Scott A. Holaday
Education:
- Ph.D., Botany, University of Florida (1978)
- M.S., Forestry, University of Florida (1973)
- B.S., Forestry, University of Illinois (1971)

Research Interests
Laboratory spent over 20 years studying the effects of environmental stress (chilling,
drought, heat) on primary metabolism, with an emphasis on photosynthesis. Studying
cotton plants that over-express a gene indirectly linked to cellulose synthesis. An
increase in the supply of water to leaves, especially during a drought, would enhance
photosynthetic activity that would be supplying carbohydrate to the developing bolls.
Also, leaf senescence would be reduced and plants could grow larger, as we have observed.
More water to the bolls would improve their ability to metabolize the carbohydrate
that they receive and improve fiber growth, leading to a greater fiber yield, as has
occurred in our experiments.
Other projects involved the study of the physiological bases for why nitrogen enrichment
of wetlands facilitates their invasion by certain non-native species. The study focused
on the invasive grass, Phalaris arundinacea, and the sedges in the genus, Carex, that
are often displaced by P. arundinacea. A high photosynthetic rate is important for
the competitive success of P. arundinacea, and it allocates a high proportion of its
leaf nitrogen to photosynthetic proteins. Under nitrogen deprivation, it allocates
much less nitrogen to photosynthesis and becomes a poor competitor. A more conservative
approach is taken by Carex stricta that allocates a moderate proportion of its leaf
nitrogen to photosynthesis when nitrogen is readily available. However, when it experiences
nitrogen deprivation, it will maintain its nitrogen in photosynthesis for a couple
of months. What controls these allocation differences and whether other species of
Carex are closer to P. arundinacea in terms of leaf nitrogen allocation requires molecular
and physiological analyses.
Selected Publications
- Singh, B., L. Haley, J. Nightengale, W.-H. Kang, C.H. Haigler, and A.S. Holaday. 2005 Long-term night chilling of cotton, Gossypiumhirsutum, does not result in reduced CO2 assimilation. Funct. Plant Biol. 32:655-666.
- Kornyeyev, D., B.A. Logan, R.D. Allen, and A.S. Holaday. 2005.Field-grown cotton plants with elevated activity of chloroplastic glutathione reductase exhibit no significant alteration of diurnal or seasonal patterns of excitation energy partitioning and CO2 fixation. Field Crops Res. 94:165-175.
- Hozain, M.I., M.E. Salvucci, M. Fokar, and A.S. Holaday. 2010. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. Tree Physiol. 30:32-44.
- Kornyeyev, D., B.A. Logan, and A.S. Holaday. 2010. Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. Funct. Plant Biol. 37:943-951.
- He, Z., L.P. Bentley, and A.S. Holaday. 2011. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea L. (Poaceae, reed canary grass) over the native sedge, Carex stricta LAM. (Cyperaceae). Amer. J. Bot. 98:20-30.
- Hozain, M.I., H. Abdelmageed, J. Lee, M. Kang, M. Fokar, R. D. Allen, and A. S. Holaday. 2012. Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. J. Plant Physiol. 169:1261-1270.
Department of Biological Sciences
-
Address
Department of Biological Sciences, Texas Tech University, Box 43131 Lubbock, TX 79409 -
Phone
806.742.2715 -
Email
biology@ttu.edu