Ingestion Behaviors (feeding and drinking)

Domestic Animal Behavior

Outline

- General principles
- Physiology of ingestion
- Defense of body weight and composition
- Meal patterns, Social facilitation, Palatability, Temperature
- Species-specific information (mixed throughout principles)

Anatomy of the digestive tract

Esophagus ·

Liver

Stomach

- Animals must eat and drink fresh water (with rare exceptions, such as the Kangaroo Rat, Quokkas and the Tammar Wallaby)
- All domestic animals must eat food/feed and drink water
 - Ruminants drink more water than non-ruminants, but they drink less often with camalids drinking less frequently
- Ingestion leads to elimination

Kangaroo rat (USA)

Quokkas, Rottnest Island W. Australia

Tammar Wallaby, W. Australia

- > Young animals have a growth curve until adulthood
- Animals grow slowly, then more rapidly (dynamic phase), then they plateau in body weight
- One can slow the growth curve by limit feeding

http://www.hendersons.co.uk/pigequip/Pig_growth_rate.html

- Remember we have four types of biological types among domestic animals:
 - Ruminants (cattle, sheep, goats, llamas)
 - Non-ruminant herbivores (horse, rabbit)
 - Non-ruminant omnivores (pigs, poultry)
 - Carnivores (dogs and cats)
- Clearly each type must be fed differently and their feeding behaviors differ
- Generally, the time it takes to eat and the mass of feed eaten depends on the biologically relevant food's natural nutrient density
 - Low nutrient-dense foods like hay & grass require eating large amounts
 - high- nutrient-dense foods like grain+soybean or meat don't require as much mass of food eaten to obtain the same amount of nutrients

Major nutrients

- Water (can be drank directly, or obtained through food)
- Protein
- Carbohydrates
- Fats or lipids (fat, oil, or wax)
- Fiber
- Vitamins and minerals

General nutrient densities

- Meat is a nearly complete, nutrient-dense food
- Corn-soybean diet supplemented with vitamins and minerals provides all the nutrients any animal needs
- Forage is high in fiber (some highly digestible to ruminants), but has valuable levels of other nutrients
- Feeding the wrong diet to a given speices may cause health problems

Obesity is a large problem in domestic animals

- > Farm pigs have been bred for leanness in recent years
- \succ Dogs and cats in the USA are increasingly obese

+

Herbivores are less commonly obese (but it happens)

Nutrients (calories) taken in

- Activity level
- Body composition

=

Physiology of Ingestion

Hormonal communication between the brain and the GI tract control feed intake (hunger and satiation)

- Hormones that increase feeding:
 - Neuropeptide Y (NPY)
 - Agouti-related protein (ARP)
- Hormones that suppress feeding:
 - Melanocyte-stimulating hormone (MSH)
 - Cocaine-Amphetamine related transcript (CART)

Plus: Leptin, Gut peptides, Insulin, Glucagon, Grelin, CCK and others

Fig. 8.1 Integration of physiological factors that stimulate and depress food intake in the brain. (Drawing by Dr. T. Richard Houpt.)

Physiology of Ingestion

- The environment has a large effect on food and water intake
- Warm temperatures lower and cold temperatures increase feed intake
- Disease (fever especially) causes inflammation and reduced feed intake

Social facilitation

- Hungry animals, aggressively eating (or not), increase motivation to feeding of other animals
- Animals prefer company while eating

Social suppression

Social status can impact feeding and drinking

Harris on the pig, 1883

Meal Patterns

- Most feeding is done according the circadian cycle of the species
 - Diurnal, nocturnal, crepuscular

Mechanics of feeding

- Teeth vs lips vs tongue
- Bite, grasp, scoop
- Chew
- Swallow
- Eat-drink-eat-drink sequences

Pig feeding behavior

https://www.youtube.com/watch?v=gVhnbwJS9R8&t=2s

Cattle feeding behavior

https://www.youtube.com/watch?v=8qkC36c-Kvc

Food related aggression

- Animals can be protective about their food
- Many animals do not like being messed with while feeding
- Food-related aggression is common among domestic animals

Modifying dog food aggression via positive reinforcement

https://www.youtube.com/watch?v=-I_Ej65k3Rg

Palatability

- Depending on the species, different foods have different preferences
- Even animals in the same species vary in their preference for certain foods
- Preference vs. Aversion
- Food neophobia (more common in carnivores and non-ruminants)
- Animal genetic aversion to some poisonous plants or other foods

Control of Food/Feed Intake

- Scientists have been looking for molecules and methods to increase or decrease food intake.
- Animals, generally, eat to reach a calorie target
- Animals can have nutrientspecific cravings (ex., fiber, salt, microminerals)
- Temperature has a large effect on feed intake (see graph)

Fig. 8.3 Daily food intake of pigs fed ad libitum. Pig on left was subjected on alternating days to temperatures of 25°C (white) and 10°C (hatched). Pig on right was subjected on alternating days to temperatures of 25°C (white) and 35°C (black).⁹²⁸ (Copyright 1974, with permission of Pergamon Press.)

Ad Libitum vs. Meal feeding

Allowing some dogs to eat ad libitum causes them to become obese; others not so much

Fig. 8.9 Food intake and body weight of two beagles. Ad libitum feeding began at arrow. Lower graph is of a dog whose intake and body weight remained normal. Upper graph is of a dog that overate and became obese.¹³⁷⁹ (Copyright 1977, with permission of Monell Chemical Senses Center and Academic Press.)

Food quality impacts feeding levels

Food quality changes present and future feed intake

Fig. 8.4 Effect of various gastric loads on 3-hour intake of suckling pigs. Note that milk (Similac) and isotonic glucose, but not isotonic saline, depressed intake.⁸⁷³ (Copyright 1976, with permission of Oxford University Press.)

Special times that change feed intake

► Temperature

- Parturition
- Lactation
- Stress
- Puberty requires a certain age, weight and body composition

Defense of Body Weight

- Animals eat for: maintenance, growth, pregnancy, or lactation.
- If the amount of nutrients are limited, animals will attempt to at least meet their maintenance needs for nutrients
- Adult animals (like people) defend a set-point body weight
- An animal's set point will be different among animals of the same species
- Physiological internal signals change the set-point feed intake level
- Diet density has a large effect on calorie intake
 - Animals like salt, fat, sugar, and for some species, meat

Feeding behavior of ruminants

- Ruminants have different physiological mechanisms that control feed intake
- Glucose is less critical than for nonruminants
- Bacterial digestion of nutrients, especially, fiber and protein change the nutrients that reach the small intestine

[Distention] = [Feed input] - [Fermentative digestion] - [Output to omasum]

Fig. 8.12 Controls of feeding in a ruminant. (Drawing by T.R. Houpt.)

Behavioral problems associated with ingestion

- Obesity
- Anorexia
- Pica
- Specific hungers
- Grass eating by dogs
- Coprophagic
- Psychogenic polyphagia or polydipsia
 - Often associated with new pet introduction
- Adipsia (no drinking) and hypernatremia (high NaCl in blood associated with dehydration)
 - Not drinking water can be a physiological problem

