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ABSTRACT 8 

Light detection and ranging (LiDAR) technology is a key component of an autonomous vehicle’s 9 

sensing system. It also has the potential to be used at roadside as a major infrastructure-based 10 

detection for connected vehicle-infrastructure systems, as well as for the general purpose of traffic 11 

detection. This paper presents the results of a sponsored research on using LiDAR to detect traffic 12 

volume. Like other video-based sensors, occlusion is a major cause of error for traffic volume 13 

detection. In this study, a method for automatic identifying and classification of LiDAR specific 14 

occlusion was first developed based on the inherent characteristics of LiDAR sensors, such as the 15 

number of laser beams, vertical field of view (FOV) and degree of resolution, and rotation 16 

frequency etc.; Then, the model was implemented in traffic simulation to generate occlusion rates 17 
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under various level of service (LOS A to E) and different truck compositions (5%-30%); Lastly, 29 

data collected from two testbeds were used to examine the accuracy of the methodological 30 

approach and the simulation results. The testbeds include a freeway segment on I-80 and a major 31 

arterial of US 395 & North McCarran Boulevard in the Washoe County of Nevada. The result 32 

shows that using two 32-laser LiDAR sensors, an average of 95% detection accuracy could be 33 

achieved for the worst scenario of LOS E with 30% trucks.   34 

Keywords: Infrastructure-based LiDAR, Traffic volume, Level of Service, Occlusion. 35 

Introduction 36 

From inductive loop to video camera, traffic detection technologies continue to evolve and escalate 37 

(Guo et al., 2008; Fulari et al. 2017; He et al. 2019). Originally used for aerial survey, healthcare, 38 

geoscience and more, LiDAR is becoming ever more popular in the transportation industry after 39 

being utilized in autonomous vehicles as a key sensing technology for collision avoidance, obstacle 40 

detection, and autonomous cruise control (Liu et al. 2014; Wang et al. 2017; Kukkala  et al. 2018; 41 

Zeng et al. 2018). LiDAR is a typical non-contact sensing technology which measures distance to 42 

an object by illuminating the target with pulsed laser light and analyzing the reflected pulses. It 43 

provides 3-dimensional (3D) image based on the differences in laser return times and wavelengths. 44 

In addition to its speed and accuracy, LiDAR sensors can provide 360-degree surveillance in real-45 

time and are thus ideal for real-time and trajectory-level traffic detection.  46 

The research team has conducted a wealth of studies to investigate the feasibility of using 47 

LiDAR sensor at the roadside as a major solution for real-time traffic detection (Wu et al. 2020a; 48 

Wu et al. 2020b). This research was developed based on the results of two previous studies on how 49 

to process roadside LiDAR data for traffic and pedestrian detection (Zhao et al. 2019b), and how 50 
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to install LiDAR sensor at roadside for best performance (Zhao et al. 2020). A major objective of 51 

this study is to investigate the accuracy of using LiDAR to detect traffic volume under various 52 

traffic conditions. The research mainly involves developing a method for automatic identifying 53 

and classification of LiDAR specific occlusion and a combined simulation and experimental 54 

approach for systematic evaluation. The analytical method was developed based on the inherent 55 

characteristics of LiDAR sensors, such as the number of laser beams, vertical field of view (FOV) 56 

and degree of resolution, and rotation frequency. Traffic simulation was used to get occlusion rates 57 

by using the analytical method under various level of service conditions (LOS A to E) and different 58 

truck compositions (5%-30%); For experimental study, two testbeds were constructed on a 59 

segment of I-80 and a major arterial of US 395 & North McCarran Boulevard in the Washoe 60 

County of Nevada.  61 

Occlusion is a major cause of error for image-based detection. For practitioners, it is 62 

important to understand the expected occlusion rates and the resulted detection accuracy under 63 

various traffic conditions before field implementation of LiDAR sensors. Occlusion exists at 64 

different levels and can be mainly divided into three categories: partial occlusion, full occlusion, 65 

and non-occlusion. Among them, full occlusion certainly has the worst impact on traffic volume 66 

detection because the occluded vehicle cannot be detected and thus will be missing in the counts. 67 

Previous studies on occlusion have been primarily focused on how to identify the occurrence of 68 

occlusion, determine the degree of occlusion, and develop methods to mitigate the impacts of 69 

occlusion in vehicle detection (Wang et al. 2016; Phan et al. 2017), classification (Castillo et al. 70 

2017; Chang et al. 2018; Moutakki et al. 2018), counting (Moutakki et al. 2017; Velazquez-Pupo 71 

et al. 2018) and tracking (Veeraraghavan et al. 2003; Joshi et al. 2019). Studies similar to this 72 



4 

research that develops corresponding relationship between occlusion rates and detection accuracy 73 

covering all LOS conditions except LOS F have not been found in the literature.  74 

As video cameras have been widely applied in traffic detection (Zhang and Du 2020; 75 

Zhuang et al. 2020), it is necessary to give a brief review about its performance. According to the 76 

benchmark before 2012 (Dollár et al. 2009; Dollár et al. 2011; Geiger et al. 2012), the accuracy of 77 

using video cameras to detect partially occluded vehicles, heavily occluded vehicles, and occluded 78 

pedestrians is about 90%, 80%, 65%~75%, respectively. The recent KITTI Vision Benchmark 79 

(Gilroy et al. 2019) shows that the detection accuracy has been improved to vehicle (partial 80 

occlusion 90%; heavy occlusion 77%~87%), pedestrian (partial occlusion 71%~77%; heavy 81 

occlusion 66%~74%), and cyclists (partial occlusion 72%~76%; heavy occlusion 65%). One major 82 

weakness of video detection is night-time detection and the impact from inclement weather such 83 

as heavy winds, rain, and snow (Mukhtar et al. 2015). Additionally, large vehicles may project 84 

their images into adjacent lanes, resulting in overcount and false average speeds (Klein et al. 2006). 85 

In comparison, LiDAR sensors are more resistant to such weather conditions. In terms of accuracy, 86 

this research shows that using two 32-laser LiDAR sensors, an average of 95% detection accuracy 87 

could be achieved for the worst scenario of LOS E with 30% trucks.    88 

LiDAR Sensors and Operational Principle 89 

LiDAR uses eye-safe laser beams to create high-precision 3D point cloud representation and one 90 

data frame is generated after the sensor completes a 360-degree scan. The location of each recorded 91 

data point can be described in two coordinate systems, namely, the Cartesian coordinate system 92 

with (X, Y, Z) and the spherical coordinate system with (R, ω, α). They can be converted to each 93 

other using coordinate transformations (Velodyne 2016). 94 
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LiDAR emits pulsed light waves and uses the time a pulse takes to return to calculate the 95 

distance it travels, our study shows that when installed at roadside, it outperforms many other 96 

detection means in measuring speed, location and trajectory of all road users including pedestrians 97 

in real-time (Wu et al. 2018; Zhao et al. 2019a). A LiDAR sensor is usually securely mounted 98 

within a compact, weather-resistant housing and each laser beam rotates 360-degree along the 99 

sensor’s central axis with a fixed elevation angle to form a conical surface for scan. Also, a laser 100 

beam travels along a straight line with a certain direction but cannot continue to propagate after 101 

shooting an object (cause of occlusion). In practice, these inherent properties need to be 102 

investigated to guide installation. This research directly uses the findings from a previous study on 103 

how to install LiDAR sensors in the field, the authors refer the interested readers to Zhao et al. ( 104 

2020).    105 

Selection of LiDAR sensors should be based upon a combined consideration of cost and 106 

performance, our studies have found 16- and 32-beam LiDAR sensors are most cost-effective for 107 

roadside application (Zhao et al. 2020). In this study we used the Puck (VLP-16) (Velodyne 2016) 108 

and the Ultra Puck (VLP-32C) (Velodyne 2018) LiDAR sensors from Velodyne LiDAR Inc. The 109 

entry-level Puck sensor provides 16 laser beams and a FOV from −15° to +15° with 2° resolution. 110 

The Ultra Puck sensor provides 32 laser beams with a FOV from −25° to +15°, in which the vertical 111 

resolution of the laser beams is non-linear (0.33° for −4° to +1.33° FOV, others are non-linear). 112 

The rotation frequency of both types of LiDAR sensors can be customized from 5Hz to 20Hz. 113 

Method for Classification and Evaluation of Vehicle Occlusion in 114 

Infrastructure-based LiDAR Detection 115 

In this study, three occlusion levels were examined: 116 

1) Fully detectable objects: the objects can be detected completely (No occlusion). 117 
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2) Partially detectable objects: the objects can be detected partially (Partial occlusion). 118 

3) Undetectable objects: the objects cannot be detected (Full occlusion). 119 

For illustrative purpose, Fig. 1 demonstrates the above three occlusion scenarios, where vehicle #1 120 

is partially occluded by vehicle #3, vehicle #6 is fully occluded by vehicle #5, and vehicles #2, #3, 121 

#4, #5, #7 are not occluded and fully detectable. 122 

 123 

Fig. 1. Three occlusion levels of vehicles. 124 

Classification of Vehicle Occlusion Types Using Roadside LiDAR Data 125 

For a specific LiDAR sensor installed at roadside, the horizontal and vertical direction of each 126 

laser beam is known at a specific moment, which means that for a specific traffic scene at a certain 127 

moment, it is certain whether a laser beam can reach the surface of a vehicle. If so, the exact 128 

location of the reflection point can also be determined. During each 360-degree scan (one data 129 

frame), each vehicle’s ID and the 3D distance between the LiDAR sensor and the reflection point 130 

are critical for determination of occlusion types. To effectively process this information, the 131 

authors developed a 2D table/matrix structure 𝐻 (defined by Eq. (1)) based on the configuration 132 
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of the applied LiDAR sensors, with each row of the table representing each elevation angle/channel 133 

of the laser beams, and each column of the table representing each azimuth interval of the laser 134 

beams during 0-degree to 360-degree scan. The contents of the table are the vehicle ID(s) with the 135 

corresponding 3D distance(s) (defined by Eq. (2)). This way, vehicles’ information which are 136 

measured by the same laser beam at the same azimuth interval is recorded in the same cell of the 137 

2D table. 138 

H W×L = 

[
 
 
 
 
 
 
Q(1,1) Q(1,2) . . . Q(1,n) . . . Q(1,L)

Q(2,1) Q(2,2) . . . Q(2,n) . . . Q(2,L)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Q(m,1) Q(m,2) . . . Q(m,n) . . . Q(m,L)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Q(W,1) Q(W,2) . . . Q(W,n) . . . Q(W,L)]

 
 
 
 
 
 

                                                               (1)  139 

Q(m,n) = [  

𝑣𝑒ℎ𝐼𝐷(1)        𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (1)

𝑣𝑒ℎ𝐼𝐷(2)        𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (2)
⋮                                ⋮

𝑣𝑒ℎ𝐼𝐷(𝑠)        𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠)

] (𝑚 = 1,2, …𝑊; 𝑛 = 1,2, … , 𝐿)                           (2)                    140 

Where W is the total number of laser IDs and L is the total number of azimuth intervals within a 141 

360-degree scan; Q(m,n) includes both vehicle’s ID and the distance information of s vehicles that 142 

are detected by the laser m at the azimuth angle n. 143 

To classify detected vehicles in a data frame into different occlusion categories, a judgment 144 

is made based on the information stored in the 2D table of that data frame. If each vehicle is 145 

considered individually, the number of data points collected from each vehicle during a 360-degree 146 

scan can be calculated by counting the number of times (𝑀) the vehicle’s ID appeared in the 2D 147 

table. If more than one vehicle’s information are saved in the same cell, the first vehicle occludes 148 

all other vehicles (vehicles are sorted by distance from near to far) because a specific laser beam 149 

at a specific azimuth cannot be used again after it shot the first vehicle. This way, the number of 150 

times (𝑁) each occluded vehicle ID appeared in the 2D table can also be obtained. Comparing 𝑀 151 
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and 𝑁, the vehicle occlusion level can be determined: full detection (𝑀 > 𝑁 = 0), partial detection 152 

(𝑀 > 𝑁 > 0), and non-detection (𝑀 = 𝑁). When two LiDAR sensors are used, detection of each 153 

vehicle from two sensors is independent. If a vehicle can be fully detected by at least one sensor, 154 

the vehicle is labeled as full detection; if a vehicle cannot be detected by any sensor, the vehicle is 155 

labeled as non-detection; for other detection combinations, the vehicle is labeled as partial 156 

detection. The proposed classification process is illustrated in Fig. 2. 157 

 158 

Fig. 2. Flowchart of vehicle occlusion classification.  159 

Evaluation Indices of Vehicle Occlusion  160 

Assuming 𝑇  continuous frames are collected, in the 𝑖𝑡ℎ frame (𝑖 = 1,2,3, … , 𝑇 ), a total of 𝐾𝑖 161 

vehicles are detected, including 𝑎𝑖 fully detectable vehicles, 𝑏𝑖  partially detectable vehicles, and 162 
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𝑐𝑖 undetectable vehicles. To quantitatively evaluate the level of vehicle occlusion, the following 163 

indices are defined: 164 

1) 𝐹𝑢𝑙𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑅𝑎𝑡𝑒 =
∑ 𝑎𝑖

𝑇
𝑖=1

∑ 𝐾𝑖
𝑇
𝑖=1

                                                                                       (3) 165 

2) 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑅𝑎𝑡𝑒 =
∑ 𝑏𝑖

𝑇
𝑖=1

∑ 𝐾𝑖
𝑇
𝑖=1

                                                                               (4) 166 

3) 𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑅𝑎𝑡𝑒 =
∑ 𝑐𝑖

𝑇
𝑖=1

∑ 𝐾𝑖
𝑇
𝑖=1

                                                                                               (5) 167 

Assuming the maximum number of consecutive undetectable frames is 𝑃 and the total number of 168 

undetectable vehicles that satisfies this criterion is 𝐷𝑃, the percentage of undetectable vehicles is: 169 

4) 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠(consecutive 𝑓𝑜𝑟 𝑃 𝑓𝑟𝑎𝑚𝑒𝑠) =
𝐷𝑃

∑ 𝐾𝑖
𝑇
𝑖=1

             (6) 170 

Evaluation of Occlusion Influence on Vehicle Detection Using 171 

simulation Data 172 

To develop different LOS environments with various truck compositions, simulation was used, in 173 

which the proposed method was implemented to get occlusion rates under various level of service 174 

(LOS A to E) and different truck compositions (5%-30%).  175 

Simulation Scenarios 176 

A total of 30 traffic scenarios along an urban freeway segment was simulated in PTV Vissim to 177 

evaluate the impact of occlusion on vehicle detection (as shown in Fig. 3). The details of the 178 

developed simulation environment are introduced below: 179 

1) Urban freeway segment 180 

1000 m length; 4 lanes (2 lanes in each direction) with 3.66m width; median with 17.6m 181 

width; 2.5 m right-side lateral clearance and 2 ramps per mile.  182 

2) FFS (free-flow speed) = 31.29 m/s. 183 
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3) PHF (peak hour factor) = 0.95; fp(driver population adjustment factor) = 1.0; ET (passenger-184 

car equivalents) = 1.5 (type of terrain: level). 185 

4) LiDAR sensor: Puck (VLP-16) and Ultra Puck (VLP-32C), 10Hz rotation frequency.   186 

Installation: LiDAR 1 is horizontally installed at the median (500m, 0m, 2.4m) location. 187 

                    LiDAR 2 is horizontally installed at the median (550m, 0m, 2.4m) location.    188 

                    (Zhao et al. 2020) 189 

5) Region of Interest (ROI): [400m, 600m].  190 

6) Level of Service (LOS): A, B, C, D, E. 191 

7) Vehicle size: Passenger car (L = 4.5m, W = 1.8m, H = 1.6m). 192 

                                  Truck (L = 16.2m, W = 2.6m, H = 2.6m). 193 

                                  (Hancock and Wright, 2013) 194 

8) Percentage of trucks: 5%, 10%, 15%, 20%, 25%, 30%. 195 

Traffic volumes were generated based on the above settings.   196 

 197 

Fig. 3. Simulation of traffic flow.  198 

Summary of Simulation Results 199 

Both single and paired LiDAR sensor application were used in simulation and the detection rate 200 

was classified based on fully detectable, partially detectable, and undetectable. Additionally, the 201 
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percentage of undetectable vehicles was evaluated in two consecutive time intervals – undetectable 202 

for at least 0.5 seconds and undetectable for at least 1.0 second. Results are summarized in Table 203 

1(a) (one 16-laser LiDAR sensor application), Table 1(b) (two 16-laser LiDAR sensor 204 

application), and Table 2(a) (one 32-laser LiDAR sensor application), and Table 2(b) (two 32-laser 205 

LiDAR sensor application). 206 

The results show that: 207 

1) Using the “undetectable rate” as an indicator, an average accuracy of 95% could be 208 

achieved for the worst scenario of LOS E with 30% trucks if two LiDAR sensors are 209 

applied, therefore, a pair of 16-laser LiDAR sensors should be recommended considering 210 

the cost.  211 

2) Undetectable rate increases with the increase of both LOS level and the percentage of 212 

trucks and using one single higher-end 32-laser sensor does not help much, instead, a pair 213 

of lower cost 16-laser sensors should be used. 214 

3) There seems to be a large leap in undetectable rate when the truck percentage increases 215 

from 25% to 30%.  216 

4) If the truck volume is lower than 25%, one single 32-laser LiDAR sensor can be 217 

recommended for an expected accuracy of 92-94%.  218 

Validation Using Field Data 219 

With coordinated efforts from the Nevada Department of Transportation, the City of Reno 220 

and the Regional Transportation Commission (RTC), two test sites were developed, which 221 

include a segment of I-80 (39.51°N, −119.94°W) and a segment of US395 & North 222 

McCarran Boulevard (39.55N, −119.79°W).   223 
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 224 

Fig. 4. Data collection sites. 225 

For both sites, one single 32-channel LiDAR sensor (VLP-32C, 10Hz) was used in 226 

consideration of the cost and truck volume. At the I-80 site, the sensor was installed at the median 227 

area, at the US395 site, the sensor was installed at the southbound on-ramp area as shown in Fig. 228 

4. At the I-80 site, data collected on August 15th, 2019 from 7 am to 8 am were used for validation, 229 

at the US395 site, data collected on August 28th, 2019, also from the morning peak of 7 am to 8 230 

am were used. For each dataset, the one-hour volume was divided into twelve 5-minute intervals. 231 

As can be seen in Table 3 and Table 4, data from the I-80 site captured a dynamic truck 232 

composition of 8.49% to 23.30% while the LOS remained at LOS B.  At the US395 site, LOS 233 

varied in the range of LOS C to LOS E while the percentage of trucks was constantly lower than 234 

6%. Combined, data collected from two test sites covered a LOS range of B to E and a truck 235 

composition range of 2.79% to 23.30%. Although it is unfortunate some of the scenarios in 236 

simulation with both high LOS and heavy truck volume were not captured from the two sites, the 237 

data covered most of the scenarios and were sufficient for the purpose of validation.  238 
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Using the proposed automatic occlusion detection algorithm and the partially detectable 239 

rate as the parameter, comparison analysis was conducted. The reason why the partially detectable 240 

rate was selected should be straightforward, as the number of fully undetectable vehicles could not 241 

be verified without the ground truth traffic counts. As shown in Table 3 and Table 4, comparing 242 

the experimental results with the corresponding simulation results under the same LOS level and 243 

similar truck percentage conditions, the average offsets of partially detectable rates for the two 244 

sites are 0.92% and 0.62%, respectively, which strongly support the simulation results.  245 

Conclusion 246 

This paper presents part of a continuous study on the feasibility of using LiDAR as a major 247 

infrastructure-based traffic detection, with focus on the accuracy of traffic volume detection and 248 

how traffic condition and truck composition affect the results. A method for automatic 249 

identification of LiDAR-based occlusion was developed, which was implemented in traffic 250 

simulation with a total of 30 simulation scenarios covering the Level of Services A to E and the 251 

truck percentage from 5% to 30%. The simulation results were examined against field data 252 

collected from two test sites. The study was conducted based on two-lane (per direction) highways 253 

owing to the interest of the sponsoring agency, but the proposed method is applicable to other 254 

scenarios because it was developed based on the inherent features of LiDAR sensors. In summary, 255 

one 32-laser LiDAR sensor is recommended if the truck percentage is lower than 25%, otherwise, 256 

a pair of 16-laser sensors should be considered for two-lane surveillance. Additionally, the 257 

information provided in Table 1 and Table 2 can help transportation agencies to make informed 258 

decisions when considering LiDAR as their choice of sensing technology in the field.   259 
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Limitations of the study include missing LOS F in the analysis, due in part to the fact that 260 

traffic is highly unstable at LOS F and in part to the lack of necessary test sites, and missing 261 

scenarios with higher truck volume, which is inherent to the traffic condition at the test sites.  262 
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