
Research Article

Transportation Research Record
2022, Vol. 2676(6) 315–329
� National Academy of Sciences:
Transportation Research Board 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981221074365
journals.sagepub.com/home/trr

Fast-Spherical-Projection-Based Point
Cloud Clustering Algorithm

Zhihui Chen1 , Hao Xu1 , Junxuan Zhao2 , and Hongchao Liu2

Abstract
Roadside LiDAR (light detection and ranging) is a solution to fill in the gaps for connected vehicles (CV) by detecting the sta-
tus of global road users at transportation facilities. It relies greatly on the clustering algorithm for accurate and rapid data pro-
cessing so as to ensure effectiveness and reliability. To contribute to better roadside LiDAR-based transportation facilities,
this paper presents a fast-spherical-projection-based clustering algorithm (FSPC) for real-time LiDAR data processing with
higher clustering accuracy and noise handling. The FSPC is designed to work on a spherical map which could be directly
derived from the instant returns of a LiDAR sensor. A 2D-window searching strategy is specifically designed to accelerate the
computation and alleviate the density variation impact in the LiDAR point cloud. The test results show the proposed algo-
rithm can achieve a high processing efficiency with 24.4 ms per frame, satisfying the real-time requirement for most common
LiDAR applications (100 ms per frame), and it also ensures a high accuracy in object clustering, with 96%. Additionally, it is
observed that the proposed FSPC allows a wider detection range and is more stable, tackling the surge in foreground points
that frequently occurs in roadside LiDAR applications. Finally, the generality of the proposed FSPC indicates the proposed
algorithm could also be implemented in other areas such as autonomous driving and remote sensing.

Keywords
data and data science, automatic vehicle detection and identification systems, computer vision, data science, remote sensing,
vehicle detection

Connected-vehicle (CV) technology is an emerging tech-
nology to reduce crashes and increase energy efficiency
in the transportation system, one which enables bi-
directional communications between infrastructure and
connected road users to share real-time information and
provide rapid response to potential events and operation
enhancement (1, 2). However, the currently deployed
CV system is not performing as well as expected. The
primary reason is the information gap resulting from
unconnected vehicles, pedestrians, bicycles, or wild
animals (3).

Roadside LiDAR is one of the solutions that supply
complementary information by using infrastructure-
based LiDAR (light detection and ranging) sensors to
track the real-time status of those unconnected road
users within detection range. The LiDAR sensor is an
advanced technology, returning accurate and dense point
clouds from the surroundings, which has been solidly
applied to autonomous driving for its great robustness
against different light conditions and high precision on

3D point cloud collection (3). For an infrastructure-
based roadside LiDAR, the most crucial step is to detect
the target objects in the environment, and its efficiency is
important since a faster detection speed will supply more
time for the post-detection response to the road users in
the real world. On the other hand, detection accuracy is
also a critical factor in ensuring the reliability of the
LiDAR-based system. Similar to the image processing
pipeline, LiDAR-based detection is also needed to
extract the foreground points and finely partition those
points as different entities (clusters).

1Department of Civil & Environmental Engineering, University of Nevada,

Reno, Reno, NV
2Department of Civil, Environmental and Construction Engineering, Texas

Tech University, Lubbock, TX

Corresponding Author:

Junxuan Zhao, junxuan09@gmail.com

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981221074365
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981221074365&domain=pdf&date_stamp=2022-02-05

Existing point cloud clustering algorithms could be
coarsely categorized as two types according to the for-
mat of input data: (1) direct cluster point clouds with an
array of point coordinates (in 3D or 2D space); (2) pixel-
based clustering.

The first type of clustering is intuitive, whereby the
input for the clustering algorithm is an array of 2D or
3D point coordinates. For the scenario of LiDAR-based
clustering, the number of target objects in the scenes is
impossible to predict, which limits the applicable algo-
rithms. Those clustering algorithms that need to assign
the number of clusters, such as K-means, GMM, and so
forth, are inapplicable. The most popular algorithm for
this type of clustering task is DBSCAN (density-based
spatial clustering of applications with noise). Two
density-related parameters are involved in the DBSCAN:
the minPts (minimum points for a cluster) and the eps

(the radius to search neighborhoods). Using these, the
DBSCAN can detect the arbitrary shape of clusters
based on point density, and the points with low density
are treated as noise. These two features are quite useful
in LiDAR point cloud clustering (4). However, the most
challenging part for the DBSCAN is the variant density
of the LiDAR point cloud. Generally speaking, the var-
iant density results from the radiation property of laser
beams. For example, given two adjacent laser beams, the
Euclidean distance between two returned points would
vary according to the distance from the points to the
LiDAR sensor (a longer distance would contribute to a
larger interval between adjacent points). In other words,
the parameters (minPts and eps) to identify the same
object are different given different object distances. This
problem will greatly affect the result of DBSCAN
because the variant point density is difficult to capture
by a fixed set of parameters. To date, many pieces of
work have been carried out to solve this problem. Zhao
et al. (5) and Chen et al. (6), explicitly modeled the target
objects using geometric models to figure out the point
distribution features such as the theoretical point number
given a different detection range. Zhao et al. (5) modified
the DBSCAN, applying a set of dynamic DBSCAN
parameters on different detection ranges to improve the
accuracy of clustering. Wang et al. (7) proposed an auto-
matic parameter estimation method to extract the intrin-
sic pattern in the point cloud, by which the target objects
in different scenes are maximally detected. Similar work
may be found in Zhao et al. (8), where the algorithm
parameters are estimated by a Gaussian map. In sum,
the traditional DBSCAN suffers from the varying point
density resulting from the LiDAR sensor itself. The
DBSCAN variants attempt to modify the algorithm
by adjusting the parameter selection strategy. Even
though the accuracy problem could be solved, the time

complexity remains a problem. Generally, the time com-
plexity for traditional DBSCAN and its variants is
O(N2). (If some tree-based data structures were to be
applied, the time complexity could be improved to
O(N log(N)).). The exponentially increasing (or log trend)
time consumption would heavily impair the real-time
property of roadside LiDAR applications such as the
periodic surge of foreground points caused by traffic
peaks. Moreover, the point number for LiDAR is getting
larger with the development of LiDAR technology, and
it is difficult to achieve real-time processing speed using
traditional approaches. To date, the maximum point
number returned by Velodyne 128-LiDAR would come
to 2.6million points per second (9) which is two to four
times greater than current widely adopted LiDAR
devices, and existing algorithms have difficulty satisfying
this quantitative level.

The other form of point cloud clustering first converts
the 3D point cloud into a 2D array and further utilizes
image processing to accelerate the clustering. Two types
of projection are usually applied: (1) XY-plane projec-
tion and (2)spherical projection. The XY-plane projec-
tion is intuitive: it first establishes an XY-grid, then
projects 3D coordinates onto the established grid (10–
14). The projected grid is essentially an occupancy array
with a binary value indicating the presence of a point on
each grid cell. After that, the clustering is implemented
on the projected grid, grouping the presence of ‘‘pixels’’
into clusters. Even though it has reduced the dimension
of points and increased the efficiency, it may lose the
detailed information in the 3D point cloud, which is
harmful to further steps of LiDAR data processing such
as the classification task. In recent studies, another type
of projection converting 3D points into a 2D array
according to the spherical information is applied in some
works (15, 16). This type of projection (the spherical
map) is related to the structure of the LiDAR sensor,
which treats the azimuth as column index and laser chan-
nel as row index and projects the corresponding distance
value in a 2D array. The spherical map could be pro-
cessed by mature 2D image processing algorithms and
remain informative. As for the image processing algo-
rithm, existing works usually borrow the idea from the
algorithms based on CCL (connected-component label-
ing). Most typical CCL-based algorithms consist of two
steps (15, 17, 18): (1) assign provisional labels to each
foreground pixel, and (2) create an equivalent scheme to
integrate different assigned labels to each object, and use
the different unique representative labels to represent
each object. The equivalent scheme is created by the
interconnected relationship among pixels. Two pixels are
considered in the same cluster as they are directly or
indirectly connected.

316 Transportation Research Record 2676(6)

For the binary image (occupancy grid), CCL algo-
rithms could be directly implemented. Himmelsbach
et al. (10) first calculated an XY-plane occupancy grid
from the 3D point cloud. After that, the standard CCL
algorithm is applied to identify different objects in the
2D grid. Similar to Himmelsbach et al. (10), Börcs et al.
(14) proposed a hierarchical grid structure with a macro-
scale grid to locate the object and a sub-grid for storing
the detail point cloud. Standard CCL is adopted to clus-
ter the macroscale grid. Other works also applying the
binary grid associated with the CCL algorithm can be
found in Himmelsbach et al. (10) and Börcs et al. (14).

Unlike the occupancy grid, the standard CCL
algorithms are incompatible because the pixel-wise

connections cannot be directly inferred from the

projected distance value. The CCL algorithm could be

modified, however, to accommodate the spherical map.

Bogoslavskyi and Stachniss (16) proposed a modified

CCL algorithm to cluster the spherical map by exploiting

the angle between the laser beam and the line established

by adjacent points. It is more possible to separate two

points into two object clusters as the angle decreases.

The clusters are identified by scanning the connectivity

between ‘‘pixels’’ on the spherical map, and the connec-

tivity is justified by defining an angle threshold. Inspired

by Bogoslavskyi and Stachniss (16), Hasecke et al. (19)

further proposed a Euclidean distance threshold to con-

nect pixels. The Euclidean distance between pixels is cal-

culated from the cosine law. The Euclidean threshold

can be determined by the physical limitation between

two objects, so the result can be more reasonable.

Zermas et al. (15) proposed a multi-layer data structure,

the idea of which is conceptually identical to the spheri-

cal map. A two-run CCL is adopted to cluster the points

in the spherical map by merging adjacent points given a

defined distance threshold.
In summary, existing LiDAR point cloud clustering

algorithms focus on DBSCAN-based algorithms (for
spatial clustering) and CCL-based algorithms (for pixel-
wise clustering). The DBSCAN-based algorithms are
effective in point clustering through their density-based
cluster detection, while the efficiency is not ideal in real-
time applications. On the other hand, the CCL-based
algorithms are efficient because of their low time com-
plexity. However, the CCL-based algorithms would out-
put noise as the detected object (false-positive cases),
since they cannot identify noise in the point cloud. This
indicates that the CCL-based algorithm should be
applied without noise involved in the scene, which is
tough for many large scenes such as in Wu et al. (3) and
Zhao et al. (5). To further exclude the noise in the out-
put, the CCL-based algorithms require extra steps.
Second, the CCL-based algorithms require high connec-
tivities between adjacent pixels (points) to identify the

connected components. For the roadside LiDAR, long-
range detection may contribute to a high frequency of
package loss; therefore, compared with DBSCAN, the
CCL-based algorithms more easily fail in the roadside
LiDAR applications because of the disconnections
between points.

Concerning both computational load and accuracy of
the clustering process, this work proposes a clustering
algorithm known as FSPC (fast-spherical-projection-
based clustering algorithm) that accelerates the clustering
process and ensures the clustering accuracy as well. The
proposed FSPC benefits from the pixel-wise spherical
map data structure enabling a higher searching effi-
ciency. Also, it utilizes the robust density-based cluster-
ing mainstream to accurately cluster objects with the
functionality of noise exclusion. Meanwhile, it is proved
that the proposed FSPC could be effective against the
density variation problem in the LiDAR point cloud.
The proposed algorithm is tuned and tested on a labeled
data set collected at an intersection. The following article
is organized as follows: methodology is explicitly pre-
sented in the section entitled Methods; the experiments
covering tuning and performance testing are presented in
the Results section; the major findings are given in the
Conclusions.

Methods

In this section, the details of the proposed FSPC algo-
rithm are presented. The proposed FSPC has a similar
mainstream to that of traditional DBSCAN but has dif-
ferent implementation details. The major differences are
twofold: (1) the input for FSPC is a spherical projected
2D map (spherical map), while the input for DBSCAN is
an array of coordinates; (2) the neighborhood query of
DBSCAN is achieved by an eps-radius spatial search,
while the FSPC searches the neighborhood using a 2D-
window on the spherical map. It should be noted that
this work only focuses on the clustering algorithm; the
input is the post-background-filtering point clouds with
scattered noise points.

Spherical Map Representation

The input for FSPC is a 2D spherical map instead of a
set of 3D Cartesian coordinates, which can be obtained
directly from LiDAR returned packets. The LiDAR sen-
sor collects the point cloud by rotationally firing a set of
vertically arranged laser beams at a constant spinning
rate. Each laser beam (a laser channel) is fixed at a partic-
ular elevation. If a laser beam hits an obstacle, the
LiDAR sensor will report the relative distance from the
LiDAR sensor to the surface of the obstacle. Figure 1
presents the top and side view of a LiDAR sensor and an

Chen et al 317

outline of the vehicle. Multiple laser beams hit the surface
of the vehicle and result in the presence of points repre-
sented by red dots. Three parameters describing the sphe-
rical data are returned at each firing: d,a,v. Parameter d

is the relative 3D distance from the laser hitting surface
to the LiDAR sensor. The a is the azimuth angle (the
horizontal angle on the XY plane) and the v is the eleva-
tion angle relative to the XY plane.

Taking the Velodyne LiDAR sensor as an example, a
data packet is generated after every 12 firings, and each
firing contains a data block. Each data block includes
16–128 data points, depending on the number of laser
channels. An example of the data block and packet for a
32-laser LiDAR sensor is given in Figure 2. ab refers to a
returned azimuth angle indicating the heading direction
of a series of laser beams at the moment of firing, and v0

to v31 correspondingly refer to the fixed elevation angles

for each laser channel. A data block could be treated as a
column for a data packet, and each data packet includes
12 returned blocks. The spinning direction of laser beams
complies with the continuously increased azimuth angle
from ab to ab+ 11, which also follows a counterclockwise
firing sequence. For the default LiDAR setting, a com-
plete 360� rotation (a frame of data) would take 0.1 s and
contain 1800 firings. Thus, the azimuth difference
between adjacent blocks (azimuth resolution) should be
0.2� (360/1800).

A spherical map is established after the LiDAR sensor
completes a 360� spin. The spherical map in this study is
defined as an array (shown in Figure 3) in which columns
refer to different discretized azimuth channels and each
row refers to the different laser channels. Each cell for
the spherical map records the returned distance value
according to the corresponding azimuth and laser

Figure 1. Example of azimuth and elevation angle.

Figure 2. Example of data block and data packet.

318 Transportation Research Record 2676(6)

channel. The process of spherical map establishment is
also given in Figure 3. At beginning of each frame, an
empty array with 1800 3 32 is created as a container of a
spherical map. When a data block (a column of data
array with 1 3 32) is transmitted from the LiDAR sen-
sor, the azimuth value is first discretized as the azimuth
channel (for 0–1799), which is also regarded as the col-
umn index of the spherical map. After that, the obtained
data block is written into the container of the spherical
map according to discretized azimuth channel azimuth.
Once a roll-over (a complete 360�) of azimuth is detected,
the container is output as the spherical map of the cur-
rent frame.

FSPC Algorithm

The mainstream of FSPC is basically identical to the tra-
ditional DBSCAN, while the detailed implementations
are different. The DBSCAN is one of the most prevalent
algorithms in the clustering task; it can identify the arbi-
trary shape of clusters based on the spatial density while
ruling out the noise. In general, two parameters are
involved in the DBSCAN: minPts (minimum sample
points to establish a core point) and eps (neighborhood
searching radius). The two parameters work together to
identify the dense point clusters.

The procedure of DBSCAN is briefly introduced as
follows. (1) For each input point, search the neighbor-
hoods within the eps-radius, and mark those points

whose number of neighborhoods within eps-radius satis-
fies the minPts threshold for core points. (2) Identify the
connected components of core points based on the direct
and indirect interconnection of neighborhoods, and
ignore the non-core points. (3) Assign each non-core
point to a nearby connected component if the non-core
point is within the eps-radius; otherwise, the non-core
points are labeled as noise.

As suggested in the DBSCAN, the time complexity is
composed of two parts: (1) the time for identifying the
core points, which takes O Nð Þ time complexity; and (2)
the time for searching the neighborhoods, which takes
O Nð Þ per point at worst. If a data structure such as KD-
tree is applied to improve the neighborhood searching
process, the time complexity will be improved to
O log Nð Þð Þ. In summary, the total time complexity is
from O(N2) to O(N log Nð Þ). For those heavy traffic con-
ditions that involve many moving objects, the large num-
ber of foreground points would exponentially increase
the time consumption for clustering, and further result in
lag in the real-time LiDAR application.

In the FSPC, the neighborhood searching is modified
to improve the time complexity. In contrast to
DBSCAN, the FSPC searches the neighborhoods on a
spherical map. Figure 4 presents the point arrangement
of a vehicle (marked by the red dashed ellipse) in 3D
space and on a spherical map. If we zoom in on the sur-
face points of the vehicle, it can be observed that three
points are spatially adjacent both in 3D space and on the
spherical map. Thus, the spatial relationship between dif-
ferent points could be directly inferred from the spherical
map given the distance information of each point and
corresponding index on the spherical map.

Figure 3. Example for spherical map and establishment.

Figure 4. Point distribution in 3D space and on spherical map.
Note: DBSCAN = density-based spatial clustering of applications with

noise; FSPC = fast spherical projection clustering.

Chen et al 319

For illustration purposes, a comparison of the neigh-
borhood searching approaches of DBSCAN and FSPC
is shown in Figure 5. The figure on the left is the neigh-
borhood searching of DBSCAN which is based on the
spatial eps-radius in 3D space. The figure on the right,
on the other hand, is the FSPC neighborhood searching,
which is based on the 2D-window searching on a spheri-
cal map. For the spatial eps-radius searching, the spatial
relationship between each pair of points is first inferred
from the input data by calculating the Euclidean distance
or establishing the tree-based data structure such as KD-
tree, which requires O(N) and O(log Nð Þ) time complex-
ity, respectively.

As shown on the right side of Figure 5, the orange
area refers to the 2D-window with 5 3 5 size (It should
be noted that the size of the 2D-window could be deter-
mined based on the demand in practice; 3 3 11, for
example, is also viable). To query the neighborhoods
using the 2D-window, two steps are required: (1) the
row r and column c indices for the cells within the 2D-
window are first calculated based on the central
point (noted by red), and the neighbor cells within the
2D-window fdr, c jr, c 2 windowg are directly read
from the spherical map according to the indices; (2)
those readings whose distance dr, c satisfies the criterion
dcenter � dreading
�
�

�
�\e are selected as neighborhoods.

In this criterion, the e is another parameter for the
FSPC used to exclude the window readings whose dis-
tances deviate too far from the center point, which is
necessary because even though two points are close to
each other on the spherical map, they may still be far
apart in the 3D space. Because of the neighborhood
query using the 2D-window only focusing on the cells
within the window, the time complexity is independent
from the whole problem of scale N, so the time

complexity for 2D-window searching is O(1) and the
whole complexity for FSPC is O(N).

The whole procedure for FSPC is given in Figure 6.
Another advantage for FSPC is that it could tackle

the variation of point density problem, which would
improve both accuracy and range of detection. Figure 7
shows the illustration for the point density variation
problem. It can be seen that the density of the object at
position A (near side) is much greater than that of the
one at position B (far side), which is caused by the radia-
tion property of LiDAR beams. For those common
Euclidean-distance-based methods such as DBSCAN,
OPTICS (Ordering Points to Identify the Clustering
Structure), or mean-shift, the varying point density (or
distance between each pair of adjacent points) may cause
massive numbers of false-negative cases (target objects
are unable to be detected). Taking the DBSCAN as an
example, because of the difference of Dfar and Dnear

shown in Figure 7, it is difficult for the DBSCAN to cor-
rectly cluster both far and near objects using a fixed eps-
radius threshold. If the eps threshold is set large enough
to cover the Dfar, different entities at the near side may
be clustered as one cluster. On the other hand, if the eps-
radius is set as a small value to correctly cluster near
objects as independent entities, those objects on the far
side may be unable to be detected because of the
sparseness.

The FSPC could avoid this problem for two reasons:
(1) for those objects at the far side, even though the dis-
tance of two adjacent points is large, those two points
are still near to each other on the spherical map because
of the rotational order of the LiDAR sensor; and (2) the
parameters in FSPC are more easily tuned to detect
objects at both near and far sides correctly. The proof is
provided as follows.

Figure 5. Comparison between eps-radius and 2D-window.
Note: DBSCAN = density-based spatial clustering of applications with noise; FSPC = fast spherical projection clustering.

320 Transportation Research Record 2676(6)

Figure 8 presents an example under a generalized 2D
case. The points A and B denote two adjacent points on
the object surface, where the A is relatively nearer to the
sensor than B because of the heading angle of the object
surface, and the A

0
is the projection on the trace from the

LiDAR sensor to point B. The dnear and dfar refer to the
distance from the LiDAR sensor to points A and B,
respectively. The DDBSCAN and DFSPC are the distance
measurements for DBSCAN (Euclidean distance) and
FSPC algorithm correspondingly. According to the

geometric relationship, the DDBSCAN and DFSPC may be
described by the following equations:

DDBSCAN= d2
far + d2

near � 2dneardfar cos Dað Þ ð1Þ

DFSPC = dfar � dnear ð2Þ

In this case, the Da is a constant value representing the
delta azimuth angle between two horizontal beams,
which is related to the spinning frequency of the LiDAR
sensor; in other words, different sensor settings would
result in different values. In this study, the tested LiDAR
sensor performs at a rotation frequency of 10Hz and the
Da equals 0.2�; therefore cos(Da) approximates to 1 and
the term 2dneardfar cos að Þ is approximately equal to
2dneardfar. Therefore the DDBSCAN could be rewritten as
(dfar � dnear)

2. Assuming that dfar = gdnear, the DFSPC and
DDBSCAN could be recognized as

DDBSCAN= g� 1ð Þ2d2
near ð3Þ

DFSPC = (g� 1)dnear ð4Þ

where the g is an amplification factor deciding the head-
ing degree of the object surface and which is greater than
1. It could be inferred that the DFSPC is less sensitive than
DDBSCAN since the DFSPC is increased linearly while the
DDBSCAN is increased exponentially with the distance.
Thus, it is easier for FSPC to identify an appropriate
threshold to separate entities at both the far and near
sides since the distance measurement for FSPC only

Input: Spherical Map r,c

Initialize an empty set = {}
Initialize an empty stack
Initialize parameters:
Window Size, andminPts

Identify and label all core points on the
Spherical Map r,c . For each core point
core , at least minPts foreground

points c,r within the Window Size
satisfy:

| c,r − core | <

Return the labeled
spherical map

Join the core points as different clusters
according to the connectivity of core
points.

For each noncore point, specify a
cluster label from a core point if it
within the window of the core point and
satisfy:

| noncore − core | <
If a noncore point is unable to be
specified any label, it is labeled as
noise.

Figure 6. Flow chart of fast spherical projection clustering
(FSPC).
Note: DBSCAN = density-based spatial clustering of applications with

noise; FSPC = fast spherical projection clustering.

Y

X

LiDAR

Position B

Position A

far

nea

Figure 7. Illustration for point density variation (top view).
Note: DBSCAN = density-based spatial clustering of applications with

noise; FSPC = fast spherical projection clustering.

Chen et al 321

slightly increases. For example, the Euclidean distance
between adjacent points would increase 10,000 times
from 1m to 100m, while the distance measurement for
FSPC would only increase 100 times.

The output of FSPC is a labeling map with identical
size to that of the spherical map, where each cell stores
the point-wise instance label. In association with the
spherical map, the instance-level 3D point cloud could
be obtained.

Results

In this section, the FSPC is tested on a data set collected
at the intersection of Veteran Street and Mira Loma
Drive in Reno, Nevada (as shown in Figure 9) by
CATER (Center for Advanced Transportation Education
and Research), University of Nevada, Reno. The data set
is collected by a 32-laser Velodyne LiDAR sensor set on
a traffic signal rack (over 5m in height). The data set
includes 18,000 frames of data (half an hour). The raw
data is first processed by the background filtering method
provided by Wu et al. (3). A visualization of the post-
filtered point cloud is shown in Figure 10. It can be
observed that the post-filtered data still contains scattered
noise, which results from the random nature of the

LiDAR sensor. The noise will be identified and excluded
by the clustering algorithm. Next, 2000 frames of the col-
lected data are manually labeled with the point-wise label
(target object or background).

On average, 1699 foreground points are contained
in each frame, and the foreground points would surge
to over 10,000 at congested traffic conditions.
Approximately 40% of points are scattered background
points, which are usually dynamic background points
such as trees and bushes that failed to be filtered by
background filtering algorithms; these need to be further
excluded by clustering. We first tune the proposed FSPC
on the labeled data set to obtain the optimal parameters.

Δ

near far

DBSCAN

FSPC
′

Object Surface

LiDAR

Figure 8. Illustration for point density variation.
Note: DBSCAN = density-based spatial clustering of applications with

noise; FSPC = fast spherical projection clustering.

Figure 9. Data collection location.
Note: St. = Street; Dr. = Drive.

Figure 10. Comparison between before and after of background
filtering.
Note: IoU = intersection-over-union.

322 Transportation Research Record 2676(6)

Second, the scores including accuracy and time con-
sumption of FSPC are obtained through the labeled data
set, which is also compared with existing typical cluster-
ing algorithms DBSCAN and a CCL-based algorithm.
Last, the FSPC with the optimal parameters is tested on
the whole data set to validate the detection range and
time complexity. The whole experiment is performed on
a desktop PC with an Intel Core i5-7500 3.40GHz pro-
cessor and 16GB RAM. All implementations including
algorithm coding and experiment are carried out under
the Python 3.8 environment.

As mentioned in the methodology, three parameters:
e (eps), size of the 2D window, and minPts are involved
in the proposed FSPC. For evaluation purposes, the best
combination of different parameters is first tuned to
obtain optimal performance. To further justify the per-
formance of the proposed FSPC, two widely applied
unsupervised clustering algorithms are included for com-
parison: DBSCAN and CCL-based (15). All three clus-
tering algorithms satisfy the ‘‘cluster number free’’
requirement; thus they could be fairly compared.

Since we only focus on the detection for target objects
(all road users), the total classes in the clustered results
consist of dynamic background (noise) and target points
(foreground). In this work, metrics for image segmenta-
tion are selected for the performance evaluation, because
the output (labeling map) has the same property as the
labeling mask in the image segmentation tasks. The
selected metrics include precision, recall, and IoU (inter-
section-over-union). The point-wise ground truth labels
are compared with the output of FSPC and the metrics
are calculated. The calculation could be defined as

precisionc =
Oc \ Gcj j

Ocj j
,

recallc =
Oc \ Gcj j

Gcj j
, IoUc =

Oc \ Gcj j
Oc [Gcj j

ð5Þ

where Oc and Gc respectively refer to the output and
ground truth point sets belonging to class c. The symbol
�j j denotes the cardinality (number of points) of the point
set.

The parameter searching range determined empirically
is presented in Table 1; by this, all possible combinations
of the different parameters are tested.

The tuning starts from the parameter minPts. Figure 11
presents the average score of metrics given different minPts
settings. For dynamic background, three accuracy metrics
are maintained at high scores over 99.7% regardless of dif-
ferent minPts values. While, for the target points, the
metrics would change differently according to different
minPts settings. The precision value reached the highest
score at 20 minPts, the IoU metric reached the summit at
15 minPts, and the recall kept dropping in the whole range.
Given the application of roadside LiDAR, we hope to
detect as many objects as possible and ensure detection pre-
cision. Therefore, the optimal value of minPts should be 15.

Given 15 as the minPts setting, the parameter setting
of eps is tested similarly. Figure 12 presents the average
metrics given different eps. Similar to the previous test,
the metrics of dynamic background are also maintained
at a high level. For the target points, the precisions
decline, with a tiny trend from 95.1% to 94.3%. The
recall and IoU uniformly improve in the whole eps
range, reaching 98.0% and 92.5%, respectively. Thus, we
consider the best eps as 1.8.

After that, the size of the searching window is tested,
which includes two parameters: height and width. The
window size will significantly affect the searching range
and change computation load; therefore, we tested it in
association with the time consumption. Figures 13 and
14 show the tested height and width respectively, and
Figure 15 shows the variation of time consumption.
Again, the impact of different parameters on the dynamic
background can be ignored. As shown in Figure 13, the
precision and IoU are affected significantly by the win-
dow width: a longer window width contributes to a lower
metric value after the width increases to 11, with them
finally decreasing to 86.8% and 85.8%, respectively,
while the recall keeps increasing through the whole range.
As shown in Figure 14, the height parameter presents a
similar trend, the recall value for target points converging
at 5. Additionally, as shown in Figure 15, the time con-
sumption increases linearly as the width increases.

Table 1. Parameter Searching Range

Parameter Algorithm Searching range

Eps FSPC [0.5,0.8,1.0,1.2,1.5,1.8]
DBSCAN [0.5,0.8,1.0,1.2,1.5,1.8,2.0,2.2,2.4,2.6,2.8,3.0]

minPts FSPC [10,15,20,25,30]
DBSCAN

Height of window FSPC [2,3,4,5,6,7,8]
Width of window [7,9,11,13,15,17,19,23,27]

Note: FSPC = fast spherical projection clustering; DBSCAN = density-based spatial clustering of applications with noise; minPts = minimum points for a

cluster); eps = the radius to search neighborhoods.

Chen et al 323

Taking all things together, a window width of 11 is
selected and, based on a similar analysis, a window
height of 5 is chosen.

Based on the tuning test on different parameters, the
optimal parameter for FSPC is summarized in Table 2.
The same tuning test is implemented on the DBSCAN,
and the result is also given in Table 2. It can be seen that
the ‘‘eps’’ parameter for FSPC is higher than for
DBSCAN, the reason for this result could be the differ-
ence between 3D and 2D distance measurement, which is
proved in the previous section.

The overall summary of metrics based on the best
parameters setting is given in Table 3. In addition, an
instance-level error between the number of detected
objects and ground truth is introduced to adequately
reveal the performance. The instance-level error is calcu-
lated by counting the instances that have instance-IoU
over 50% between output and ground truth. From Table
3, it is observed that the dynamic background points
could be easily identified by three methods. All three
methods could obtain high accuracy metrics (precision,
recall, and IoU) over 98%. However, the scores for

Figure 11. Three metrics given different minPts.
Note: IoU = intersection-over-union.

Figure 12. Three metrics given different eps.
Note: IoU = intersection-over-union.

Figure 13. Three metrics given different window width.
Note: IoU = intersection-over-union.

324 Transportation Research Record 2676(6)

target point identification are dramatically different
across the three methods. For the target point identifica-
tion, it could be seen that the highest recall score is
achieved by the CCL-based method with 99.7% and fol-
lowed by the proposed FSPC and DBSCAN with 98.3%
and 96.7% correspondingly. However, the precision
score obtained by the CCL-based method is the lowest
among the three methods with only 66.8%. Additionally,
the IoU score for the CCL-based method is also the low-
est with 66.7%. Two reasons contributed to the low

Figure 14. Three metrics given different window height.
Note: IoU = intersection-over-union.

Figure 15. Variation of time consumption given different window size.
Note: IoU = intersection-over-union.

Table 2. Optimal Parameters for Clustering Algorithm

Method minPts Eps Window size

FSPC 15 1.8 (5 3 11)
DBSCAN 15 1.2 na

Note: FSPC = fast spherical projection clustering; DBSCAN = density-

based spatial clustering of applications with noise; minPts = minimum

points for a cluster); eps = the radius to search neighborhoods. the

Window size is not applicable for DBSCAN.

Table 3. Performance Evaluation Result

Method Class Precision (%) Recall (%) IoU (%) mcost (ms) scost (ms)

Matched
instances

(IoU . 0.5)

FSPC Target point 98.2 98.3 96.5 24.4 2.36 1483/1511
Dynamic background 99.9 99.9 99.9

DBSCAN Target point 82.3 96.7 80.0 117.1 6.59 1414/1511
Dynamic background 99.9 99.6 99.5

CCL Target point 66.8 99.7 66.7 7.8 2.86 787/1511
Dynamic background 99.9 99.6 98.7

Note: FSPC = fast spherical projection clustering; DBSCAN = density-based spatial clustering of applications with noise; CCL = connected-component

labeling; IoU = intersection-over-union.

Chen et al 325

accuracy of the CCL-based method: 1) Due to the occlu-
sions or packet loss are frequently occurring in the
LiDAR applications, the CCL-based method is unable
to handle the point disconnections. 2) the CCL-based
method doesn’t consider the noise handling in the clus-
tering scheme For the proposed FSPC and DBSCAN,
they both applied a density-based strategy to identify the
object, thus they could alleviate the impact from the
point disconnection and noise points, and further
improve the detection accuracy compared to the CCL-
based method. Between the FSPC and DBSCAN, the
precision score of the DBSCAN (82.3%) is lower than
the proposed FSPC (98.2%), and its matched instance
(1414 over 1511) is also less than the proposed FSPC
(1483 over 1511), which suggests that the DBSCAN
would generate more false-positive cases compared to
FSPC. The higher precision and matched instances for
the proposed method are attributed to the better han-
dling of density variation issue by the 2D-window neigh-
borhood searching strategy in the FSPC. Most LiDAR
data processing application usually requires a processing

speed greater than 100 ms/frame to satisfy the real-time
processing requirement. In the three methods, the FSPC
and CCL-based methods could satisfy the real-time level
with 24.4 ms/frame and 7.8 ms/frame respectively. The
CCL-based method is faster than the FSPC because it
requires less computation consumption. However, the
FSPC has better performance on the accuracy metrics,
which is considered to be prioritized in the roadside
LiDAR applications. Additionally, the processing speed
of FSPC is still under the real-time level with only 24%
of the real-time requirement and its stability is greatest
with the lowest standard deviation of 2.36 ms.
Comprehensively considering the score of different
metrics and time consumption, the proposed method
could outperform other methods in the LiDAR data pro-
cessing tasks.

The variant density problem is settled by the 2D-win-
dow searching strategy, which was introduced in the pre-
vious section. Figure 16 shows a 3D visualization of this
improvement. It can be observed that FSPC detected five
objects while DBSCAN only detected four objects. The
missing object for DBSCAN locates at the lower-left cor-
ner which has a sparser point cloud than others. This is
because the eps-radius of DBSCAN could detect those
objects that are near to the LiDAR while it failed to
detect those far from the LiDAR. The overview of all
detected objects of the three algorithms is presented in
Figure 17, each green dot representing the center of a
detected cluster. It can be observed that the three algo-
rithms are able to profile the outline of the testing inter-
section and the width of lanes. Although the CCL-based
algorithm could maximally detect all objects in the inter-
section, there is also a great deal of noise in the scene.
Both FSPC and DBSCAN could correctly detect the
objects in each lane compared with the CCL-based algo-
rithm, while it can be observed that the DBSCAN failed
to detect objects circled by the red dashed line, which are
the objects located over 100m away. For the FSPC, the
remotest detected object is located over 200m away.

For roadside LiDAR, the robustness to variant com-
putation loads is important. This is because the fore-
ground points will periodically surge because of traffic
features such as regular traffic peaks. To address this
concern, we further tested the impact of the different
numbers of foreground points on the algorithm effi-
ciency. Figure 18 shows the foreground points’ accumu-
lative proportion across 18,000 frames in the collected
intersection. From the figure, it can be reported that over
90% of frames contain fewer than 10,000 foreground
points and approximately 10% of frames have more than
10,000 foreground points, up to 23,000 points. Figure 19
reveals the correlation between the foreground points
and the time efficiency of clustering for different algo-
rithms. Apparently, the time consumption of DBSCAN

Figure 16. Results for different clustering algorithm.
Note: FSPC = Fast-spherical-projection-based point cloud clustering;

DBSCAN = density-based spatial clustering of applications with noise.

326 Transportation Research Record 2676(6)

increases significantly with the increment of foreground
points, whereas the FSPC and CCL-based algorithms
only increase to a tiny extent and the increasing trend for
the CCL-based algorithm is lower than that for the
FSPC. This is because the procedure of the CCL-based
algorithm is simpler than that for FSPC. The maximum
time consumption for DBSCAN would reach 2500ms in
the most complex scene, which would be devastating to
the real-time application. As for the proposed FSPC, the
maximum time consumption would not exceed 85ms
under the same foreground points, as shown in Figure

20. For the most common scene—that the foreground
points are fewer than 10,000—the DBSCAN would con-
sume up to 500ms, while the FSPC is maintained below
40ms in most situations, which fulfills the requirement
for real-time data processing under 100ms per frame.

Note that the DBSCAN would outperform the FSPC
when the foreground points are fewer than 2000. This is
because the FSPC requires more computational load
during the preprocessing, which is related to the coding
implementation; as a consequence, the time for prepro-
cessing exceeds the time for the clustering process.

In summary, the FSPC still reaches linear time con-
sumption and could be robust in over 90% of situations.

Conclusions

In this work, we proposed a fast clustering algorithm
FSPC to efficiently and accurately cluster variant-density
LiDAR point clouds. The proposed algorithm utilizes
the advantage of spherical map and a novel 2D-window
searching to accelerate the clustering process, and further
improves the clustering accuracy compared with existing
algorithms. The testing result showed that (1) the pro-
posed FSPC could achieve within 40ms per frame in the
most common scenes (foreground points within 5000);
and (2) over 96% of detected objects have over 50% IoU
with instance-level ground truths, and over 98% in both
precision and recall metrics—compared with traditional

Figure 17. Comparison for different detection range.
Note: FSPC = fast spherical projection clustering; DBSCAN = density-based spatial clustering of applications with noise; CCL = connected-component

labeling.

Figure 18. Accumulative proportion of foreground points.

Chen et al 327

DBSCAN and CCL-based algorithms, the FSPC outper-
formed them, with all accuracy metrics over 96%. As for
the time consumption, the FSPC is 4.8 times faster than
the DBSCAN and could satisfy the real-time require-
ment. The process time would be maintained within
40ms in over 90% of frames in the testing site. Even
though the FSPC is slightly slower than the CCL-based
method, it is overall greater than both DBSCAN and
the CCL-based algorithm in the accuracy metrics.
Additionally, we also identified a wider detection range,

up to 200m, which is 33% further than traditional
DBSCAN. The proposed FSPC is expected to be applied
in the field to improve the roadside LiDAR system.
Future work will include background filtering based on
the spherical map and a multi-object tracking algorithm
to be added before and after the FSPC clustering algo-
rithm, constituting the whole roadside LiDAR process-
ing pipeline. Moreover, the generality of FSPC enables
the proposed algorithm to be applied in other areas such
as autonomous driving or remote sensing. Finally, we
also believe the efficiency of FSPC could be further
improved by optimizing the code implementation.

Acknowledgments

The authors gratefully acknowledge the financial support and
are thankful to the engineers from the Nevada Department of
Transportation (NDOT) and the City of Reno for helping
develop the testbeds.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Z. Chen, H. Xu; data collection: H. Xu;
analysis and interpretation of results: J. Zhao, Z. Chen; draft
manuscript preparation: Z. Chen, J. Zhao, H. Xu, H. Liu. All
authors reviewed the results and approved the final version of
the manuscript.

Figure 19. Increment trend of time consumption for clustering algorithms.
Note: FSPC = fast spherical projection clustering; DBSCAN = density-based spatial clustering of applications with noise; CCL = connected-component

labeling.

Figure 20. Increment trend of time consumption for FSPC.
Note: FSPC = fast spherical projection clustering.

328 Transportation Research Record 2676(6)

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the Nevada Department of
Transportation (NDOT) under Grant No. P744-18-803.

ORCID iDs

Zhihui Chen https://orcid.org/0000-0001-9893-3009
Hao Xu https://orcid.org/0000-0003-1314-4540
Junxuan Zhao https://orcid.org/0000-0001-9927-7023
Hongchao Liu https://orcid.org/0000-0001-7092-9606

Data Accessibility Statement

Some or all data, models, or code that support the findings of
this study are available from the corresponding author on rea-
sonable request.

References

1. Lv, B., H. Xu, J. Wu, Y. Tian, and C. Yuan. Raster-Based
Background Filtering for Roadside LiDAR Data. IEEE
Access, Vol. 7, 2019, pp. 76779–76788.

2. Ilgin Guler, S., M. Menendez, and L. Meier. Using Con-
nected Vehicle Technology to Improve the Efficiency of
Intersections. Transportation Research Part C: Emerging

Technologies, Vol. 46, 2014, pp. 121–131. http://doi.org/
10.1016/j.trc.2014.05.008.

3. Wu, J., H. Xu, and J. Zheng. Automatic Background Fil-
tering and Lane Identification with Roadside LiDAR
Data. Proc., IEEE 20th International Conference on Intelli-

gent Transportation Systems (ITSC), Yokohama, Japan,
IEEE, New York, March 15, 2018, pp. 1–6.

4. Wu, J., h. xu, R. Sun, and P. Zhuang. Road Boundary-
Enhanced Automatic Background Filtering for Roadside
LiDAR Sensors. IEEE Intelligent Transportation Systems

Magazine, 2021, pp. 2–14. https://doi.org/10.1109/
MITS.2021.3049358.

5. Zhao, J., H. Xu, H. Liu, J. Wu, Y. Zheng, and D. Wu.

Detection and Tracking of Pedestrians and Vehicles Using
Roadside LiDAR Sensors. Transportation Research Part

C: Emerging Technologies, Vol. 100, 2019, pp. 68–87.
https://doi.org/10.1016/j.trc.2019.01.007.

6. Chen, J., H. Xu, J. Wu, R. Yue, C. Yuan, and L. Wang.
Deer Crossing Road Detection with Roadside LiDAR
Sensor. IEEE Access, Vol. 7, 2019, pp. 65944–65954.

7. Wang, C., M. Ji, J. Wang, W. Wen, T. Li, and Y. Sun. An
Improved DBSCAN Method for LiDAR Data Segmenta-
tion with Automatic Eps Estimation. Sensors (Basel, Swit-
zerland), Vol. 19, No. 1, 2019, p. 172.

8. Zhao, J., Y. Dong, S. Ma, H. Liu, S. Wei, R. Zhang, and

X. Chen. An Automatic Density Clustering Segmentation

Method for Laser Scanning Point Cloud Data of Build-

ings. Mathematical Problems in Engineering, Vol. 2019,

2019. https://doi.org/10.1155/2019/3026758.
9. Velodyne LiDAR, Inc. VLS-128 User Manual 63-9483.

Velodyne LiDAR, Inc., San Jose, CA.
10. Himmelsbach, M., T. Luettel, and H. J. Wuensche. Real-

Time Object Classification in 3D Point Clouds Using Point

Feature Histograms. Proc., IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), St.

Louis, MO, IEEE, New York, 2009, pp. 994–1000.
11. Suzuki, K., I. Horiba, and N. Sugie. Linear-Time Con-

nected-Component Labeling Based on Sequential Local

Operations. Computer Vision and Image Understanding,

Vol. 89, No. 1, 2003, pp. 1–23.
12. John, V., Q. Long, Z. Liu, and S. Mita. Automatic Calibra-

tion and Registration of Lidar and Stereo Camera without

Calibration Objects. Proc., IEEE International Conference

on Vehicular Electronics and Safety (ICVES), Yokohama,

Japan, IEEE, New York, 2016, pp. 231–237.
13. Ravankar, A., Y. Kobayashi, A. Ravankar, and T. Emaru.

A Connected Component Labeling Algorithm for Sparse

Lidar Data Segmentation. Proc., 6th International Confer-

ence on Automation, Robotics and Applications (ICARA),

Queenstown, New Zealand, IEEE, New York, 2015,

pp. 437–442.
14. Börcs, A., B. Nagy, and C. Benedek. Fast 3-D Urban

Object Detection on Streaming Point Clouds. In Computer

Vision—ECCV 2014 Workshops, Vol. 8926. Lecture Notes

in Computer Science (including Subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics)

(Agapito, L., M. Bronstein, and C. Rother, eds), Springer,

Cham, Switzerland, 2015, pp. 628–639.
15. Zermas, D., I. Izzat, and N. Papanikolopoulos. Fast Seg-

mentation of 3D Point Clouds: A Paradigm on LiDAR

Data for Autonomous Vehicle Applications. Proc., IEEE

International Conference on Robotics and Automation

(ICRA), Singapore, IEEE, New York, 2017, pp. 5067–

5073.
16. Bogoslavskyi, I., and C. Stachniss. Fast Range Image-

Based Segmentation of Sparse 3D Laser Scans for Online

Operation. Proc., IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Daejeon, Korea

(South), IEEE, New York, 2016, pp. 163–169.
17. He, L., X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao.

The Connected-Component Labeling Problem: A Review

of State-of-the-Art Algorithms. Pattern Recognition, Vol.

70, 2017, pp. 25–43.
18. He, L., Y. Chao, and K. Suzuki. A Run-Based Two-Scan

Labeling Algorithm. IEEE Transactions on Image Process-

ing, Vol. 17, No. 5, 2008, pp. 749–756.
19. Hasecke, F., L. Hahn, and A. Kummert. FLIC : Fast Lidar

Image Clustering. arXiv Preprint arXiv:2003.00575, 2020.

Chen et al 329

https://orcid.org/0000-0001-9893-3009
https://orcid.org/0000-0003-1314-4540
https://orcid.org/0000-0001-9927-7023
https://orcid.org/0000-0001-7092-9606
http://doi.org/10.1016/j.trc.2014.05.008
http://doi.org/10.1016/j.trc.2014.05.008
https://doi.org/10.1109/MITS.2021.3049358
https://doi.org/10.1109/MITS.2021.3049358
https://doi.org/10.1016/j.trc.2019.01.007
https://doi.org/10.1155/2019/3026758

