Selecting Functional Form in Production

Function Analysis

- Ronald C Griffin, John M. Montgomery, and M. Edward Rister

Functional form selection is a sometimes neglected aspect of applied research in
production analysis. To provide an improved and uniform basis for form selection, a
number of traditional and popular functional forms are catalogued with respect to
intrinsic properties. Guidelines for the conduct of form selection are also discussed.
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The art and science of applied economics crit-
ically depends on model building, and the
practicing economist makes many decisions in
the course of constructing an appropriate mod-
el. Within this process, the practitioner must
often adopt a functional form as the pattern
for one or more continuous (possibly piece-
wise) physical or economic relationships.
Common examples of such relationships are
production, profit, and cost functions as well
as systems of input and/or output supply and
demand. The continuity of these relationships
is rarely, if ever, proven but seems sufficiently
compelling to be embraced without question
in nearly all cases. The researcher, however, is
never in a position to know the true functional
form, and, as noted by Hildreth, ‘““the principal
disadvantage of continuous models lies in the
biases which may accrue if an inappropriate
[functional] form is used” (p. 64).

The model builder’s task is complicated by
the growing number of available functional
forms. A compilation of alternative functional
forms and a comparison of these alternatives
on the basis of selected criteria are presented
in this paper. Available selection criteria per-
tain to mathematical, statistical, and economic
properties and are useful for formalizing the
selection of functional form(s) during model
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building processes. The use of functional forms
in production function applications is empha-
sized in order to limit the discussion. Because
the concept of flexibility is important to form
selection, we begin with a brief summary of
this topic.

Flexibility and Maintained Hypotheses

Recent advances in developing new functional
forms have been dominated by efforts to con-
ceive “flexible” forms, and different technical
definitions of flexibility have arisen as a result
of these pursuits. Because flexibility is a mul-
tidimensioned concept, a given technical def-
inition of flexibility may not be adequate in
all situations. Local flexibility (sometimes
Diewert flexibility or, simply, flexibility) im-
plies that an approximating functional form
conveys zero error (perfect approximation) for
an arbitrary function and its first two deriva-
tives at a particular point (Fuss, McFadden,
and Mundlak). The locally flexible form places
no restrictions on the value of the function or
its first or second derivatives at this point.
Therefore, no restrictions are imposed on
properties that can be expressed in terms of
derivatives of second-order or less.
Second-order Taylor series expansions have
dominated the field of locally flexible forms
but are not unique in the ability to offer local
flexibility (Barnett). Ignoring the complica-
tions of statistical estimation by momentarily
presuming that we wish functionally to ap-
proximate a known relationship, locally flex-
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ible forms can impose large errors in the ap-
proximating function and its derivatives away
from the point of perfect approximation (Des-
potakis). Global flexibility (sometimes Sobo-
lev flexibility) is preferred to local flexibility
in that second-order restrictions are every-
where absent (Gallant 1981, 1982).

Recent attention to the influence of esti-
mation on model development has severely
reduced the attractiveness of locally flexible
forms. Because an estimated Taylor series ex-
pansion is a fit to data from the true form,
rather than an expansion of the true form, there
may be no actual point where the true function
and its first two gradients are perfectly ap-
proximated. Inquiry in this area has produced
some discomforting results. The examples pro-
vided by White demonstrate that ordinary least
squares estimators of Taylor series expansions
are not reliable indicators of the parameter
vector for the true expansion of a known func-
tion. As a consequence of these and other find-
ings, predictive properties of locally flexible
forms have been found to be satisfactory (for
large samples), but inferences involving single
parameter estimates and functional combi-
nations of these estimates are not reliable. Be-
cause estimation is driven by a global (at least
throughout the data domain) criterion such as
least sum of squared error, it has been a bit
unnatural to tout local flexibility as an advan-
tage in economic analyses. The implications
here are severe for typical applications in pro-
duction function analysis.

To gauge global flexibility in a manner which
also acknowledges derivative values, a mea-
sure of error is needed which incorporates
errors in derivatives as well as errors in the
approximating function. The Sobolev norm (a
- distance measure) satisfies this requirement and

has been employed to assess global flexibility
(Gallant 1981). In applied work, however, the
Sobolev norm is intractable for obtaining pa-
rameter estimates, so estimation of globally
Mlexible forms still uses traditional distance
measures like least squares. Evidence provided
by Elbadawi, Gallant, and Souza suggests that
this produces satisfactory results. This finding
supports the judgment expressed by Rice that
form exceeds norm in importance for approx-
imation (pp. 1, 20). It is still true, though, that
the effects of selecting a particular form are
jointly determined by the inseparable influ-
ence of form restrictiveness and estimation
technique.

Selecting Functional Form 217

The concept of maintained hypotheses is
fundamental to any concept of flexibility. As
pointed out by Fuss, McFadden, and Mund-
lak, maintained hypotheses “are not them-
selves tested as part of the analysis, but are
assumed true” (p. 222). The choice of func-
tional form immediately renders some hy-
potheses untestable (maintained) while others
remain testable. “Sometimes the guestion of
whether a specific hypothesis should be tested
or maintained is critical” (Ladd, p. 9). As an
example, King’s 1979 address to the AAEA
membership is most certainly rooted in his
disappointment with the maintained hypoth-
eses of linear models.

Attention to the issue of maintained hy-
potheses aids the researcher in developing a
more careful and richer analysis. Popular con-
cerns pertaining to potential maintained hy-
potheses within economic production models
include homogeneity, homotheticity, elasticity
of substitution, and concavity. Less restrictive
functional forms would always be desirable,
were it not for the greater information needed
to adequately specify such relationships.
Greater flexibility can usually be achieved by
adding arbitrary and nonredundant terms to
any given function, but to do so reduces de-
grees of freedom and may increase collinearity
and the expense of parameter estimation. Be-
cause reductions in maintained hypotheses
come at a cost, added flexibility is not always
desirable, and there are likely to be cost-effec-
tive opportunities to achieve particular di-
mensions of flexibility.

The Choice Set

Based on a review of traditional and popular
literature, twenty functional forms are iden-
tified for consideration. The names of each of
these functions and their algebraic form are
listed in the first two columns of table 1. Note-
worthy reference material for these functions
and some of their properties include Heady
and Dillon (quadratic, square root, Mitscher-
lich, Spillman, resistance, modified resis-
tance); Lau (square root!); Halter, Carter, and
Hocking (transcendental); Uzawa (CES); Sil-
berberg (CES); Diewert (generalized Leontief);

! Lau calls this the *“‘generalized version of the ‘Generalized Lin-
ear Function® ” (p. 410). Fuss, McFadden, and Mundlak cali it the
generalized Leontief function.
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Table 1. Properties of Selected Functional Forms

A) B) © (D)
Does x, =0
Does x, =0 for any .
Functional Form for all § one { Asymptotic
Function Gik=1,...,n Imply y =07 Imply y =0? Ay/ax; Convergence
Leontief y=min[B,x;, foXs, - . ., BuX) 8> 0 yes yes 0 or UBC no
Linear y=a+ X Bx no no UBC no
i .
Quadratic* y=a+ 8%+ X 2 &xx no no U no
i i J
Cubic® y=a+ 8%+ 2 D 8XX no no ‘U no
i )
+ 2 2 2 v
i i &
Generalized Leontief* y= 2 % oxpxt yes no UBN no
4 b
Square root® y=a+ X Bxt+ 3 ) dxhxt no no U no
i i r
Logarithmic y=a+ % Binx undefined undefined UBN no
i
Mitscherlich y=a I (1 - exp8x)) yes yes UBN ifg <0
i
Spillman y=a L (1 -89 yes yes UBN if0<g<!
i
Cobb-Douglas y=a J] xsi yes yes UBN no
i
Generalized Cobb-Douglas In y=a + X 2 &In((x; + x)/2) undefined no U no
i s
Transcendental y=a [T xexp(s.x) yes yes U no
i
Resistance yrl=a+ 2 86+ x)! no no UBN yes
i
Modified resistance* yl=a+ 28X+ 2 2 8% undefined undefined UBN yes
i T
s
CES y= [a + X ﬂ,-x,-'] undefined undefined UBN no
Translog* Iny=a+ X B8lnx+ 3 > énxXnx) undcfined undefined u no
i i i
w5
Generalized guadratic y= [2 > amxfl-ﬂ] yes no UBN no
i i
Generalized power y=a I *ixexpig(x) yes yes u no
Generalized Box-Cox* W) =a + 2 BN + 2 2 6,xNxM), no no U no
i ]
where 16) = 0 — 1)/26
and x) = (¢ — /A
Augmented Fourier y= 2 Bx+ 2 X xx no no u no
i i 4/
+ X vexp(i X hx),
(LI Y 4 i

where all x, € [0, 27],
Y=+ iy, = —1

Note: U is unrestricted sign (+, 0, or —); UBC, unrestricted in sign but constant; UBN, unrestricted but nonswitching in sign (e.g., if 8y/ax, > 0 for some
x, > 0, then dp/ax; > 0 for all x, > 0); and NG, not in general.

* Assuming §, = §; for all , /.

Y ASSUMING ¥ = Y = Yoy = T = T = Yt forall i, j, k.

< Some of the stated ditions are but not y for local concavity (see text).
< Same s for quadratic form plus v, = 0 for all /, j, k.
<« If any two of the following diti are satisfied: (1) all ;= 0, (2) ali §, =0, (3) all v, = 0.

f Yes, but x, may equal zero for only one i.

s Y{n* + 3n + 3) assuming 4 and A are fiee.

» See appendix. )

! Linear, quadratic, generalized Leontief, square root, logarithmic, Cobb-Douglas, modified resistance, CES, translog.
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Table 1. Extended
() () (&) (H) W} [} (K (®]
Constant Linearly Subsumes
Elasticity No. of Separable ‘What
Linearly of Sub- Distinct Linearly if any Other
Homogenous Homothetic stitution Concave* Parameters Separable x,=0 Functions
yes yes e=0 yes n no no
ifa=0 yes ¢ = 00 affine n+1 yes yes
ifa=0, ifg=0or NG NG Y(n + 1)(n + 2) yes yes Linear
alld, =0 allé; =0
d < NG NG (n+ 3)n +2) yes yes Linear,
“(n + 1)/6 quadratic
yes yes NG if ali Yan(n + 1) yes yes
8 =0
ifa=0, ifg=0 NG ifg >0, o(n+ 1)(n + 2) yes yes Generalized
=0 ally, =0 Leontief
no yes NG ifg>0 n+1 yes undefined
no no NG ifa>0,8«0, n+1 no no Spillman
2 exp(8.x,) < 1
no no NG ifa >0, n+1 no no Mitscherlich
Q=pxl,
Fer<1
ifY 8 =1 yes a=1 ifa >0, n+1 yes no
Oxpgaxl,
Xa<l
ity ¥s,=1 yes no NG At + n + 2) yes ! Cobb-Douglas
4 i
it 8=1, if6=0 if6=0 ifa >0, 2n+1 yes no Cobb-Douglas
6=0 0xpg<l,
E B <1
fa=0,=0 iféd=0 NG ifg>0,6>0 2n+ 1 yes yes
ife=0, if all §, = 0 NG NG Yan* + n + 2) yes undefined
all§,=0
ifa=0,v=1 yes c=1/ ifa> 0,830, n+3 NG undefined Linear,
1+ D<v<l Cobb-Douglas
ity 8=1, if all NG ifg> 0,alls, =20 Wn+ I}n +2) yes undefined  Cobb-Douglas
all 3 8,=0 28=0
é i
ifvs=] yes NG ifall g, = 0, n+3 NG NG Generalized
O=y=xl, Leontief, CES
§=s1l,v=1
NG NG NG NG indeterminate NG NG Transcendental
if 28, ifall §, =0 NG NG s NG NG |
=2a\ + 1, orall$, =0,
allag =23 ¢, i# jand
! all A, = 25,
no no NG NG h yes yes Linear,
quadratic




220 December 1987

Christensen, Jorgenson, and Lau (translog —
transcendental logarithmic); Fuss, McFadden,
and Mundlak (translog, generalized Cobb-
Douglas, square root); Denny (generalized
quadratic); de Janvry (generalized power); Ap-
plebaum (generalized Box-Cox); Berndt and
Khaled (generalized Box-Cox); and Gallant
(augmented Fourier).

The augmented Fourier form is globally flex-
ible, asymptotically, in that no second-order
restrictions are imposed anywhere in the do-
main. It is also nonparametric; the number of
parameters to be estimated varies with sample
size. Because the augmented Fourier form is
not commonly used in production function
analyses, a few essential details are presented
in an appendix.

The Criteria

As stated above, determination of the true
functional form of a given relationship is im-
possible, so the problem is to choose the best
form for a given task. This problem leads to
consideration of choice criteria, that is, how
one functional form may be judged better or
more appropriate than another. These criteria
may be grouped in four categories according
to whether they relate to maintained hypoth-
eses, estimation, data, or application.

Concerns regarding maintained hypotheses
form one set of objectives whereby appropri-
ateness can be assessed. If the maintained hy-
potheses implied by a certain function are ac-
ceptable, or even useful, then the function may
be deemed appropriate. In the absence of a
strong theoretical or empirical basis for adopt-
ing a given maintained hypothesis, however,
a functional form which is unrestrictive with
respect to this hypothesis may be considered
appropriate.

Second, functional form has implications for
statistical processes of parameter estimation.
Data availability, data properties, and the
availability of computing resources can affect
the choice of functional form for statistical es-
timation. Moreover, some forms do not per-
mit parameter estimation by linear least
squares procedures, and alternative proce-
dures typically offer less information concern-
ing estimator properties. Criteria relating to
maintained hypotheses and statistical esti-
mation are discussed below, and important
findings have been condensed in table 1.
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A third category of selection criteria in-
volves data-specific considerations (goodness-
of-fit and general conformity to data). Such
concerns are necessarily omitted from this dis-
cussion because comparisons among function
forms require the use of a specific dataset and
findings would not be general. In addition, there
is a significant body of literature concerning
testing of nested and non-nested models (see
Judge et al.).

The fourth grouping of selection criteria per-
tains to application-specific characteristics. For
example, if the resulting equation is to be used
in simulation or optimization procedures, there
may be other desirable properties for func-
tional form. These considerations are largely
excluded from the present discussion because
the number of potential criteria within this
category is quite large and highly customized.

For ease of presentation, the discussion em-
phasizes selection of a production function
rather than a demand, profit, or cost function.
The rationale for this choice stems partially
from the fact that most recent advances in con-
ceiving flexible forms are published as cost or
demand applications. Much of the discussion
presented here can be readily applied to cost
or demand studies. System-related properties,
such as symmetry, are not considered because
of the production function emphasis.

Some functional forms allow as special cases
the assumption of all properties of other func-
tional forms. The more flexible forms may be
appropriate when information regarding the
nature of the relationship does not permit cer-
tain hypotheses to be maintained. Those func-
tional forms subsumed by others are indicated
in the last column of table 1. Employing a
nonlinear transformation of coordinates, the
generalized Box-Cox form subsumes nine oth-
er forms as nested cases. They are: translog
@=x=0), CES (v6 =\, all A3, = 28,6, =0
for all i # j); modified resistance (§ = —'%2, A =
—1, all 5, = 0); Cobb-Douglas (§ = X = 0,
= B; = 1, all §; = 0); logarithmic (6 = %, A =
0); square root and generalized Leontief (§ =
\ = %); and quadratic and linear (6 = '3, A =

D).

Maintained Hypotheses

Column A of table 1 concerns the assumed
effect of inputs specified in the function but
not applied (i.e., those inputs with a zero level).
Assuming that one or more inputs are hy-
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pothesized to be related to output and included
as exogenous variables, column A indicates for
which functional forms output would be zero
if all input levels were zero. Such a maintained
hypothesis may not conform to observed phe-
nomena. In agronomic fertility studies, for ex-
ample, one often encounters experimental data
where nutrient applications are observed, but
soil nutrient levels are not. Zero yields are im-
posed by particular functional forms when ob-
servations pertain to applied nutrients and no
nutrients are applied. The hypothesis repre-
sented by column A thereby underscores the
relationship between variable specification and
functional form.

A similar but more relevant property is de-
scribed in column B, which indicates for which
functions inputs are essential; that is, no out-
put occurs if at least one of the inputs of a
multiple-input model is not applied. Again,
the importance of this property primarily de-
pends on how the inputs of a specific model
are defined.

First derivatives of production functions are
important in nearly all applications. Because
some are cumbersome to compute, derivatives
for all twenty forms are given in table 2. Col-
umn C of table 1 indicates maintained hy-
potheses concerning the sign of marginal prod-
uct. Functions in table 1 are characterized by
marginal products which are unrestricted in
sign (U), unrestricted but nonswitching in sign
(UBN), or unrestricted in sign but constant in
value (UBC). Functional forms with marginal
products that are unrestricted but nonswitch-
ing in sign allow successive units of applied
input to increase, decrease, or not change total
output, but any change in total output must
be in the same direction as the change pro-
duced by the previous unit of input. Thus, the
nine UBN functional forms (as well as the two
UBC ones) do not allow model estimation to
determine at what input level output begins to
decrease (assuming the data supports this test-
able hypothesis) but rather maintains the
hypothesis of everywhere positive (or every-
where negative) marginal productivity.

Column D indicates which functional forms
maintain the hypothesis of asymptotic con-
vergence of output towards a maximum as in-
put levels are increased. In such cases, output
increases as the level of input increases, re-
gardless of the data employed to estimate the
change in output due to a change in the level
of input.
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Two related properties exhibited by certain
forms are homogeneity and homotheticity.
Functional forms homogenous of degree 1, said
to be linearly homogenous, are indicated in
column E. If production is found to be prof-
itable for some input combination in a linearly
homogenous production function, profit can
be increased without bound by increasing in-
puts proportionately.

Homothetic forms are indicated in column
F of table 1. The interesting characteristic of
homothetic production functions is that the
marginal rate of technical substitution (MRTS)
remains constant as all inputs are increased
proportionately. When the marginal rate of
technical substitution is constant, as for homo-
thetic functions, any change in the value of
output will affect the optimum input levels
proportionately as long as input prices are un-
changed.

Related to the concept of the marginal rate
of technical substitution is the concept of the
elasticity of substitution. In general, MRTS;
will increase in magnitude as X; is increased
(and x; is decreased) along any given isoquant.
This rate of change can be measured by the
elasticity of substitution.? Those functional
forms assuming constant elasticity of substi-
tution are indicated in column G.

The generalized constant elasticity of sub-
stitution (CES) production function, which is
defined not only to have constant elasticity of
substitution but also to be homogenous of de-
gree v when o = 0, represents a much-studied
class of production functions (Arrow et al.;
McFadden; Uzawa). The concept of elasticity
of substitution and the CES class of production
functions have been applied primarily to the
problem of the distribution of income.among
generally defined or highly aggregated factors
of production (Arrow et al.; Behrman; Ner-
love). With regard to production function
analysis, however, Silberberg states that
“knowledge of o at any point would undoubt-
edly be a useful technological datum for em-

? For any change along an isoquant, d(x,/x;) is the change in the
use of x, as compared with that of x;, and d(dx/dx) is the corre-
sponding change in the marginal rate of technical substitution.
“The ratio of these differentials, expressed in proportional terms
to make them independent of units of measurement, is defined as
the elasticity of substitution between the factors at the combination
of factors considered” (Allen, p. 341). The elasticity of substitution
between x, and x; is given by

o _ R dxix)
' x) Al
where f; = 8y/dx, and f; = dy/dx;.
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Table 2. First Derivatives of Selected Functional Forms

Function o2
ax;
Leontief 0org,
Linear 8
Quadratic B+ X 2,x
/
Cubic B+ D 2% + 2 D bvuXie + dvuxt
/ Jmi k
Generalized Leontief X dpx
J
Square root (8, + ) dxxi
J
Logarithmic Bix;
Mitscherlich —apexp(Bx) [1 (1 — exp(Bx))
Jmi
Spillman -aprin@8) [1 (1 - 89
S
Cobb-Douglas afxit [Ix
J

Generalized Cobb-Douglas

Transcendental

Resistance
Modified resistance

CES
Translog

Generalized quadratic

Generalized power
Generalized Box-Cox

Augmented Fourier

y 2 26/(% + %)
o3, + B/x) II xpexp(dx)

By + x)?
YBXt + 2 8,X72 ")

Jwi
vip

gxi—ela + 2 Bxi”) O
g + 2 E Byln(-"{/)]/ Xy
7

v—3

vty " by 2 B + (1= ) 2 Bpxemxp]
/ J

XY -2D8, + 2 ) 8,08 — DA
J

> hyexpl 2 hx)

{h|*<H i

Bi+ X 28,x + i
J

pirical work” in that the statistic describes the
relative ease with which one input may be sub-
stituted for another (p. 317).

A final property, concavity, is important in
at least two respects. It is in one sense pertinent
to description of the production process, re-
flecting a situation in which output increases
at a decreasing rate (or decreases at an increas-
ing rate) as the level of input is increased. The
property may be of primary importance, how-
ever, in the context of economic optimization;
only if the function is concave can input levels
that maximize profit be computed from first-
order equations.

As indicated in column H of table 1, esti-
mated parameters of the model may need to
be examined before the researcher can ascer-
tain whether concavity is present. The impor-
tance of concavity for profit maximization im-
plies that such an examination should always
be conducted. While the conditions listed for
concavity in table 1 are necessary and sufficient
for global concavity, that is, for concavity
everywhere in the nonnegative orthant, many
of these conditions are not necessary for local
concavity. In particular, the indicated condi-
tions are merely sufficient for local concavity
in the case of the square root, resistance, mod-
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ified resistance, CES, generalized Leontief,
translog, and generalized quadratic forms.

Statistical Estimation

Certain properties embodied in functional
forms have important implications for the
mathematical procedures employed in the sta-
tistical estimation of parameters. Pertinent
properties included in table 1 are the number
of distinct parameters (column I), and linear
separability of the parameters (columns J and
K).

"~ Most functions, in their complete forms, re-
quire a geometrically increasing number of pa-
rameters to be estimated as the number of vari-
ables of main effect is increased. This is
primarily because of the large number of in-
teractions specified among variables of main
effect. For example, if two inputs are hypoth-
esized to affect output, a linear function re-
quires only three parameters to estimate that
effect, whereas a complete cubic function re-
quires estimation of ten parameters. If ten in-
puts are hypothesized to affect output, a linear
function requires that eleven parameters be
estimated, but a cubic function requires esti-
mation of 286 parameters.?

Fuss, McFadden, and Mundlak have ex-
pressed concern that “‘excess’’ parameters
would “exacerbate” multicollinearity present
in survey data (p. 224). If multicollinearity is
high, the variance of the parameter estimates
is increased such that it may be impossible to
determine how much variation in the endog-
enous variable is explained by different exog-
enous variables. Higher parameter variances
also enlarge confidence intervals for applica-
tions (such as the computation of an optimal
input program) involving subsets of the esti-
mated parameters. If, however, multicollin-
earity is irrelevant because the primary pur-
pose of the model is for prediction (Maddala,
p. 186), then the issue of having many param-
eters can be quite unimportant. Of-possible
concern to the researcher may be the expense
of estimating a large number of parameters or
the loss of degrees of freedom. Either of these
problems could actually preclude the use of
certain forms, depending on the number of
variables of main effect, computing resources
available to the researcher, and/or size of the

3 In some cases, additional maintained hypotheses can be intro-
duced to eliminate certain interactions. For example, any real in-
teraction between the quantities of irrigation water and harvest
labor in crop production may be thought, a priori, to be absent.
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dataset. The total number of parameters to be
estimated by a given form may be calculated
with the formulas presented in column I.

Ease of analysis and availability of resources
may also limit the modeling process to func-
tional forms containing parameters that are all
linearly separable (indicated in column J) and
can therefore be estimated by common and
well-developed linear least squares regression
techniques. Whereas direct estimation of non-
linearly separable forms may be possible by
such techniques as maximum likelihood esti-
mation, Fuss, McFadden, and Mundlak note
that “linear-in-parameter systems have a com-
putational cost advantage, and have, in addi-
tion, the advantage of a more fully developed
statistical theory” (p. 225). Linear least squares
regression provides information regarding the
small-sample accuracy and precision of esti-
mates, which may not be available from other
techniques. The value of this information must
be weighed against any advantages in the use
of nonlinearly separable forms. On the other
hand, the gain in information for linear least
squares estimators may be artificial, since this
information results from several important as-
sumptions.

In addition, the nature of the dataset must
be considered if a technique such as ordinary
least squares is to be employed. Column K of
table 1 shows which functional forms are lin-
early separable in parameters when any input
levels take on zero values. For example, even
though column J identifies the generalized
Cobb-Douglas form as being linearly separa-
ble, if the dataset used for estimating the func-
tion contains an observation in which none of
one input is applied, ordinary least squares
cannot be conducted.

It is notable that the generalized Box-Cox
form is not linear in parameters, and this fact
tends to limit applications. If coefficients # and
A are chosen a priori, the form becomes linear
in parameters. When this is done, the Box-Cox
form becomes one of the subsumed functional
forms, and-its generality is sacrificed.

Formalizing the Selection of
Functional Form

This paper describes why the researcher should
be concerned with the functional form of a
continuous input-output model and provides
some guidance for assessing whether some
functional forms may be considered more ap-



224 December 1987

propriate than others. As a result of the math-
ematical properties inherent in each functional
form, hypotheses are maintained about the
production relationship whenever a specific
function is selected for estimation.* Any po-
tential hypothesis which is not maintained and
can be expressed as one or more linear rela-
tions among function parameters will be test-
- able.® Such relations are indicated in table 1.
Inherent mathematical properties of a given
functional form can have important implica-
tions for statistical estimation and economic
application.

A functional form may be appropriate be-
cause of the correspondence of maintained hy-
potheses with generally held theories of the
true input-output relationship, possibility and
ease of statistical estimation, possibility and
ease of application, general conformity to data,
or a combination of these criteria. None of the
many criteria guarantee that the true relation-
ship will be discovered, nor do any allow a
totally objective choice to be made. Subjective
judgment is a necessary aspect of choice re-
garding functional form. Thus, formalization
of the selection process requires deliberative
choice and frank presentation.

Having selected two or more estimable func-
tional forms. with acceptable theoretical and
application properties, the researcher may wish
to base final selection upon a statistical crite-
rion. Such criteria entail data-specific consid-
erations and may comprise a decision rule as
simple as choosing the model with the highest
coeficient of multiple determination, Strictly
statistical information can be used for the pro-
cess of model selection since several formal/
informal opportunities are available for both
nested and nonnested testing. Judge et al. note
that tests of nested models measure “how well
the models fit the data after some adjustment
for parsimony” (p. 862). Tests of nonnested
models ask the question: Is the performance
of model 1 “consistent with the truth” of mod-
¢l 2 (Pesaran and Deaton, p. 678)? Thus, the
testing of each model against the evidence pro-
vided by the other will not necessarily allow

4 Also, properties which are not inherent to a given form can
often be incorporated as maintained hypotheses by the appropriate
choice of linear restrictions. Table { indicates the appropriate re-
strictions for the considered criteria. Moreover, different functional
forms can be simultaneously developed in order to test different
hypotheses (as in Shumway’s paper).

$ However, such tests require the additional (augmenting) hy-
pothesis that the true form is of the class under consideration
(Gallant 1984).
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the investigator to choose one model over the
other. While it is clear that such data-related
objectives can form an important set of cri-
teria, allowing statistical evideénce to dictate
model selection is regarded as a questionable
and often unnecessary practice.

The following observation by Hildreth is of
interest: ““It is particularly disconcerting that,
in many instances in which several alternative
assumptions [as to functional form] have been
investigated, alternative fitted equations have
resulted which differ little in terms of conven-
tional statistical criteria such as multiple cor-
relation coeflicients or F tests of the deviation,
but differ much in their economic implication™
(p. 64). Given the possible differences in eco-
nomic implications, it is often advisable to
explore the sensitivity of calculated economic
optima to the choice of functional form. As an
interesting example, in an analysis of a single
application of nitrogen and potassium on corn,
Bay and Schoney have assessed the costs of
“incorrectly” choosing among four possible
functional forms. Similarly, in an analysis of
multiple nitrogen applications on rice, Griffin
et al. have examined the sensitivity of optimal
fertilizer programs to functional form.

Conclusions

It is often difficult to ascertain why particular
functional forms are chosen for the models
presented in published economic research.
Possibly, researchers confine their attentions
to particular functional forms because they are
most comfortable and experienced with these
forms or because these forms are in vogue. In
fairness, there are probably many examples
where the research process is extensive and
formal in the selection of functional form, but
a description of these procedures is omitted
from published resulits. These omissions may
be due to a propensity of authors, reviewers,
or editors to consider such material extra-
neous. Applied economists can enrich their
analysis by selecting functional forms from as
broad a choice set as possible and by consid-
ering a number of selection criteria (other than
merely data-related criteria). Formal state-
ment of these procedures in published output
is desirable so that readers might better gauge
research results (particularly sensitivity to
form). :

The need “to make research processes overt”
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(Tweeten, p. 549) pertains as much to the choice
of functional form as to other aspects of com-
monly reported research methodology. That
the true form cannot be known and that it is
impossible to measure how well any chosen
form approximates the true form lends im-
portance to the selection process. Formaliza-
tion of this process requires the development
of an explicit and, hopefully, exhaustive choice
set and some acceptable criteria fog conducting
the selection. The objective of this paper has
been to develop such a choice set and offer an
initial listing of plausible criteria. Extension of
this compilation and discussion to settings

other than production function applications -

remains as a needed endeavor.

[Received December 1985; final revision
received August 1987.]
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Appendix

The Augmented Fourier Form

Because complex-valued trigonometric polyno-
mials of order H,

Y= 2 1 exp(i > hﬂ;>,

|h)eSH

(A.D)

can be used to approximate any known periodic
function, and because the approximation is perfect
when H = co, trigonometric polynomials have a
number of fruitful applications in physics and the
engineering sciences. The following additional in-
formation is needed to interpret equation (A.1): A
is an n-dimensional vector of integers (..., —1, 0,
1, ...) with “length” |h|* = D)|h|; H is exoge-
i

nously chosen by the researcher and serves to limit

. the number of terms in (A.1). Each coefficient v, is
complex-valued, v, = v} + i-v5, where i2= —1 and
v} ‘and 4 are the real and complex components of
v:, Tespectively. Thus, each v, really represents two
separate parameters.

If y(x) is known and the terms v, are chosen in
a certain manner (see Tolstov, pp. 13-14, 174; or
Rees, Shah, and Stanojevic, p. 225), then these terms
are Fourier coefficients, and equation (A.1) identi-
fies a Fourier series approximating y(x). For all pos-
sible trigonometric polynomials of limited order ap-
proximating y(x), the Fourier series provides the
best approximation as measured by least sum-of-
square differences across the domain (Rudin, pp.
172-73; Tolstov, p. 174).

In production analysis we are not interested in
periodic or complex-valued functions. Because pro-
duction functions are not expected to be periodic,
the exogenous factors, the x;, must be scaled so that
they lie in an interval of length less than 2x. This
is typically accomplished by scaling or normalizing

. X; into [0, 2x] (Gallant 1981). In order to guarantee
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that y(x) in equation (A.1) is real-valued, it is suf-
ficient to impose

A2 =0, vi=7vL, and v = —7%.
Equation (A.1), conditions (A.2), and the identity

exp(i ) hx) = cos(Q hx) + i-sin(Q) Ax)
can be used to obtain

A3) W)= 2 [vicos( hx)
ILIEE:4
— yisin(Q) Ax)].

While (A.1) is a more compact representation of the
general trigonometric polynomial, application to
production function analysis begins with equation
(A.3). Note that equation (A.3) and its derivatives
are obviously real-valued, and conditions (A.2) must
still be econometrically imposed.

Gallant (1981) is responsible for combining the
quadratic form and equation (A.3) to produce the
so-called Fourier form or, by our nomenclature, the
augmented Fourier form:

Ad) y=2 Bx+ X Y
i i J
+ X [ cos(T hx) — visin(Z Ax)l.

thl-sH

The constant term, «, is omitted to avoid redun-
dancy since it is contained in the Fourier expression
(h = 0). The number of parameters in the augmented
Fourier form depends on n and H, but we have
been unable to obtain a completely general formula
for the number of parameters in the Fourier portion
of (A.4). The following formula applies for n = 1,
2,3, or 4.

_ n(n + 3)
2

where m is the total number of coefficients in the
augmented Fourier form, m, is the number of terms
in the quadratic portion (excluding the constant
term), and m, is the number of terms (including the
constant term) in the Fourier portion; m, is given
by an nth degree polynomial in H:

m,=aq,+aH +aH*+ ...+ aH

with coeflicients identified in the following table for
nup to 4.

m=m, + m, +m,,

Table A.1. Polynomial Coefficients for m,
[} a, a, [23) a,

1 1 2 0 0 0

n 2 1 2 2 0 0

3 1 1A 2 A 0

4 ¢ 3645 “Us 16449 %

The number of terms in the Fourier portion can
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be quite large if either #n or H is large. To illustrate
the effect of increasing #» when H is small: if H = 2
andn=2,m=5andm,=13;if H=2and n=
4, m, = 14 and m, = 41.

Sufficient (but not necessary) conditions for con-
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cavity of the augmented Fourier form can be de-
rived by following the procedure of Gallant (1981).
To do so requires substantial additional notation
and will not be pursued here.




