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The asymmetric characteristic of a vehicle’s ability in deceleration and acceleration, as well
as its impact to micro- and macroscopic traffic flow has caused increased attention from
both theoretical and practical sides. However, how to realistically model this property
remains a challenge to researchers. This paper is one of the two studies on this topic, which
is focused on the modeling at the microscopic level from the investigation of car-following
behavior. The second part of the study [H. Liu, H. Xu, H. Gong, Modeling the asymmetry in
traffic flow (b): macroscopic approach, Appl. Math. Model. (submitted for publication)] is
focused on the modeling of this asymmetric property from the macroscopic scale. In this
paper, we first present an asymmetric full velocity difference car-following approach, in
which a higher order differential equation is developed to take into account the effect of
asymmetric acceleration and deceleration in car-following. Then, efforts are dedicated to
calibrate the sensitivity coefficients from field data to complete the theoretical approach.
Using the data recorded from the main lane traffic and ramp traffic of a segment of the
US101 freeway, the two sensitivity coefficients have been successfully calibrated from both
congested and light traffic environments. The experimental study reveals that in the stud-
ied traffic flow, the intensity of positive velocity difference term is significantly higher than
the negative velocity difference term, which agrees well with the results from studies on
vehicle mechanics.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Research on the car-following behavior attempts to reveal, at the microscopic scale, the interactions between vehicle
pairs in a traffic stream without making lane changes. The performance of car-following models relies greatly on realistically
modeling the interaction terms between individual vehicles under varying traffic circumstances. As car-following is a fun-
damental driving behavior which has significant impact on both highway mobility and traffic safety, it has been studied
extensively from both theoretical and data-driven approaches [2].

Mathematical modeling has been widely applied in transportation to depict the characteristics of traffic movement for
best control and operation of highway facilities, such as the recent work of Wang et al. [3] in which a discrete Markov chain
process was used to calculate the probability of traffic breakdowns, and Gu et al. [4] who models the capacity of highway
checkpoints with unconventional configurations. Pioneering studies in car-following theories include, but are not limited
to, the works of Herman et al. [5] and Newell [6] who tackled the problem from vehicle dynamics, and Tian et al., who
investigated the driver’s critical gap [7]. Recent improvements include the work of Bando et al. [8], in which an optimal
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velocity (OV) approach was proposed to take into account a driver’s intention to maintain its optimal velocity in the traffic
stream; the general force (GF) model by Helbing and Tilch [9], which addresses the issue of unrealistically high acceleration
and deceleration found in the OV approach; and the work by Jiang et al. [10], which extended the GF approach to the full
velocity difference (FVD) model that took the full velocity difference into account.

However, the existing car-following models have not sufficiently taken the asymmetry of acceleration and deceleration
behaviors into consideration. In reality, a vehicle’s ability in deceleration is higher than acceleration, as demonstrated in
[6,7]. This asymmetric characteristic and its impacts on traffic flow have been investigated by researchers, for instance, in
[11,12] traffic flow was presented differently in state of acceleration, deceleration and equilibrium to demonstrate the dif-
ference. Kim and Zhang further proposed a new stochastic wave propagation model that can distinguish the acceleration
wave with a smaller speed, the acceleration wave with a larger speed, and the deceleration wave with both smaller and lar-
ger speed [13,14]. In this regard, further investigation of car-following behavior could also help to improve the quality of
continuum models.

Owing to its inherent nature of microscopic scale study of individual vehicles, very few of the recent car-following math-
ematical models have been validated against field data. Special experimental studies were designed by a handful of research-
ers. For instance, Ranjitkar et al. [15] recorded vehicle trajectory data from ten passenger cars equipped with Global
Positioning System (GPS) receivers; Brockfeld et al. [16] and Punzo and Simonelli [17] used differential GPS (DGPS) to extract
vehicle trajectories; Ossen and Hoogendoorn [18] used high-resolution digital images from a helicopter; and Fouladvand and
Darooneh [19] analyzed the time series of velocity, velocity difference, spatial gap and the acceleration using the field data.
Unfortunately, these studies were conducted on a project basis and the data were discarded upon completion of a specific
study, instead of making it publicly available.

Besides the mathematical modeling, another challenging problem faced in this research is to use real-world data that is
publicly available to capture the asymmetric characteristics of individual vehicles in the traffic stream and use the data to
validate the mathematic model. The dataset used in the experimental test is from the Next Generation SIMulation (NGSIM)
project, which was funded by the Federal Highway Administration for the purpose of validating and calibration of micro-
scopic simulation models.

In this paper, the authors first depict the fundamental relationship among the classical and two state-of-the-art car-follow-
ing models, namely, the OV and the GF model. The purpose of the in-depth analysis of these models is to lay a logical ground
for the discussion of the asymmetric full velocity difference (AFVD) model and the calibration process. With the mathematical
modeling approach described, attentions are then directed to the experimental study, in which the authors demonstrate the
mechanism and process to extract the asymmetric sensitivity coefficients from the vehicle trajectories in the NGSIM dataset.
In the end, the sensitivity coefficients derived from the field data are introduced into simulation experiments to demonstrate
the enhanced realism of the asymmetric AFVD model through a comparison with the symmetric FVD model.

2. The optimal velocity theory and its recent improvements

Car-following models are designed to describe the behavior of individual drivers in a stream of interacting vehicles without
making lane changes. Classic models describe the movement of the nth vehicle following a leading (n � 1)th vehicle as follows
Please
(2013
dvn

dt
ðt þ DtÞ ¼ kDv ð1Þ
where Dv ¼ vn�1ðtÞ � vnðtÞ and Dt is the time lag of response, k is the sensitivity. Applying the classic model, one can de-
scribe a vehicle’s movement as a function of the leading vehicle’s trajectory. In addition, it allows us to establish a bridge be-
tween microscopic car-following studies and macroscopic continuum models. In 1995, an optimal velocity (OV) theory was
proposed by a group of Japanese researchers, which models car-following differently. The OV model is based on the idea that
vehicles adapt to a distance-dependent optimal velocity in car-following. It accounts for the effect of time lag through the sec-
ond order differential equations based on the equation of motion in physics. Therefore, the time lag in the OV model is not the
delay from driver’s response, but the delay of car motion which has its root in the dynamic equation itself. Their model reads
dvnðtÞ
dt

¼ j½VðDXnðtÞÞ � vnðtÞ� ð2Þ
where n is the following vehicle, V is the optimal velocity function and j is the sensitivity coefficient. Despite its simplic-
ity, the OV model overcomes the problems found in classic models and realistically describes several critical properties of
traffic flows such as stop-and-go waves and the evolution of traffic congestion.

Helbing and Tilch [9] found the OV model might result in questionable high acceleration and unrealistic deceleration
under certain circumstances and modified it into a general force (GF) model, which is expressed by
dvn

dt
¼ v0

n � vn

sn
þ fn;n�1ðxn; vn; xn�1; vn�1Þ ð3Þ
where fn;n�1 is the ‘‘force’’ and expressed by
fn;n�1 ¼
VðsnÞ � v0

n

sn
� DvnHðDvnÞ

s0n
e�½sn�sðvnÞ�=R0n ð4Þ
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in which, v0
n is the desired optimal velocity; H is the Heaviside function and sn ¼ 1=j is the acceleration time. s0n is the brak-

ing time, which should be smaller than sn. sn is the distance between two vehicles. R0n can be interpreted as the range of the
braking interaction. sðvnÞ denotes the velocity-dependent safe distance.

As the GF model only investigated the case where the velocity of the following vehicle is larger than that of the leading
vehicle, Jiang et al. [10] pointed out that when the leading vehicle is much faster, the following vehicle may not brake even
though the spacing is smaller than the safe distance. Considering both positive and negative velocity differences, they pro-
posed a full velocity difference (FVD) approach as follows:
Please
(2013
dvnðtÞ
dt

¼ j½VðsÞ � vnðtÞ� þ kDv ð5Þ
Because the GF model does not consider the contribution of the positive Dv to the vehicle interaction, the FVD made a
slight modification on the interaction term to address this issue.

3. The asymmetric full velocity difference (AFVD) approach

The optimal velocity approach and the aforementioned improvements are remarkable achievements in recent car-follow-
ing studies, however, they are not without drawbacks. First, the asymmetric characteristic in acceleration and deceleration
was not sufficiently considered. The idea of adding a higher order term to the OV model to precisely address vehicular inter-
actions provides a great opportunity to model the asymmetric property in car-following, unfortunately, this has not been
adequately addressed in the GF model. If one simplifies Eqs. (3) and (4), the GF model can be expressed by
dvn

dt
ðtÞ ¼ j½VðsÞ � vnðtÞ� þ kHð�DvÞDv ð6Þ
where H is the Heaviside function and V(s) is the optimal velocity and s is the spacing. The GF model adopted the fun-
damental form of the OV model but added a term on the right hand side of Eq. (2) to precisely model vehicular interactions.
Eq. (6) could be easily extended to an asymmetric full velocity difference (AFVD) approach in which we can define two sen-
sitivity coefficients to separately model the positive and negative velocity [11]. Such a model can be expressed by
dvn

dt
ðtÞ ¼ j½VðDxnðtÞÞ � vnðtÞ� þ k1Hð�DvnðtÞÞDvnðtÞ þ k2HðDvnðtÞÞDvnðtÞ ð7Þ
where H is the Heaviside function.
Next, we are interested in getting the mathematical presentation of k1 and k2 from the presentation of k in the GF model.

Let’s rewrite the GF model in a different form
dvn

dt
¼ V�nðsn;vn;DvnÞ � vnðtÞ

s�n
ð8Þ
where sn, vn and Dvn are spacing, velocity, and velocity difference, respectively. s�n is the optimal sn given by
1
s�n
¼ 1

sn
þHðDvnÞ

s00n
ð9Þ
where
s00n ¼ s00n expf½sn � sðvnÞ�=R0ng ð10Þ
The optimal velocity, V�n, can be represented by
V�n ¼
s00nVn þ snHðDvnÞvn�1

s00n þ snHðDvnÞ
ð11Þ
if one substitutes Eq. (11) into Eq. (8), we can get
dvnðtÞ
dt

¼ V�nðsn;vn;DvnÞ � vnðtÞ
s�n

¼
s00nVnðsn ;vnÞþsnHðDvnÞvn�1ðtÞ

s00nþsnHðDvnÞ � vnðtÞ
s�n

¼ s00nVnðsn;vnÞ þ snHðDvnÞvn�1ðtÞ
s00n þ snHðDvnÞ

� vnðtÞ
� �

1
sn
þHðDvnÞ

s00n

� �

¼ s00nVnðsn;vnÞ þ snHðDvnÞvn�1ðtÞ
s00n þ snHðDvnÞ

� s
00
n þ snHðDvnÞ

sns00n
� vnðtÞ

1
sn
þHðDvnÞ

s00n

� �

¼ Vnðsn;vnÞ
sn

þ vn�1ðtÞHðDvnÞ
s00n

� vnðtÞ
snH

� vnðtÞHðDvnÞ
s00n

¼ Vnðsn;vnÞ � vnðtÞ
sn

� vnðtÞ � vn�1ðtÞ
s00n

HðDvnÞ

¼ Vnðsn;vnÞ � vnðtÞ
sn

� Dvn

s00n
HðDvnÞ ð12Þ
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which gives
Please
(2013
k ¼ 1
s00n
¼ 1

s0n exp ½sn � sðvnÞ�=R0n
� � ð13Þ
Therefore, in the asymmetric full velocity difference model, k takes the following forms
k1 ¼
1
s0n

e�½sn�sðvnÞ�=R0n ð14Þ
k2 ¼
1
s000n

e�jsn�sðvnÞj=R00n ð15Þ
in which, s000n and R0n are two new parameters obtained during the mathematical derivation which need to be determined
by field data.

Fig. 1 explains the significance of representing acceleration and deceleration by two sensitivity coefficients. The curve on
the top represents the relationship between the space-headway and the intensity of acceleration, with the point S being the
minimum comfortable safe distance for the following vehicle. The curve on the bottom demonstrates a similar relationship
between the intensity of deceleration and the space-headway. From the figure, one can find that the intensity of acceleration
and deceleration both decreases as the headway increases when headway is larger than the minimum comfortable following
distance, which implies that the interaction intensity will become zero while the space headway reaches infinity. However,
when the space-headway is smaller than the safe distance, the intensity of deceleration increases sharply as the space head-
way decreases, which is depicted by the deceleration curve.

The stability condition for the AFVD model could be defined as in [19], which is:
f ¼ V 0ðbÞ
< j

2 þ k1 when Dvn < 0
< j

2 þ k2 when Dvn > 0

(
ð16Þ
Note that in the FVD model, the stability condition is
f ¼ V 0ðbÞ < j
2
þ k ð17Þ
in the OV model, it is
f ¼ V 0ðbÞ < j
2

ð18Þ
Therefore, the OV model, the GF model and the FVD model can all be presented by the AFVD model as its special cases. If
one defines k1 ¼ k2 ¼ k; the AFVD model represents the FVD model, while when k1 ¼ k2 ¼ k ¼ 0; both the AFVD model and
the FVD model becomes the OV model.
1λ

2λ

Fig. 1. Relationship between the two sensitivity coefficients and the space headway.
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4. Calibration of the sensitivity coefficients using the NGSIM dataset

Adding a higher order term and additional sensitivity coefficients to precisely model the vehicular interaction is a funda-
mental improvement to the optimal velocity theory. These modifications, though simple, have greatly improved the model’s
performance. The calibration in Helbing and Tilch [9] shows that in the general force model j ¼ 0:41=s, which is much smaller
than that in OV, which is 0.85/s, and thus overcome the over acceleration problem. The new sensitivity coefficient k, however,
has not been calibrated against field data. For instance, in Jiang et al. [8], it was found that the value of k has a significant impact
to the size of the hysteresis loop and the status of stability. Not knowing the practical values of k; the authors used a set of hypo-
thetical k values to show this impact, which resulted in an unrealistic phenomenon in which a k value of 0.4 corresponds to a
negative speed. Is k ¼ 0:4 a realistic value? How to calibrate k values from a traffic stream other than from a few vehicles with
specific devices?

In this section, the authors use real vehicle trajectory data from massive traffic flows to calibrate the two sensitive coef-
ficients in AFVD in both congested and light traffic conditions. The authors first took Helbing and Tilch’s calibration process
and applied a standard nonlinear regression approach to calibrate j in the GF model to examine the quality of the screened
data and the effectiveness of the calibration method. Then, same process was used to calibrate k1 and k2 of the AFVD model
using both main lane and ramp data.

4.1. The next generation simulation (NGSIM) vehicle trajectory dataset

The NGSIM project was funded by the Federal Highway Administration (FHWA) for the development and validation of
microscopic traffic simulation models. Video data at an interval of 0.1 s have been collected from various sites in the United
States. In this study, the data from a 2100 feet 5-lane segment of the U.S. 101 Freeway (see Fig. 2) was used. The processed
data has each single vehicle’s identification number, time frame number, relative spatial coordinates, vehicle properties
(length, width, class, velocity, acceleration), lane identification, preceding and following vehicle numbers, and both space
and time headways.

4.2. Calibration using main lane traffic

The traffic data of the innermost lane (lane 1, the farthest lane from on and off ramps) was utilized to min-
imize the impacts caused by lane changing. A time-space diagram was first developed to examine the quality of
Fig. 2. The schematic of the study site – a segment of U.S. 101.
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the data. As shown in Fig. 3, the sample data reflects apparent dynamics and clear shock wave propagation
activity.

The data are further screened according to the criteria set in Table 1 for car-following analysis. The filtered data is then
used in a nonlinear regression approach to first calibrate j in the GF model. We have demonstrated in previous sections that
both FVD and AFVD models have their roots in the general force approach but use different higher order terms to more pre-
cisely model the vehicular interaction. If the data screening and calibration process is correct, the j value in FVD and AFVD
should be very close to that in the GF model.

The nonlinear regression method used in this study is a special form of the least squares analysis, which is often used to fit
a set of m observations with a model that is non-linear with n unknown parameters (m > n). The basis of the method is to
approximate the model by a linear process and to refine the parameters by successive iterations. A primary assumption
underlying this procedure is that the model can be approximated by a linear function.
Please
(2013
f ðxi;bÞ � f 0 þ
X

j

Jijbj ð19Þ
where Jij ¼
@f ðxi ;bÞ
@bj

and the least squares estimators are therefore given by b̂ � ðJT JÞ�1JT y: As it is a standard regression process,
detailed description is not provided in the manuscript, interested readers are encouraged to refer to Mathematica.

In the following we first examine the method by applying it to the GF model to calibrate j and other constants, which
yields,
dvnðtÞ
dt

¼ j½TanhðbDxnðtÞ � cÞ � vnðtÞ� ð20Þ
The regression result from the screened data of the lane 1 traffic in 7:50–8:05 AM gives
dvnðtÞ
dt

¼ 0:415873½Tanhð1:80049DxnðtÞ � 10:4075Þ � vnðtÞ� ð21Þ
in which j ¼ 0:415873 s�1 agrees well with the result in Helbing and Tilch (1998). The result thus proved the validity of the
calibration method and examined the quality of the filtered data.

Next, we further run the same nonlinear regression by separately using the positive velocity difference data and the neg-
ative velocity difference data, which is the case in the full velocity difference approach. The result is shown in Table 2 along
with the result from the general calibration process described in Section 4.1.

Similarly, the quantitative values as well as the relative relation between the accelerating and decelerating sensitivity
coefficients in the asymmetric AFVD model could be obtained using the same method, which gives
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Fig. 3. The time space diagram for lane 1 of U.S. 101 (7:50–8:05 AM).

Table 1
Data screening criteria for car-following analysis of the lane 1 traffic.

Velocity >= 5 ft/s
Spacing <= 120 ft
Headway <= 20 s
Velocity difference >= 1 ft/s
Vehicle class Auto
Table 2
Calibration of the full velocity difference model (FVD) using the lane 1 traffic data.

General dvnðtÞ
dt ¼ 0:415873½Tanhð1:80049DxnðtÞ � 10:1075Þ � vnðtÞ�

DvnðtÞ > 0 dvnðtÞ
dt ¼ 0:450816½Tanhð0:000663492DxnðtÞ � 16:5936Þ � vnðtÞ�

DvnðtÞ < 0 dvnðtÞ
dt ¼ 0:384879½Tanhð1:84944DxnðtÞ � 10:5018Þ � vnðtÞ�
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Please
(2013
dvnðtÞ
dt

¼ 0:415873 ½Tanhð1:80049DxnðtÞ � 10:4075Þ � vnðtÞ� þ 1:0824Hð�DvnðtÞÞDvnðtÞ

þ 0:69271Hð�DvnðtÞÞDvnðtÞ ð22Þ
This reveals that under the given traffic condition, the decelerating and accelerating sensitivity coefficients are 1.0824 and
0.69271, respectively, which indicates a relative relation of 1.56 between the intensity of deceleration and acceleration.

4.3. On-ramp and off-ramp traffic

Experimental analysis thus far has successfully calibrated the accelerating and decelerating sensitivity coefficients in
AFVD using the main lane data which represents the case of dense traffic condition. We are also interested in identifying
the upper boundary of the difference of k1 and k2, i.e., jk1=k2j and their values in light traffic. Vehicles at on and off ramps
of the study site provides an ideal circumstance for this purpose due to the skewed distribution of acceleration and decel-
eration at on and off ramps.

The length of the on-ramp and off-ramp is 193 ft and 143 ft, respectively. Table 3 shows the screening criteria to ensure
the selected data are in car-following mode. The criteria are the same as in the main lane analysis except the spacing is less
than 60 ft considering the length of the ramps. Figs. 4 and 5 are the time-space diagrams from the screened data (in 0.1 s
time frame), which show light traffic conditions on both on- and off-ramps.

The analysis of the ramp data is focused on calibrating the values of k1 and k2 in the AFVD model. Using the same non-
linear regression process, the sensitivity coefficients of on- and off-ramp traffic are obtained. Table 4 shows the results of the
calibration along with that from the main lane data.

From the off-ramp traffic, which features collective decelerating behavior, the values of the sensitivity coefficients for
deceleration and acceleration are 0.997205 and 0.361254, respectively. While from the on-ramp segment that features
weighted acceleration, the sensitivity coefficients are found to be 0.98696 and 0.680699, respectively. The relative relation
of k1 and k2 in the studied cases are summarized in Table 5.
5. Simulation with calibrated and adjusted sensitivity coefficients

With the values of the two calibrated sensitivity coefficients, and most importantly, their quantitative relationship cali-
brated from the field data, this section discusses the stability test against the FVD model as a representative symmetric car-
Table 3
Data screening criteria for car-following analysis of the ramp traffic.

Velocity >= 5 ft/s
Spacing <= 60 ft
Headway <= 20 s
Velocity difference >= 1 ft/s
Vehicle class Auto

Fig. 4. The time space diagram of the on-ramp section.
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Fig. 5. The time space diagram of the off-ramp section.

Table 4
Calibration of the AFVD model from main lane and ramp data.

Lane 1 dvnðtÞ
dt ¼ 0:415873½Tanhð1:80049DxnðtÞ � 10:1075Þ � vnðtÞ� þ 1:0824Hð�DvnðtÞÞDvnðtÞ þ 0:69271HðDvnðtÞÞDvnðtÞ

Off-ramp dvnðtÞ
dt ¼ �1:26404vnðtÞ þ 0:997205Hð�DvnðtÞÞDvnðtÞ þ 0:361254HðDvnðtÞÞDvnðtÞ

On-ramp dvnðtÞ
dt ¼ �0:881606ð1þ vnðtÞÞ þ 0:98696Hð�DvnðtÞÞDvnðtÞ þ 0:680699HðDvnðtÞÞDvnðtÞ

Table 5
Relative relation between the two sensitivity coefficients in AFVD under dense and light traffic conditions.

Location jk1=k2j

Main lane 1.56
Off-ramp 2.76
On-ramp 1.45
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following approach, and the symmetric AFVD model. A simulation analysis was conducted, to which a set of sensitivity
coefficients was applied for comparison. Simulation results in the form of stop-and-go charts were generated to demonstrate
the differences between the models. Through the comparison, we can find a minor modification to existing car-following
theories, as what the AFVD does, could lead to substantial change in model performance.

The mathematical representation of the simulation scheme could be expressed by:
Please
(2013
vnðtþDtÞ¼vnðtÞþDt�fj½Vðxn�1ðtÞ�xnðtÞÞ�vnðtÞ�þk1½Hðvn�1ðtÞ�vnðtÞÞ�½vn�1ðtÞ�vnðtÞ�þk2½Hðvn�1ðtÞ�vnðtÞÞ�½vn�1ðtÞ�vnðtÞ�g
xnðtþDtÞ¼ xnðtÞþDt� vnðtÞþvnðtþDtÞ

2

(

ð23Þ
The initial position and velocity distribution are defined as the following, with VðDxÞ ¼ V1 þ V2 tanh½C1ðDx� lcÞ � C2�; and
L being the length of the circle in meters and N being the number of vehicles.
xnðt ¼ 0Þ ¼ 1 if n ¼ 1
½xnðt ¼ 0Þ ¼ ðn� 1ÞL=N if n > 1

�
vnðt ¼ 0Þ ¼ VðL=NÞ
C1 ¼ 0:13;C2 ¼ 1:57; lc ¼ 5; N ¼ 100; L ¼ 1500

8>>><
>>>:

ð24Þ
The sensitivity coefficients calibrated from the NGSIM dataset in the foregoing section was first applied to the simulation.
In the AFVD model, k1 ¼ 1:0824; k2 ¼ 0:69271 and V1 ¼ 6:75; V2 ¼ 7:91, j ¼ 0:41 are utilized, while in the FVD model in
which only one sensitivity coefficient is applicable, an average k, i.e., 0.87302 is used. Fig. 6 demonstrates the difference
in the form of stop-and-go chart.
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Fig. 6. Comparison of the stop-and-go charts of the FVD model and the AFVD model at 3000 s simulation time.

Fig. 7. Comparison of the stop-and-go charts of the FVD model and AFVD model at 300 simulation seconds.
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The AFVD model’s curve shows a shock wave frontier on the chart, while the FVD model does not show this phenomenon.
While it is difficult to verify the phenomenon from the microscopic approach, if one extends the car-following approach to a
continuum flow model, the shock waves could be better verified against field data. The necessity of precisely modeling the
asymmetric characteristic at the microscopic level for explicitly explaining the formation and progression of shock waves has
been discussed [1]. This result is a simple confirmation of that statement. Again, for a full scale evaluation, one can extend
the AFVD car-following model to a macroscopic model. This way, the property of the AFVD based macroscopic flow model
could be explicitly demonstrated through comparisons with classic continuum flow models and the filed data.

Hysteresis is often used to depict traffic conditions, as in [20,21]. In the second test, in order to show the differences in a
better scale, hysteresis loops are developed with a new setting of k1 ¼ 0:6, k2 ¼ 0:3 in the AFVD model and k = 0.45 in the FVD
model. At different simulation times, i.e., 300 s and 2000 s, the stop-and-go chart and hysteresis loops are depicted in Figs. 7
and 8.

The FVD and AFVD models present different stability properties in Fig. 7 although the variance in velocity was found to be
minimal. To get a better understanding, hysteresis loops were produced in Fig. 8. The hysteresis loops of the FVD model and
AFVD model are similar in shape but slightly different in size and dimension. This implies the intensity difference in accel-
eration and deceleration may result in variance in the magnitude of hysteresis loops which, at macroscopic level, may lead to
different patterns of congestion formation and propagation. This property has been further investigated by the authors in [1].
Please cite this article in press as: H. Xu et al., Modeling the asymmetry in traffic flow (a): Microscopic approach, Appl. Math. Modell.
(2013), http://dx.doi.org/10.1016/j.apm.2013.04.037
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Fig. 8. Comparison of the hysteresis loops of the FVD model and AFVD model at 300 simulation seconds.
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6. Conclusion

A microscopic car-following model was developed which considers the asymmetric acceleration and deceleration char-
acteristic of vehicles. A higher order differential equation has been developed to take into account the impacts of acceleration
and deceleration separately. A novel scheme was applied to solve the mathematical model and high resolution field data was
used to calibrate the two sensitivity coefficients. The quantitative values of the two coefficients, and most significantly, the
relative relationship between these two parameters have been extracted from collective traffic. It concludes that in the
studied traffic flow, the relative intensity of deceleration and acceleration varies from 1.45 to 2.76 which fall into the range
of (1, 2.8). To further demonstrate the properties of the asymmetric model, the field calibrated parameters were then applied
to the FVD and the AFVD model in a simulation environment to depict the impact of the asymmetric characteristic to traffic
flow. Studies have been conducted to extend the AFVD approach into a continuum flow model from which the impacts of
asymmetry to macroscopic traffic flow are revealed.
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