data cannot give a fine description of objects. A comprehensive case study at three sites showed the effectiveness of the
proposed algorithms using the real data collected by a 16-laser LiDAR sensor deployed at roadside. The detection and tracking rates
of the proposed roadside LiDAR data processing procedure are all above 95%, and valid detection range is about 30m (in one
direction). Although the procedure was tested with a 16-laser LiDAR, it can be extended to other types of LiDAR sensors. For example,
the developed clustering method can be modified with new sensor’s configuration such as the number of lasers, the vertical resolution

Fig. 18. Speed validation.

Fig. 19. Occlusion issue.
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of laser beams, and sensor’s rotation frequency to determine the parameters. Using more advanced LiDAR sensors (e.g., 64- or 128-
laser), the performance of background filtering, clustering, and classification can be enhanced since the density of point clouds is
increased, thus the tracking accuracy and detection range can be improved to some extent. For basic LiDAR sensors (e.g., 1- or 8-
laser), the proposed procedure can also apply to their data. But the effectiveness and accuracy of object detection and tracking may be
reduced.

Due to the limited number of lasers of 16-laser LiDAR sensors, the density of point clouds is lower compared with data collected
by advanced LiDAR sensors. Features that represent specific characteristics of objects are difficult to extract, so that the types of
vehicles cannot be distinguished using the proposed methods. The accuracy of position reference points is also affected by incomplete
clusters due to occlusion, perspective shadow, etc. Discrete Kalman filtering tracking is a kind of ad-hoc solution, which needs to be
improved in the future. There is no calibration involved in the data processing procedure. In addition, without high-accuracy GPS
receivers, in-depth analysis such as statistic test of speed validation and precise position validation cannot be carried out at current
stage.

For future work, multiple LiDAR sensors will be deployed at intersections and along roads in order to cover a larger area and
reduce the possibility of occlusion. The proposed procedure and algorithms will be further validated and improved for accuracy and
reliability of various traffic scenarios, as well as tested using LiDAR sensors with different resolutions. Methods of object detection
and tracking can be extended to bicycles in urban areas and wildlife in rural areas.
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