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In [H. Xu, H. Liu, H. Gong, Modeling the asymmetry in traffic flow (a): microscopic
approach, J. Appl. Math. Model. (submitted for publication)], the asymmetric characteristic
of traffic flow has been studied from a microscopic approach through the modeling of car-
following behavior. This paper further discusses the asymmetric traffic flow modeling at
the macroscopic scale. The microscopic asymmetric full velocity difference model is
extended to a continuum traffic flow model to study the anisotropic characteristic and dif-
fusive influence under various traffic conditions. In order to accurately solve the mathe-
matical problem, a weighted essentially no-oscillatory (WENO) approach is applied. The
performance of the model is then demonstrated through thorough evaluation against
select classic models and field data. The macroscopic model is the first of its kind that is
directly developed from an asymmetric car-following approach. The results show that
the model is able to present many complex traffic phenomena observed in the field such
as shock waves, rarefaction waves, stop-and-go waves and local cluster effects at a better
level of accuracy than most of the existing models.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Traffic flow theory has been investigated from two approaches. One is from a microscopic point of view and focused on
car-following behavior [2–6]; the other is from a macroscopic approach that is focused on the relationship among speed,
density, and volume in the time and space domain [7–12]. If technically sound, a car-following model can be fully developed
into a macroscopic model which usually has a broader application.

In [1], the authors have developed a mathematical model based on the optimal velocity theory by Bando et al. [4] which
directly models car-following from the physics laws of car motion. In the model, the asymmetric car-following property was
considered in an asymmetric full velocity difference (AFVD) approach which uses two sensitivity coefficients to separately
represent the intensity of acceleration and deceleration. The model was also validated against field data and the two sensi-
tivity coefficients were calibrated as well. Whether this asymmetric car-following approach could be converted into a fully
developed macroscopic model and how the continuum flow model would perform is the focus of the second part of the study.

Macroscopic models have been well studied since the work of Lighthill and Whitham [7] and Richards [12]. The LWR
model follows a scalar hyperbolic conservation law and exhibits a wide range of phenomena such as traffic sound waves,
shocks and rarefaction waves. One of the major deficiencies of the LWR model is that the speed is solely determined by
Modell.

http://dx.doi.org/10.1016/j.apm.2013.04.039
mailto:hongchao.Liu@ttu.edu
mailto:hao.xu@ttu.edu
mailto:flowdynamic@gmail.com
http://dx.doi.org/10.1016/j.apm.2013.04.039
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm
http://dx.doi.org/10.1016/j.apm.2013.04.039


2 H. Liu et al. / Applied Mathematical Modelling xxx (2013) xxx–xxx
the equilibrium speed density relationship and no fluctuation of speed around the equilibrium values is allowed, thus, the
model is not suitable for the description of non-equilibrium situations such as the stop-and-go traffic.

Many efforts have been devoted to improving the LWR model through developing high order models, which use dynamic
equations for the speed to replace the equilibrium relationship. However, as pointed out by Daganzo [13], it was shown that
nonequilibrium models had two families of characteristic along which traffic information is transmitted: one is slower and
the other is faster than the speed of the traffic stream that carries them. The faster characteristic leads to a gas like behavior
in which vehicle from behind can force vehicles in front to speed up, and the diffusion causes ‘wrong way’ travel [14].

As a fundamental principle of the traffic flow theory, vehicles are anisotropic which should respond only to the front vehi-
cles. Testing and evaluation of this property of the new asymmetric car-following based continuum model is one of the fo-
cuses of this study. The authors chose several classic and recently developed non-equilibrium models to examine the
properties of the proposed model. The next generation simulation data (NGSIM) was used in the evaluation process so that
the performance of the selected models can be compared with each other against field data.

As the new continuum model involves complex higher order differential equations, the weighted essentially no-
oscillatory (WENO) method [15] is used to get the numerical solution. The WENO scheme is one of the most accurate meth-
ods in computational fluid dynamics for discontinuous situations with high order differential equations and non-oscillatory
properties. A key idea of the WENO method is to use a convex combination of all candidate stencils to achieve high accuracy.
In this research, the authors use the fifth order difference WENO scheme to perform the numerical calculation.

The rest of the paper is structured as follows. The mathematical model is presented in Section 2, followed by the devel-
opment of WENO and the numerical solutions. Data from the NGSIM dataset is then used to evaluate the performance of the
selected classic models and the new approach.
2. The asymmetric anisotropic continuum flow model

The asymmetric property in traffic flow has received increasing attention in recent studies. For instance, in [16] Yeo and
Skabardonis systematically analyzed the properties of asymmetric traffic flow and used the NGSIM data to examine their
findings. In this section, we will start with verification of the existence of asymmetry in macroscopic flow models to lay a
logical ground for the introduction of the new asymmetric anisotropic continuum flow model; then attention will be direc-
ted to the process of converting the asymmetric full velocity difference car-following approach to a continuum model.

In the LWR model, the relationship between the macroscopic density q with respects to space x and time t is
Please
(2013
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where q0eðqÞ is the flow-density relationship (the fundamental diagram). Pipes [18] derived the traffic stream acceleration in
the form of
dv
dt
¼ �q v 0e

� �2 @q
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: ð2Þ
Substituting a specific flow-density relationship into the equation, the acceleration will become a function of the traffic
density q.

For example, let us take the following speed–density relationship presented in Zhang [17],
ve ¼ v f 1� q
qj

 !n !
; ð3Þ
where n is a constant, ve is the equilibrium speed, v f is the free flow speed and qj is the jam density. The relationship be-
tween acceleration and density can be obtained as follows:
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Consider the two scenarios as illustrated in Fig. 1. Fig. 1(a) has an upstream density of q1, downstream density of q2, with
q1 > q2. Fig. 1(b) has an upstream density q2, downstream density q1. The wave front is at location x0. Applying the scenario
of Fig. 1(a) to Eq. (4), it indicates that traffic moving from the upstream with a high traffic density to the downstream with a
low traffic density will be accelerating. On the other hand, the scenario showed in Fig. 1(b) depicts decelerating traffic.

Assuming that the change in density with respect to space is constant, since v f and qj are constant, the acceleration inten-
sity and traffic density will have a relationship of dv

dt

�� �� � �n2q2n�1 @q
@x. To simplify, we can make n = 1, then it will yield to the

relationship of dv
dt

�� �� � �q @q
@x. Suppose that @q

@x is constant in both of the scenario, in scenario (a), the driver is traveling in the
accelerating scenario with the expectation that the traffic density will fall into a lower level, the acceleration intensity will
fall. On the other hand, when the driver is traveling in scenario (b), the acceleration intensity will increase. In other words,
the acceleration intensity is sensitive to traffic density.
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Fig. 1. Illustration of accelerating and decelerating sections in a traffic stream.
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2.1. The asymmetric full velocity car-following approach

The asymmetric full velocity car-following approach is developed on the basis of Bando et al.’s optimal velocity theory
with additional terms to represent acceleration and deceleration. In earlier works prior to Bando et al.’s optimal velocity
(OV) theory, car-following models were developed based on the idea that a driver adapts to the velocity of the leading vehi-
cle with a delayed time. Models of this type take into account the time lag of the driver’s response by introducing the time lag
into the equations of motion.

The optimal velocity model, on the other hand, is based on the idea that vehicles adapt to a distance-dependent optimal
velocity. The OV model accounts the effect of time lag through the second order differential equations based on the equation
of motion in physics. Therefore, the time lag in the OV model is not the delay from driver’s response, but the delay of car
motion which has its root just in the dynamic equation itself. The OV model takes the form of:
Please
(2013
dvnðt þ sÞ
dt

¼ j½VðDxnðtÞÞ � vnðtÞ�: ð5Þ
Despite its simplicity and few parameters, the OV model describes many properties of real traffic flows (e.g., stop-and-go
traffic at signalized intersections) and has become one of the most referenced car-following studies. Notable works along this
line include the work of Helbing and Tilch and Jiang et al. [5,6]. The AFVD model developed by the authors is also an exten-
sion of Bando’s work which introduces two higher order terms and two sensitivity coefficients to accurately model the asym-
metry in car-following, it takes the following form:
dvnðtÞ
dt

¼ j½VðDxnðtÞÞ � vnðtÞ� þ k1Hð�DvnðtÞÞDvnðtÞ þ k2HðDvnðtÞÞDvn; ð6Þ
where H is the Heaviside function, k1 and k2 are sensitivity coefficients, j½VðDxnðtÞÞ � vnðtÞ� is the interaction term that
comes from the OV model, and k1Hð�DvnðtÞÞDvnðtÞ and k2HðDvnðtÞÞDvnðtÞ are called velocity differences terms. Details of
the model and calibration of the two coefficients could be found in [1].

2.2. Converting the asymmetric car-following approach into a continuum flow model

The works in [1] have laid a technical ground for the development of the continuum flow models that take into account
the asymmetric characteristic of vehicles. In order to develop the corresponding macroscopic continuum model, we need to
transform the discrete variables of individual vehicles into the continuous flow variables [19], which are shown below:
vnþ1ðtÞ ! uðx; tÞ; vnðtÞ ! uðxþ D; tÞ; VðDxÞ ! ueðkðx; tÞÞ
j! 1=T; k1 ! 1=s1; k2 ! 1=s2

ð7Þ
cite this article in press as: H. Liu et al., Modeling the asymmetry in traffic flow (b): Macroscopic approach, Appl. Math. Modell.
), http://dx.doi.org/10.1016/j.apm.2013.04.039

http://dx.doi.org/10.1016/j.apm.2013.04.039


4 H. Liu et al. / Applied Mathematical Modelling xxx (2013) xxx–xxx
where
q: traffic flow volume,
k: traffic flow density in the time and space regime,
u: traffic flow space mean speed,
@t , @x: the partial derivative with respect to time and space, respectively,
VeðkÞ: the equilibrium speed,
QeðkÞ: the flow–density relationship,
T : the relaxation time,
s: the time needed for the backward propagated disturbance to travel a distance of D.

The derivation is as follows:
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(2013
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The conservation equation is:
@tkþ @xðkuÞ ¼ 0: ð8Þ
And the vector form of the AFVD flow model can be rewritten as
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( ð9Þ
3. The weighted essentially non-oscillatory scheme

The WENO scheme is currently the most accurate method in computational fluid dynamics for discontinuous situations
with high order differential equations and non-oscillatory properties. The key idea of WENO scheme is to use a convex com-
bination of all candidate stencils to achieve the high accuracy. We will use the fifth order difference WENO scheme [15] to
conduct the numerical calculation. The third order total variation diminishing (TVD) Runge–Kutta method is used for time
evolution, which has the following form:
uð1Þ ¼ un þ DtL unð Þ
uð2Þ ¼ 3

4 un þ 1
4 uð1Þ þ 1

4 DtL uð1Þ
� �

unþ1 ¼ 1
3 un þ 2

3 uð2Þ þ 2
3 DtL uð2Þ

� � ð10Þ
The order of WENO scheme is based on the order of ENO (Essentially Non-Oscillatory) scheme [20]. For example, if the
order of ENO scheme is r, the order of WENO will be 2r � 1. So if one wants to get the fifth order WENO scheme, the third
order ENO scheme will be used in calculation.

The third order ENO scheme has the following forms:
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Then the weights can be obtained as
~xj ¼
cl

ðeþ blÞ
2 ; j ¼ 1;2;3 ð12Þ
with c1 ¼ 1
10 ; c2 ¼ 3

5 ; c3 ¼ 3
10.

bl is called the smoothness indicators, have the following form from [11,16].
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Furthermore, e is a very small number like 10�6 which avoids the denominator to be zero.P3
j¼1xj ¼ 1 is required and xj P 0 for stability and consistency. So it will yield to the following revised weights form:
xi ¼
~xiP3

j¼1
~xj

; i ¼ 1;2;3 ð14Þ
Therefore, the fifth order WENO flux form is as follows,
f̂ jþ1
2
¼ x1 f̂ ð1Þ

jþ1
2
þx2 f̂ ð2Þ

jþ1
2
þx3 f̂ ð3Þ

jþ1
2
: ð15Þ
To avoid the sign changing of f 0, the flux splitting will use the Lax–Friedrichs form, which is given by
f� ¼ 1
2
ðf ðuÞ � auÞ; ð16Þ
with a ¼max
u
jf 0ðuÞj, which is v for the ARZ model as previously discussed since v is the larger one of the Eigen values.

In order to apply the WENO scheme, the flux formation of AFVD flow model is essential for calculation.
@tU þ @xFðUÞ ¼ 0; ð17Þ� � � �

with U ¼ k

u
, and FðUÞ ¼ ku

u2

2 � c0u .

The Eigen values, k of the A matrix are found as k1ðUÞ ¼ u, k2ðUÞ ¼ u� c0.
Then we have the following Eigen values associated with the flux form.
k1ðUÞ ¼ u� c0 6 u

k2ðUÞ ¼ u
ð18Þ
From the Eigen values above, we can see the greater one is equal to the flow speed u. It follows that the characteristic
speeds are always less than or equal to the macroscopic flow velocity u. In other words, the new continuum model does
not have any characteristic speed greater than the macroscopic flow velocity. This property is significant because vehicles
are anisotropic.

4. Evaluation with field data

This section evaluates the performance of the new AFVD model with three classic models using the NGSIM data. The three
models are the ARZ model [21,22], the LWR model, and the PW model [18]. The WENO scheme described in Section 3 is ap-
plied to solve the Riemann problem. The test site is divided into five consecutive segments, by providing the same initial
condition to the models, traffic densities at downstream segments ware estimated by the models, which are then compared
with the real data.

4.1. Description of the dataset

The NGSIM data from the US 101 during the time of 7:50–8:05 am was used. The test data comes from the five lanes of
the highlighted section in Fig. 2 with a total length of 500 feet. For illustrative purpose, Fig. 3 shows a plot depicting the flow
density relationship of the data from this section.

4.2. Comparison with selected classic models

The total time of the experiment is 900 s with 10 s increment from time 0 and a total of 81 time cells are used in the val-
uation process. In addition, the 500 feet section was divided into five segments, noted as sections 1 through 5. The initial
conditions were set up based on the real data at the upstream sections (in our case, section 2), for each time step (5 s),
the Riemann problem solver developed according to the WENO scheme calculates the estimated densities at every down-
stream section. The densities of the real data are calculated based on the method described in [23], comparison is made be-
tween the estimated densities and the densities from real data. For illustrative purpose, Table 1 shows the part of the
estimated densities from 10 s to 100 s at section 3 along with the densities from real data.

Traffic densities over the full time period at section 3 are plotted in Fig. 4. As the ARZ model has high deviation at some
time points, it is eliminated from the plot.

From the paired t-tests in Table 2, the PW model has the best fitness to the real data in general while the AFVD model has
the best performance in the anisotropic type of models.
cite this article in press as: H. Liu et al., Modeling the asymmetry in traffic flow (b): Macroscopic approach, Appl. Math. Modell.
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Fig. 2. The schematic of the study area from US 101.

Fig. 3. Flow density relationship of the US 101 data during 7:50–8:05am.
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5. Numerical tests

To further demonstrate the property of the AFVD flow model, in this section, the authors use WENO scheme to compare
the numerical solutions of the Riemann problems between the AFVD flow model and the LWR model. In the following, uu and
ud represent upstream and downstream velocities, while ku and kd are upstream and downstream densities, respectively.
Please cite this article in press as: H. Liu et al., Modeling the asymmetry in traffic flow (b): Macroscopic approach, Appl. Math. Modell.
(2013), http://dx.doi.org/10.1016/j.apm.2013.04.039
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Table 1
Partial results of the estimated densities at section 3 along with the real data.

Time LWR density 3 ARZ density 3 PW density 3 AFVD density 3 Real data density 3

10 58.99108 67.05186 58.94286 57.03545 57.024
20 73.88554 66.53553 64.83506 70.61872 62.304
30 3.56082 0.42525 21.45853 0.69139 100.32
40 3.56082 0.42525 46.57996 0.69608 152.592
50 49.66478 0.0267 62.44706 80.52602 112.992
60 92.5977 87.11365 74.50705 88.49712 88.176
70 65.3039 61.77961 68.75449 61.90468 76.56
80 43.26827 42.24163 53.79586 41.42998 45.408
90 0.56391 0.00365 8.20062 0.03314 61.248

100 47.59239 52.26821 38.53137 49.35314 48.048

Fig. 4. Estimated and real traffic densities.

Table 2
The t-test of the estimated densities and the density from real data.

Data N Mean STD P-value

LWR 81 68.07573 28.86592 0.10200
ARZ 81 70.29043 57.55066 0.93793
PW 81 68.22392 19.4494 0.02348
AFVD 81 67.70254 25.9239 0.02667
NGSIM 81 75.9603 27.2309
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The equilibrium speed–density relationship for the numerical tests is expressed as
Please
(2013
ue ¼ uf 1� exp 1� exp
cm

uf

km

k
� 1

� �� �� �� �
; ð19Þ
and free-flow speed uf ¼ 30m=s, maximum density km ¼ 0:2veh=m, kinetic wave speed c1 ¼ 11m=s, c2 ¼ 20m=s under the
jam density.

The total length of the simulation road is 950 m which is divided into 100 segments. The time interval is 1 s and total
simulation time is T ¼ 10s. Two cases are designed with different initial conditions and the initial condition of case one
is set as ku = 0.04 veh/m and kd = 0.18 veh/m. The results are shown in Fig. 5.
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Fig. 5a. The velocity plot of the AFVD flow model (case one).
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Fig. 5b. The velocity plot of the LWR model (case one).
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From the numerical results from the AFVD flow model and the LWR model, it can be seen that the major traffic activity
which is the shock wave acts almost identical. Nonetheless, the AFVD flow model shows subtle wondering in the front of the
shock wave which better represents the real traffic condition of the selected dataset which has several stop-and-go sessions
Please cite this article in press as: H. Liu et al., Modeling the asymmetry in traffic flow (b): Macroscopic approach, Appl. Math. Modell.
(2013), http://dx.doi.org/10.1016/j.apm.2013.04.039
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Fig. 6a. The density plot of the AFVD flow model (case two).
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Fig. 6b. The density plot of the LWR model (case two).
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as shown in Fig. 3. To further depict its property, another test was conducted with the initial condition of ku = 0.18 veh/m and
kd = 0.04 veh/m, the results are shown in Fig. 6.

The rarefaction wave solution is given by case two with a different initial condition. Similarly, the numerical results do
not show much difference in the jam region between the AFVD flow model and the LWR model. However, there is oscillation
Please cite this article in press as: H. Liu et al., Modeling the asymmetry in traffic flow (b): Macroscopic approach, Appl. Math. Modell.
(2013), http://dx.doi.org/10.1016/j.apm.2013.04.039
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on the low density end for the AFVD flow model. Two major activities can be found from the plots. One is the stop-and-go
activity. Usually the traffic flow does not turn to free flow phase suddenly, therefore, it is more realistic for the stop-and-go
phase connects the free flow phase and congestion phase. The second important phenomenon is that the density oscillation
is not amplified over time. This phenomenon is also easy to explain. For the rarefaction wave, the traffic flow basically prop-
agates from the congestion phase to the free flow phase. The drivers are less likely to have strong deceleration activities. It is
different with the shock solution. The numerical tests under various initial conditions further demonstrated the importance
of considering asymmetric properties in the continuum flow model.

6. Conclusion

We presented a continuum flow model which was derived from an asymmetric car-following approach. A weighted
essentially non-oscillatory scheme was developed to accurately solve the high order differential equations. Three classic
models were selected to examine the performance of the new model against the field data. Through comparisons, the advan-
tage of the model was demonstrated. Derived directly from a car-following approach, it does not have the problem com-
monly found in high-order models, in which there exists a characteristic speed that is greater than the macroscopic flow
velocity. Using the real data, the experimental analysis demonstrates that the asymmetric car-following based flow model
outperforms most of the selected classic models. The numerical tests show that the model is able to simulate complex traffic
phenomena observed in the field such as shock waves, rarefaction waves, stop-and-go waves and local cluster effects.
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