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Abstract: Trajectory tracking and crossing intention prediction of pedestrians at intersections are important to intersection
safety. Recently, on-board video sensors have been developed for detection of pedestrians. However, both the detection range
and operating environment of video-based systems seem to be constrained by the advancement of image-processing
technologies. Additionally, on-board systems cannot alarm pedestrians to take evasive actions when at risk, a feature which is
critical to saving lives. This paper summarises the authors' practice on using roadside LIDAR sensors to monitor and predict
pedestrians' crossing intention, as part of an ongoing effort to develop a pioneering LiDAR-based system to systematically
reduce pedestrian and vehicle collisions at intersections. The LIDAR sensors were installed at intersections to collect pedestrian
data such as presence, location, velocity, and direction. A new method based on deep autoencoder — artificial neural network
(DA-ANN) was used to process data and predict pedestrian crossing intention. The case study shows the proposed model is
about 95% prediction accuracy and computational efficiency for real-time systems. The roadside LiDAR system has great
potential to significantly reduce vehicle-to-pedestrian crashes both at intersections and non-intersection areas, either used as a

stand-alone system or in conjunction with the connected V2| and 12V technologies.

1 Introduction

According to the National Highway Traffic Safety Administration
(NHTSA) report in 2015, 5376 pedestrians were killed in traffic
crashes in the USA [1]; additionally, nearly 129,000 pedestrians
were treated in emergency rooms for non-fatal crash-related
injuries [2]. Pedestrians are 1.5 times more likely than passenger
vehicle occupants to be killed in a car crash on each trip [3]. In
terms of crash location and time, the percentages of fatal crashes
occurred at non-intersection location and during the night are 69
and 72%, respectively [4]. In recent years, advanced driver
assistance systems (ADAS) have been explored and developed for
improving safety for both drivers and pedestrians. Examples of
ADAS include blind spot alert [5], the pedestrian protection system
[6], driver drowsiness detection [7], automatic parking [8] etc. In
general, crash avoidance is based on evasive actions from the
pedestrian side and preventive actions from the vehicle side. Thus
far, these technologies have been primarily based on the on-board
sensors which have some inherent limitations such as lack of
pedestrian warning mechanisms to alarm pedestrians to take
evasive actions when at risk. In addition, the on-board sensing
systems may become ineffective when blocked by other vehicles
and roadside objects. These concerns, in conjunction with the fact
that it will be a long time before all vehicles are equipped with
advanced assistance systems, warrant the development of roadside
systems that can accurately monitor pedestrians and at the time of
hazardous events, warn the road users to take evasive actions in a
timely fashion.

Technically, the most common approach for an on-board system
is the use of video clips and image-processing technology to
monitor pedestrian crossing behaviour and make predictions. In
order to extract useful information from image data, numerous
models and computing algorithms have been developed to predict
whether a pedestrian is going to cross a road. Features used for
making such a prediction include the location, speed, acceleration,
pose, face direction, and other characteristics of a pedestrian [9—
13]. The problem is, however, such a complex task requires a high-
computational cost associated with detecting, classifying, and
tracking target objects from a large number of candidate image
regions, especially for 3D video data processing [14]. The high-
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performance computation requirement can be met by on-board
systems but is difficult for roadside systems. In addition, it cannot
be guaranteed that every pedestrian and obstacle can be observed
from the vehicles under different light conditions. The performance
of the video cameras is influenced by illumination condition, which
means the video quality may be lower during the night compared
with daytime [15]. In this regard, new infrastructure-based sensing
systems need to be developed for providing real-time trajectories
(e.g. presence, location, velocity, and direction) of all road users.
The roadside LiDAR data will become an important data source of
real-time emergency alert and crash-avoidance warning.

Light Detection and Ranging (LiDAR) sensors installed at
intersections and along roadsides can be an innovative approach to
solving the above issues. LIDAR sensors detect the position of
objects by actively shooting laser beams and measuring the travel
time after reflection. The LiDAR sensors work stably and reliably
in both daytime and night-time under different environmental
conditions. A 3D LiDAR sensor can scan the 360° 3D surrounding
objects with high accuracy. With the advantages of reliability,
accuracy, a wide covering range, and a dramatically reduced price,
LiDAR sensors have become a promising component of
transportation infrastructures, especially for autonomous and
connected vehicle applications. The VLP-16 LiDAR sensor, a cost-
efficient 16-line LIDAR manufactured by Velodyne, was used in
this research as an example, while the proposed procedure and
methods can be migrated to roads with other types of LiDAR
sensors. With the VLP-16 sensor, 16 lasers are rotated horizontally
by an internal motor with a speed of 5 to 20 rotations per second.
The 360° laser point clouds are generated after each 360° 3D scan
rotation. The output LiDAR data include the location information
of measured points relative to the LiDAR sensor in XYZ
coordinates, intensity, laser ID, azimuth, the distance between a
data point and the sensor, adjusted time, and timestamp [16]. Since
the data collected from roadside LiDAR sensors are 3D point
clouds, existing methodologies developed for image processing do
not work for the LiDAR data processing directly. Previous studies
conducted by the authors have already achieved automatic
background filtering, automatic lane identification, pedestrian and
vehicle detection and tracking, and data integration from multiple
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Fig. 1 Flowchart of the proposed pedestrian crossing prediction method

LiDAR sensors [17-22]. These results lay a solid foundation for
the research in predicting a pedestrian's intention for crossing. As
pedestrians often follow similar paths and motion patterns at a
specific location, historical pedestrian trajectory data at a site can
help to learn pedestrians' crossing patterns, then be used to predict
pedestrian crossings.

Here, a method based on deep autoencoder-artificial neural
network (DA-ANN) was developed to predict whether pedestrians
walking along the sidewalk will cross the road with a high
prediction accuracy. Performance evaluation with field data proved
that the DA-ANN model has a higher prediction accuracy than the
traditional ANN model. In addition, the DA-ANN models trained
by the proposed methods could provide prediction of a pedestrian's
intention for crossing/non-crossing at different locations relative to
the crossing facilities (intersections or crosswalks). The trained
models can be used for predicting pedestrians' crossing intention
and providing timely alerts to both pedestrians and vehicles via
roadside or onboard warning systems. This study is also an
important preparation for future incorporation of infrastructure-
based information systems into autonomous driving environment.

This paper is structured as follows: Section 2 presents the
methodology for pedestrian crossing prediction. Section 3
introduces a comprehensive case study to show the model training
process and performance evaluation. Section 4 concludes the
findings and future work.

2 Proposed prediction model

The proposed pedestrian crossing prediction model is based on
DA-ANN, and the procedure is demonstrated by the flowchart in
Fig. 1. The process starts with the pedestrian trajectory data from
historical detection and tracking trajectories. The data partitioning
step is to divide trajectory data into different regions along the
sidewalk according to the distance to the crossing facilities and
assign labels to trajectories. A deep autoencoder is then used to
extract valid features and reduce the data dimensionality. The
trajectory data with extracted features and corresponding crossing/
non-crossing labels are the inputs to the ANN model. The DA-
ANN model was first trained with a training dataset and then
evaluated with a testing dataset. The traditional ANN model was
also trained and evaluated with the same training and testing
datasets, thus comparing the prediction performance with the
proposed DA-ANN model.

2.1 Pedestrian trajectory acquisition

For processing the roadside LiDAR data, the authors have
developed a data processing procedure from streaming roadside
LiDAR data to real-time trajectories (e.g. presence, location, speed,

and direction) of road users. The data processing procedure is
shown in Fig. 2.

* Background Filtering: The goal of background filtering is to
keep as many road users' data points as possible, and to exclude
the background points at the same time. To accomplish this goal,
an automatic 3D-density-statistics-background-filtering
algorithm was developed. Four major steps are frame
aggregation, points statistics, threshold learning, and real-time
filtering [17, 18].

* Lane Identification: The lane identification algorithm is to
automatically identify boundaries of traffic lanes. Lane
boundaries are critical information for pedestrian crossing
prediction. The method aggregates vehicle trajectories in a
certain time interval to learn the location of vehicles’ paths, and
then identifies the 3D coordinates of lane boundaries [19].

* Road User Clustering: In the previous research, a revised
DBSCAN (density-based spatial clustering of applications with
noise) method was used for clustering LiDAR data points into
road user objects. Two key parameters — minimal points and
search radius, were adjusted according to the different point
densities and distances to the roadside LiDAR sensors [20].

* Pedestrian/VehicleClassification: A backpropagate ANN model
was trained for classifying pedestrian and vehicle clusters. Three
extracted features were used to identify pedestrians and vehicles,
including the total number of points in a cluster, distance to the
LiDAR, and spatial distribution direction of clustered points
[20].

e Tracking: Tracking is to identify the same object in continuous
data frames. The nearest distance method was applied for object
association based on the distance between an object in the
previous frames to all objects in the current frames, and the time
difference between the tracked two frames. After objects were
matched, a discrete Kalman filter tracking method was used to
track objects. The position/speed information of the object in the
previous frame and the position/speed information of the
matched object in the current frame were the inputs of the
Kalman filter to estimate the status of the object in the current
frame [21, 22].

* Trajectory Data of Road Users: After executing the above steps,
trajectory information of pedestrians and vehicles can be
obtained. Speed was calculated using the distance and time
difference of two consecutive frames and the speed limit was
used to filter the outliers. To get discrete direction information,
the direction and distance from the object to the LiDAR sensor
(whose location is at the origin) were calculated in a polar
coordinate system. The outputs from the LiDAR data processing
procedure were: XYZ position, total number of points, distance
to LiDAR, tracking ID, frame number, velocity, direction,
timestamp, and pedestrian/vehicle label of each target object. In
the following procedure, only pedestrians' trajectory results were
used as the initial data for pedestrian crossing prediction. The
vehicles' trajectory data were not further analysed in this
research.

2.2 Data partitioning

Even though pedestrians may have different motion behaviours
than vehicles, their movements follow certain patterns when
pedestrians are walking along the sidewalk and planning to cross
the road. In general, pedestrians walk towards the road curb with a
lower speed and change directions if they are going to cross, while
non-crossing pedestrians maintain the speed and direction when
walking along the sidewalk. In addition, the differences between
crossing and non-crossing motion patterns change as pedestrians
are at different distances from crossing facilities. Therefore, a
region division along the sidewalk was conducted. In Fig. 3, a
linear boundary is used for dividing the road area (vehicle lanes)
and the sidewalk area. The red point C on the boundary represents
the starting point of the crosswalk. Along the sidewalk, areas are
further divided into N rectangular regions: Ry, Ry, ..., Ry. The
widths (w) of the rectangular regions are the same and can be
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configured according to the sidewalk's width. The lengths () of the
rectangular regions represent different distances to the crosswalk
along the sidewalk direction. For example, the sidewalk only exists
at one side of the crosswalk (r;;=0, i=1, 2, ..., N) or the whole
sidewalk is not symmetrical to the crosswalk (rj; #rp, i=1, 2, ...,
N). On-site observations showed that not all crossings took place at
the crosswalk, some pedestrians chose to cross before reaching the
crosswalk. Therefore, the size of the rectangular regions was
carefully designed so that they can cover all the pedestrians with
different crossing locations, and the amount of training data
(crossing and non-crossing) in each region is different. For
different scenarios, both the number and the size of rectangles (i.e.
the distribution of proportion of the pedestrians) may vary for the
best performance. The trained prediction models are designed to
use in corresponding regions.

After division, pedestrian trajectory data are grouped into
different regions. It should be noted that the region R;—; is included
in the region R; (i=2, 3, ..., N), but the data belong to region R;—;
are not counted in the region R;. As the location of the crosswalk is
fixed, the distance between each trajectory point and the crosswalk
(point C) can be calculated, which will be used as a feature in the
following steps.
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A label will be assigned to each trajectory point after data
partitioning. There are only two trajectory point labels — crossing
(label = 1) and non-crossing (label = 0). If the record of the selected
trajectory segment in a specific region ends with crossing in the
same region, the trajectory points in this region are labelled as
crossing, otherwise, the data are given the non-crossing labels. The
criteria for determining potential crossing behaviour are the
distance between the pedestrian's last location in each region and
the boundary of sidewalk. If the distance is less than a certain
threshold, the pedestrian is considered to be crossing. This distance
threshold is determined by the average speed of pedestrians and the
rotation frequency (or the time duration for one data frame) of
LiDAR sensors. Larger distance thresholds may result in mistaken
grouping of non-crossing pedestrians into the crossing category,
while smaller distance thresholds may lead to erroneous
classification of crossing pedestrians into the non-crossing
category. In other words, the accuracy of labelling is determined by
the threshold selection, and the label information will be used as
one of the inputs in the following model training and evaluation. In
addition, if the trajectory is shown on the road's side, it indicates
the pedestrian has already entered the road area. In this case, the
data label is 1 and a note should be sent immediately to indicate the
prediction is unnecessary. In Fig. 3, there are four sample paths.
Path 1 goes through region 3, 2, and 1 without crossing behaviour,
so the labels for the data in each region are all equal to 0; Path 2
passes through region 3 and region 2, and finally crosses the road
from region 1, so the data in region 1 have the label 1 but the
trajectory points in region 2 and region 3 are labelled 0. It is a
similar case for Path 3, which has label 1 for the data in region 2.
Path 4 shows an unsafe situation, all the data are labelled as 1 and
saved in the warning dataset. The proposed data partitioning
method helps the following model training procedure to obtain
better prediction accuracy in each region.

2.3 Deep autoencoder — artificial neural network model

The backpropagation (BP)-neural network is a multilayer feed-
forward artificial neural network [23]. It is composed of an input
layer, hidden layer(s), an output layer, and neurons in each layer.
The input data are fed into the input layer. Then, the activity of
each hidden layer is determined by the inputs and the weights that
connect the input layer and hidden layer. A similar process occurs
between the hidden layer and output layer. The transmission from
one neuron in one layer to another neuron in the next layer is
independent. The output layer produces the estimated outcomes.
The comparison information (error) between target outputs and
estimated outputs is given back to the input layer as a guide to
adjust the weights in the next training round. Through this iteration
process, the neural network gradually learns the inner relationship
between input and output by adjusting the weights for each neuron
in each layer to reach the best accuracy. When the minimal error is
reached, or the number of iterations is beyond the predefined value,
the training process is terminated with fixed weights [24].

To train a good ANN model, features play an important role.
However, some of the features may be redundant or correlated,
which results in long processing time and overfitting/underfitting
issues in the model. Deep autoencoder is an efficient method for
finding low-dimensional representations of the input dataset based
on deep learning. The extracted features can represent the
characteristics of the data in a more efficient and abstract way.
Thus, deep autoencoder can be considered as a pre-training process
for the ANN model.

The deep autoencoder is a specific deep neural network, it has
three layers: input, hidden, and output. Autoencoder is an
unsupervised learning process that tries to learn representations of
the inputs in a way that makes it possible to reconstruct the more
representative inputs based on some intermediate representations
and encoding/decoding processes [25]. A basic deep autoencoder
backpropagates the reconstruction error through the network and
updates its weights. The error minimisation is usually done by
stochastic gradient descent [26]. The deep autoencoder part in
Fig. 4 shows a learning procedure for a deep autoencoder. The
input data are fed into the encoder and a compressed feature vector
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Fig. 5 Google Map of the selected intersection

(Code) is then calculated. The obtained Code is an abstract
representation of the input data with lower dimensions. To validate
the quality of input reconstruction, the decoder is applied to the
Code. If the output of the decoder is similar to the input, the Code
from the encoder can be used for representing the input data.
Otherwise, the deep autoencoder adjusts the network's parameters
to reach minimal reconstruction error.

In this research, six features and one label (crossing/non-
crossing label) are used for DA-ANN model training and
evaluation. Five features (XYZ position, velocity, direction) are
obtained directly from trajectory acquisition. The 6th feature
(distance to the crosswalk) and label information are calculated
based on the layout of the sidewalk and crosswalk. In summary, as
shown in Fig. 4, the inputs of the deep autoencoder are the six
features and the outputs are compressed features (Code). This Code
and label information are then fed into the neural network to train a
crossing prediction model. Given an unlabeled trajectory to the
trained prediction model, a crossing/non-crossing label will be
assigned.

3 Case study
3.1 Model training

At the test site, a VLP-16 LiDAR sensor was permanently installed
on the top of a pedestrian signal (approximate 7 ft height above the
ground) at the intersection of North Sierra Street and 11th Street in
Reno, Nevada, with 10 Hz rotation frequency (0.1 second for one
data frame). The Google Map of the data collection site is shown in
Fig. 5. The case study only analysed the pedestrian trajectories on
the east side of the North Sierra Street. The selected crosswalk is
marked with a red rectangle. Three main pedestrian approaching
directions were from southbound, northbound, and westbound. The
data collection site was selected for sufficient pedestrian crossings
to train and evaluate the performance of the proposed methods.
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Fig. 6 Pedestrian trajectories
(a) Example pedestrian trajectories,
(b) Detailed example pedestrian trajectories

Totally, 9000 frames data streamed from the LiDAR sensor
were processed with the steps of background filtering, lane
identification, road user clustering, pedestrian/vehicle classification
and tracking. As a result, pedestrian trajectory data including XYZ
position, total number of points, distance to LiDAR, tracking ID,
frame number, velocity, direction, timestamp, and pedestrian/
vehicle label were obtained. In terms of tracking evaluation, the
authors compared extracted trajectories of pedestrians and vehicles
from the proposed algorithms with the trajectories from the
recorded video. It shows that approximately 95% tracking accuracy
can be achieved within about 30 m (in one direction) detection
range from the LiDAR sensor. The main reasons for tracking
failure were the limited number of data points collected for those
objects at a far distance and occlusion issues. In Fig. 6a, the
LiDAR sensor is at the origin with coordinate (0,0) and the starting
location of the selected crosswalk is marked with a red circle.
Different colours of trajectories refer to different tracking IDs, that
is, different pedestrians. The through and crossing movements of
pedestrians are clearly shown in Fig. 6b.

The next step is to group trajectories into different regions.
Fig. 7a shows the data before data partitioning. Different
pedestrian trajectories were represented by different colours; In
Fig. 7b, the black point C on the road-sidewalk boundary
represents the intersecting position of the sidewalk and the chosen
crosswalk. The sidewalk area was divided into three (N=3)
regions:
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Fig. 7 Pedestrian trajectories with data partitioning
(a) Pedestrian trajectories before data partitioning,

(b) Pedestrian trajectories after data partitioning

Region 1 (Green): 4 m x4 m(r;; =r;p=2m)
Region 2 (Blue): 10 m x4 m (1 =rp; =5 m)
Region 3 (Black): 20 m x4 m (r3; =73, =10 m)
Note: Length x Width

The width of the selected sidewalk is about 2.5 m. The width of
the rectangular region was chosen as 4 m in order to make sure the
pedestrians walking along both edges of the sidewalk can be
included. The lengths of the three regions were 4, 10, and 20 m (2,
5, 10m at one side) based on the collected data. On-site
observations showed that some pedestrians crossed approximately
2,5, 10 m ahead of the crosswalk.

For the labelling, since the time for one data frame is 0.1 second
and the authors used 1 m/s as the average pedestrian speed, the
walking distance of a pedestrian during one frame is about 0.1 m.
Considering the walking direction and potential occlusion issues,
the authors chose 0.3 m as the distance threshold in the research. In
Fig. 7b, data with crossing labels are marked with black dots. If the
trajectory points are in the road area (vehicle lanes), then a red
square marks the data point, indicating that this pedestrian is in an
unsafe location (already hit the vehicle lane). In the LiDAR XYZ
coordinate system (LiDAR is located at the origin, the unit is
meter), the coordinate of the crossing point C is (-13, 15) and the
equation of the road boundary is y = 5x + 80. The distance between
each trajectory point and the crosswalk (point C) can be calculated
and added to the dataset.

In the model training step, two autoencoders were stacked
together with a softmax layer to form a deep autoencoder —
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Fig. 8 Stacked deep network

Table 1 Performance evaluation of trained DA-ANN models
Testing dataset Testing dataset 1 Testing dataset 2
total number of data 58 87

crossing data 37 23
non-crossing data 21 64
predicted crossing 37 23
predicted non-crossing 19 59
accuracy 96.6% 94.3%

artificial neural network model (as shown in Fig. 8). The
autoencoder is composed of an encoder followed by a decoder. The
encoder maps an input to a hidden representation, and the decoder
reverses this mapping to evaluate the hidden representation. The
extracted features generated from the first autoencoder are the
input data for the second autoencoder [27]. In this research, the
sizes of the hidden layer for autoencoder1 and autoencoder2 were 6
and 5, respectively, after trial and error. The original training data
had six features in total. After training the autoencoderl, the
outputs with six reconstructed features were fed into the
autoencoder2. After using the autoencoder2, the number of data
features was reduced to five. Finally, a neural network with
softmax output layer was trained for crossing/non-crossing
classification. Since the input data were scaled during the training
process, it did not tell which five features were ultimately selected.

According to the region division, those qualified data with
labels were grouped into three region categories. A pedestrian
crossing prediction model was trained for each region. For Region
1, 136 data samples were divided into two classes: 81 crossing data
and 55 non-crossing data. For Region 2, there were 56 crossing
samples and 148 non-crossing samples. For Region 3, the number
of crossing data (3) was too small compared with non-crossing data
(184). So, training model 3 for the Region 3 was excluded from the
training and evaluation, due to the extreme unbalanced data. For
these training datasets, data were further divided into three
categories for Training (70%), Validation (15%), and Testing
(15%) steps. In the end, two DA-ANN pedestrian crossing
prediction models (model 1 and model 2) were trained for Region 1
and Region 2.

3.2 Model evaluation

To validate and evaluate the performance of the trained pedestrian
crossing prediction models, a testing dataset collected from the
same intersection that had not been seen by the trained models was
applied to the obtained models. For model 1, the testing dataset
included 37 crossing and 21 non-crossing samples. For model 2,
the crossing and non-crossing data were 23 and 64, respectively.
The trained prediction models were directly applied to the new
dataset and the results are shown in Table 1 and Fig. 9. Prediction
accuracies for model 1 and model 2 were 96.6 and 94.3%. All the
crossing pedestrians in both testing datasets were predicted
correctly. The following causes were found for the non-crossing
pedestrians to be mistakenly predicted as crossing:(i) The
trajectories of non-crossing pedestrians were near the road curb;
and(ii) The velocity was lower than the regular walking speed of
non-crossing pedestrians.

The model was trained offline using historical pedestrian
trajectory data. To examine the model's property in real-time
calculation, the authors recorded the computation time on a regular
Dell desktop (Intel Core i7-4790 CPU (3.60 G Hz) and 16 GB of
RAM), it took only about 0.28 milliseconds to process one single
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(a) Confusion matrix for model 1,
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trajectory data point and make prediction, which was ideal for real-
time applications.

To further evaluate the performance of the trained DA-ANN
prediction models, the authors also used the same training datasets
and the same testing datasets to train two basic backpropagate
ANN models. The determined ANN model structure and functions
are summarised as follows:

* Feature selection: XYZ position, velocity, direction, and
distance to the crosswalk.

* The number of hidden layers: 1

* The number of hidden neurons: 7

* Training function: Scaled conjugate gradient backpropagation.

* Transfer function: Softmax transfer function.

* Performance function: Mean squared error performance
function.

As there is no direct approach to determining the number of
hidden layers and hidden neurons, the authors started with some
values obtained by empirical equations/references [28], and then
adjusted the values to select the optimum. Usually a network with
more than one hidden layer is extremely hard to train. The six
features used in model training came from the original trajectory
data without any pre-training. The testing results of the basic ANN
models are shown in Table 2. Not all the crossing pedestrians were
predicted correctly, and this results in a potential safety risk if the
traditional ANN results are used for warning. The prediction
accuracy comparisons between DA-ANN and basic ANN models
are listed in Table 3. The result shows that the DA-ANN models
have improved the prediction accuracy about 6% compared with
the basic ANN model in the two regions.

Table 2 Performance evaluation of trained basic ANN
models

Testing dataset

Testing dataset 1 Testing dataset 2

total number of data 58 87
crossing data 37 23
non-crossing data 21 64
predicted crossing 34 13
predicted non-crossing 18 64
accuracy 89.7% 88.5%

Table 3 Performance comparison of trained models

Accuracy Model 1 Model 2
DA-ANN 96.6% 94.3%
basic ANN 89.7% 88.5%
improve +6.9% +5.8%

4 Conclusions

This paper presented a new method based on deep autoencoder —
artificial neural network to predict pedestrian crossings along the
sidewalk. It is an innovative way to predict pedestrians' crossing
intention in different regions from crossing facilities using roadside
LiDAR sensors. The major steps include pedestrian trajectory data
extraction, data partitioning, feature extraction, model training, and
evaluation. A comprehensive case study was presented to
demonstrate the effectiveness of the proposed algorithm using real
data, which also showed the trained DA-ANN model outperforms
the basic ANN models.

The study could be a valuable input for future development of
real-time cooperative systems in which all road users will be
connected via dedicated short-range communications (DSRC) unit
and/or Wifi/4G technologies. Currently, it can be used as a
fundamental element to develop infrastructure-based systems
where warnings can be delivered to road users from roadside
equipment. It could also be used to improve pedestrian signals by
providing added functions such as automatic trigger of the
pedestrian phase and real-time phase extension.

As part of an ongoing project, current and future works along
this line include:(i) testing the algorithm at busier intersections
with more pedestrian volumes;(ii) adding more LiDAR sensors to
get better quality trajectory data;(iii) developing and testing
communication means to synchronise all road users; and(iv) field
testing of the entire system.
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