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Abstract.—Evolution can change the developmental processes underlying a character without changing the average
expression of the character itself. This sort of change must occur in both the evolution of canalization, in which a
character becomes increasingly buffered against genetic or developmental variation, and in the phenomenon of closely
related species that show similar adult phenotypes but different underlying developmental patterns. To study such
phenomena, I develop a model that follows evolution on a surface representing adult phenotype as a function of
underlying developmental characters. A contour on such a “‘phenotype landscape” is a set of states of developmental
characters that produce the same adult phenotype. Epistasis induces curvature of this surface, and degree of canalization
is represented by the slope along a contour. I first discuss the geometric properties of phenotype landscapes, relating
epistasis to canalization. I then impose a fitness function on the phenotype and model evolution of developmental
characters as a function of the fitness function and the local geometry of the surface. This model shows how canalization
evolves as a population approaches an optimum phenotype. It further shows that under some circumstances, ‘‘decan-
alization” can occur, in which the expression of adult phenotype becomes increasingly sensitive to developmental
variation. This process can cause very similar populations to diverge from one another developmentally even when

their adult phenotypes experience identical selection regimes.
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The observation that embryos of related species tend to
resemble one another more than do the adults that develop
from them is one of the longest standing generalizations about
comparative development. Thirty years before On the Origin
of Species (Darwin 1859), K. E. von Baer (1828) codified
the idea of embryonic conservatism in the third and fourth
of his four laws of development. von Baer’s third law states
that the embryo of a particular type of animal diverges from
that of other types as it develops, rather than passing through
the same stages as others. The fourth law concludes from
this that the embryos of ‘‘higher” animals will resemble the
embryos, but not the adults, of other species (for a translation
see Gilbert 1991).

Darwin (1859) gave this pattern an evolutionary interpre-
tation, arguing ‘‘that certain organs in the individual, which
when mature become widely different and serve for different
purposes, are in the embryo exactly alike’” was evidence in
support of the idea of descent with modification. More re-
cently, the idea that early developmental characters are evolu-
tionarily conservative arises, implicitly or explicitly, in dis-
cussions of homology (Hall 1992), macroevolution (Levinton
1988), and the value of characters for phylogenetic inference
(Kluge and Strauss 1985).

The continuing popularity of von Baer’s third and fourth
laws is well justified: a general pattern of embryonic con-
servatism is the norm in all major groups of animals. There
are circumstances, though, in which developmental processes
undergo substantial evolution that is not always manifest in
adult phenotype—producing similar species that differ in de-
velopment but not in adult morphology (Raff 1996).

In some such cases, divergence can be attributed to selec-
tion acting directly on early developmental stages associated
with life-history changes such as a shift from indirect to direct
development (Wray 1994). In other cases, though, we see
changes in developmental stages that do not appear to be
under direct selection and continue to produce the same adult
morphology. For example, in early gastropod embryos, de-
termination of the D quadrant (which includes cells that pro-
duce much of the shell gland and all of the mesoderm) is
controlled by cytoplasmic localization at the second cleavage
event in some species and by inductive interactions between
fifth and sixth cleavage in others (Freeman and Lundelius
1992).

Similar divergence can occur later in development, when
tissue interactions are determining patterns of differentiation.
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For example, attempts to identify ““the’’ mechanism of lens
formation in the vertebrate eye have been hindered by the
fact that the significance of the optic cup in inducing lens
formation varies between different frog species, with the op-
tic cup being necessary in some species but not in others
(Jacobson and Sater 1988).

This sort of developmental divergence can appear even
among populations experiencing the same selection regime.
For example, Rutledge et al. (1974) found that replicate lines
of inbred mice responded to selection for increased tail length
in different ways: one increasing the number of vertebrae and
the other increasing the length of each vertebra.

Similar divergence under uniform selection occurs at the
genetic level (Cohan and Hoffmann 1989). For example, Co-
han (1984) found that under uniform selection on a previously
unselected trait in Drosophila, similar lines diverged genet-
ically, and this divergence was as great between lines drawn
from the same population as between lines drawn from dif-
ferent populations.

It is thus possible for developmental processes to evolve
independently of the characters that they build. One case in
which this must happen is the evolution of canalization, de-
fined here as the degree to which a phenotypic character is
buffered against variation in the underlying developmental
processes that construct it. (This definition is equivalent to
‘“genetic canalization” as used by Stearns and Kawecki
[1994] and Wagner et al. [1997], who make the important
distinction between genetic and environmental canalization.
It is also consistent with Waddington’s [1957] use of the term
though without the emphasis on discreetness of develop-
mental pathways.)

Canalization involves restructuring a developmental pro-
cess so as to reduce the variance in the phenotype that results
from that process without changing the mean value of that
phenotype. This is only possible if developmental characters
interact in nonadditive, or epistatic, ways.

In this paper, I will extend the term ‘‘epistasis’ to refer
to nonadditive interactions between developmental charac-
ters, as well as between loci. Extending this definition to
developmental characters simply recognizes that nonadditive
interactions between loci are often a result of interactions
between developmental characters that those loci contribute
to. For polygenic characters, developmental epistasis always
implies genetic epistasis. Note that by this definition, epis-
tasis is a property of an organism, not a population (as it
often is when defined as a statistical deviation from additiv-
ity). It is thus similar to the idea of ‘‘physiological epistasis”
used by Cheverud and Routman (1996).

Making sense of groups that break von Baer’s laws and
understanding the evolution of canalization requires that we
model both the evolution of a phenotypic character and the
nonadditive developmental processes that construct that char-
acter. One way to do this is to model evolution on a phenotype
landscape. Here, I represent various values of a phenotype
as a surface over a space of underlying developmental or
genetic factors. Studying evolution on such a surface allows
us to simultaneously watch change in the developmental fac-
tors and the phenotype that they build. I will first describe
the geometry of phenotype landscapes, which captures the
nature of developmental interactions and allows us to more
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FiGg. 1. A phenotype landscape over a space of two underlying
developmental/genetic characters. The contours of this landscape
represent sets of equal phenotype. The two dots in the second figure
are points of maximum canalization along the bold phentoype con-
tour.

carefully define such concepts as ‘“‘canalization.” I then bring
selection into the picture and derive the equations of evo-
lution in terms of the way selection acts on phenotype and
the way phenotype is related to underlying development.

GEOMETRY OF THE PHENOTYPE LANDSCAPE

Consider a phenotype, ¢, which is a function of two un-
derlying factors, u; and u,. These underlying factors may
represent quantitative genetic characters in their own right
(Slatkin 1987) or continuous measures of the expression of
some gene product. Plotting ¢ as a function of u; and u,
yields a surface, the contours of which represent different
phenotypic values. Figure 1 shows an example of such a plot.
In general, if there are n underlying factors, then the surface
is n dimensional and a particular phenotypic value is rep-
resented by an n — 1 dimensional contour. Selection may
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cause a population to move up or down such a landscape or
along a contour.

Note that this is different from an ‘“‘adaptive landscape”
over a space of phenotypic characters (Simpson 1944; Lande
and Arnold 1983). The phenotype landscape is a property of
an individual and its shape describes the nature of devel-
opmental interactions. A peak on a phenotype landscape rep-
resents the extreme value of a phenotypic character that can
be achieved by local changes in development; it thus can be
thought of as a constraint, but in general will not be an op-
timum.

The phenotype landscape is also different from the ““‘epi-
genetic landscape” of Waddington (1957). On Waddington’s
surface, height was an abstract measure of a developmental
potential function, such that the system moved downslope
during development. On a phenotype landscape, height is
simply a measure of some phenotypic character.

If all factors contribute additively to the phenotype, such
that the consequence of changing a factor is not a function
of its own state or that of other factors, then the phenotype
surface is a plane. This is the tacit view of many quantitative
genetic models. Interactions between the underlying factors
(epistasis) or dependence of the effects of changing a factor
on its current state cause the surface to curve.

At a given point, the slope of the surface captures the
degree to which a given amount of variation in the underlying
developmental factors translates into variation in the resulting
phenotype. Slope thus provides a measure of the degree of
canalization. In the purely additive case, slope is the same
everywhere, so increased canalization cannot evolve. If the
surface curves, though, then the slope is likely to be lower
at some points along a contour than at others. Points of min-
imum slope along a contour are thus points of maximum
canalization for that phenotypic value. Such points are prop-
erties of the phenotype landscape alone, and identifying them
mathematically allows us to identify the important geometric
properties of the phenotype landscape.

The most important terms for discussing the geometry of
&(uy, uy) are the phenotype gradient, Vo, defined as

P
8u1
Vo = i | @)

8u2

and the epistasis matrix, E, defined as

¢ 9%
u?  du du
E= i 10U | @
vy
ou du,  ou3

The phenotype gradient is a vector that points in the di-
rection of maximum slope on the surface. The gradient at a
particular point is always normal to the contour through that
point. If selection acts directly on ¢, then contours of equal
phenotype are contours of equal fitness. Thus, the fitness
gradient (Vw) points in the same direction as V.

The epistasis matrix in equation (2) captures the local non-
linearity of the phenotype function. Only the off-diagonal
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elements, which measure the degree to which changing one
factor affects the phenotypic consequences of changing the
other, correspond to developmental epistasis. The terms along
the diagonal are more analogous to measures of dominance.
We shall see, however, that the entire matrix emerges natu-
rally from the study of evolution on a phenotype landscape.
I will use systems with two underlying factors as examples;
however, all results can be generalized to any number of
dimensions (see Appendix). If there are n underlying factors,
then E is an n X n matrix with elements

3%

du;du;

i = 3

To find points of maximum canalization, we must find the
minima of slope along a particular contour. The slope, C(u,,
uy), at a particular point is the magnitude of the phenotype

gradient,
2 )
Cun = V] = (§—¢> +(@). @

U, 6u2

We seek a maximum or minimum of C along a contour of
constant ¢. By the method of Lagrange multipliers, such a
point will satisfy VC = kVé, where k is a number. VC is
given by

0b 0% | ab 3%

1 |du; du?  u, du,du
ve = 1| oui 209Uz | )

Cloe 9% b %

u, duduy  duy ous

so a point, (u], u5), is a maximum or minimum of canalization
when

W _ 06 0% o 0%

aul aul au% 6u2 8u1u2 (6)
\30 a6 2% o]
Ouy  duyduiduy  dug du3 | u=w

U=y

where \ is a scalar that absorbs the 1/C term in the previous
equation. (A good explication of the vector analysis used
above and later in the paper is found in Marsden and Tromba
1996). We can write equation (6) in terms of the phenotype
gradient and epistasis matrix:

2 3% || b
u?  du,du,||ou du

i 10U oy N
6 2 || b b
oudu,  oui ||ou, duy

Thus, points of maximum or minimum canalization around
a phenotype value occur precisely where the phenotype gra-
dient is an eigenvector of the epistasis matrix. Figure 2 shows
how these vectors relate to one another as we approach a
canalized point.

Note that the vector on the right-hand side of equation (5)
is the epistatis matrix, E, multiplied by the phenotype gra-
dient. We thus write the general relation between the epistasis
matrix, phenotype gradient, and gradient in slope (which
points in the direction of decanalization) as
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FiG. 2. Contours of the phenotype landscape for the function ¢
= u,u,. This is a closeup view to illustrate the relation of V¢ (solid
arrows) and E-V¢ (dashed arrows). Note that as we approach a
point of maximum canalization along a contour, these vectors be-
come parallel.

Vo
“ivel ' C

where | V| is the length of V¢, it is always a positive number.
VC is a vector pointing in the direction of maximum increase
in slope, so we should expect selection for canalization to
move the system in the opposite direction, along —E-V¢.
(See the Appendix for the n-dimensional derivation).

Before bringing selection into the picture, it is worth noting
what equation (8) says about the relationship between epis-
tasis and canalization. Recall that a contour on the phenotype
landscape corresponds to a particular value of the phenotype.
We can think of canalization around a particular phenotypic
value as movement along a contour to a point of minimum
slope (Fig. 1). V¢ is always normal to a contour, so increase
in canalization is possible only when the vector E-V¢ is not
a scalar multiple of the vector Vé. In other words, when E
is not a multiple of the identity matrix (a matrix with ones
along the diagonal and zeros everywhere else). Note that this
does not require that the off-diagonal elements of E be non-
zero, only that if they are all zero, then the diagonal elements
must not all be the same. Thus, epistasis is not necessary for
canalization. It is, however, sufficient—because any nonzero
off-diagonal elements preclude E from being the identity ma-
trix (see Appendix).

Canalization is a property of the developmental system,
not the kind of selection that the system is experiencing. To
see when it will evolve, though, we need to bring selection
into the discussion.

®)

EVOLUTION ON A PHENOTYPE LLANDSCAPE

Define w(¢) as a fitness function (frequency and density
independent) acting directly on the phenotype. If selection
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on the phenotype is not too strong, then we can approximate
this function in the neighborhood of a point ¢* as

dw Sicﬂ_w
'dp T 2 db?

In the following discussion, I will treat the underlying
factors, u;, as themselves being quantitative developmental
characters (similar to Riska 1986 and Slatkin 1987) and as-
sume that the phenotype landscape is approximately qua-
dratic over the range of values of u, present in the population.
I further assume that the population is large enough that we
may ignore drift and that the distribution of underlying fac-
tors in a population is multivariate normal. The assumption
of normality is particularly important because it ensures that
the distribution is symmetrical. I consider here only a single
phenotypic character. The multicharacter case, in which each
character has its own landscape, will be considered in another
paper.

If we have a particular function in mind for ¢(u;, u,), and
there is no variation resulting from environmental effects,
then we can capture the local geometry of the phenotype
landscape by expanding in a Taylor series about &(u;, uy).
Letting

w(d* + 8,) = w(d*) + 3 )

8¢ = ¢u[+x|,u2+x2 - (bul,uz (10)
we expand around &(u;, u,) and calculate 3, as
BT ad x| x30%
8y (X1, X) = X — + Xy + ——5 + =
s @1, %) x'au, x26u2 2 ou? 2 du3
92
+ X% (b . (11)
Bulauz

In any real population, different individuals will experience
slightly different environmental conditions during develop-
ment, adding an environmental component to variance in ¢
in addition to that resulting from variation in the u; terms.
In this case, the partial derivatives in equation (11) can be
replaced by the coefficients of a quadratic least squares re-
gression of ¢ on the u; terms. This essentially finds a best-
fit quadratic surface to the distribution of phenotypic values.

Now consider a population represented by a distribution
of points in the space of underlying factors. We wish to find
the change in the mean of this distribution over one gener-
ation with selection. Letting i; and i, be the mean values of
u; and u,, and p(u;, u,) be the probability density associated
with the distribution; then after selection, the change in the
population mean in each of the u; is given by

j f W(¢u1+x1 u2+x2)pul+x1 T +x2% 1 dxl dx2

)

j f W(¢ul+x1 u2+x2)pu,+x1 Jg+x, dx dx2
(12)

where A7 denotes heritability of u;. The denominator in equa-
tion (12) is simply the mean population fitness, w.
Underlying factors that we measure are likely to be cor-
related with one another and show different variances. We
can deal with this, with no loss of generality, by rotating the
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axes so that the u; are measured along the eigenvectors of
the covariance matrix for the measured underlying characters
and scaling these new axes to make variances equal. For
purposes of iterating the evolution equations over multiple
generations, I shall assume that any correlations between un-
derlying factors are due to pleiotropy, rather than linkage,
and that these change slowly.

Assuming that the probability density, p(u,, 4,), is bivariate
normal, and writing the values i, and i, as a vector, 1, in-
tegrating equation (12) yields

L H| g et
Ai o1° dd)V(b +o d¢2EV¢ + ) d(szd) V2
where ¢? is the variance of the distribution of underlying
factors (scaled to all be equal), H is a matrix with the A?
along the diagonal and zeroes elsewhere, E is the epistasis
matrix from equation (2), and V24 is the Laplacian, defined
as

» (13)

Vi = 93?-+

2
aul

¢

ou’

(14)

(see Appendix for derivation).

Note that the general evolution equation, without the as-
sumption of normality involved in deriving equation (13)
from equation (12), is obtained by substituting integrals (A5)
and (A4) in the Appendix into equation (12) and interpreting
the terms in the integrals as moments of the distribution of
underlying factors.

By substituting equation (11) into equation (9), we are
effectively mapping the values of the underlying factors to
fitness. We could thus represent equations (12) and (13) as
describing evolution on a (rather complicated) fitness land-
scape. Note that this fitness landscape would have a ridge
running along the path followed by the optimum contour on
the phenotype landscape. Dobzhansky (1937) suggested that
adaptive landscapes may be characterized by ridges with local
peaks along them, and the idea has recently gained renewed
attention (Wagner et al. 1994; Gavrilets and Hastings 1995).
We see here that this is the expected structure for adaptive
landscapes associated with developmental characters.

The form of an adaptive landscape for developmental char-
acters is determined by a combination of ecological factors
(determining how selection acts on adult phenotype) and de-
velopmental interactions. The value of modeling evolution
on a phenotype landscape is that it allows us to disentangle
ecology from development.

ANALYSIS AND DISCUSSION

Equation (13) describes how selection acting on a phe-
notypic character drives evolution of the underlying devel-
opmental or genetic factors that interact to construct that
character. The result holds for any number of underlying
factors. I have written this equation in an expanded form so
that we can consider the various terms individually.

The first term on the right side of equation (13) is the
standard result from evolutionary genetics; selection moves
a population along the gradient in fitness (dw/dé$-Vo) at a
rate proportional to the product of the slope of the fitness
function and the amount of heritable variation within the
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Fig. 3. An evolutionary trajectory on the same landscape as dis-
cussed in Figure 2 (here showing the entire landscape). The shaded
area represents the population distribution during the stage in which
it is undergoing canalization. Here, fitness drops off as a Gaussian
function around the optimum phenotype (solid contour), such that
d?w/dd? is positive far from the optimum and negative near it. Note
that at the outset, the trajectory veers away from the phenotype
gradient in the direction of E-Vé. Once near the optimum, the tra-
jectory parallels it until reaching a local canalized point.

population. If all effects are additive, then this term alone
defines evolutionary dynamics. In this case the population
takes the quickest route uphill or downhill to get to the op-
timum phenotype, the contour of which is a straight line (or,
in n dimensions, a flat n — 1 dimensional surface) within
which all points are neutrally stable.

The second term captures selection for or against canali-
zation. Recall that the vector £-Vé points in the direction of
maximum increase in the slope of the phenotype function
(Fig. 2). When the system is near an optimum phenotype,
such that d?w/d¢? is negative (as it must be at a stable se-
lective equilibrium), then this term represents selection for
canalization, shifting the population toward a local minimum
in the slope of the phenotype landscape. By contrast, if d*w/
dd? is positive, then the trajectory is biased in the direction
of E-Vé. In other words, the population moves away from a
canalized state toward regions of maximum sensitivity of
phenotype to variation in the underlying factors. These dif-
ferent phases in the response of development to selection are
illustrated in Figures 3 and 4.

Lande and Arnold (1983) obtained a similar result, defining
d?>w/dd? as the strength of stabilizing (or destabilizing) se-
lection. We see here that how a population responds to such
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FiG. 4. How the selection regime influences the dynamics of evo-
lution. The upper figures on the left represent a continuous fitness
function acting on the phenotype. Below them are figures repre-
senting truncation selection in which the darkened region of the
distribution is selected to produce the next generation. An accel-
erating fitness function (top) or strong truncation selection shifts
the trajectory toward steeper parts of the phenotype landscape. De-
celerating selection has the opposite effect.

selection depends on the process by which ¢ develops. If the
vector E-Vd has a component pointing along a phenotype
contour, then stabilizing selection leads to canalization.

The third term in equation (13) shows that the equilibrium
state of the system can shift away from the optimum phe-
notype if the phenotype landscape curves away more abruptly
on one side of the optimum than on the other. This curvature
of the landscape induces a skewed distribution on ¢. Because
V24 is a number, this last term is a vector pointing along the
phenotype gradient. It thus does not contribute to canaliza-
tion.

Figure 3 shows a trajectory resulting from iteration of
equation (13) for the phenotype landscape defined by ¢ =
uu, (the simplest landscape that allows canalization, used
here for illustrative purposes only). In this and the following
examples, I am holding the value of o2 constant as the system
evolves. This term is likely to change in accordance with the
strength and kind of selection acting. Holding it constant over
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short periods, though, is consistent with the expectation that
the variance of a distribution of allelic effects changes much
more slowly than the mean (Lande 1976) and allows us to
focus on the effects of developmental interactions on evo-
lutionary dynamics.

Note that for the example shown in Figure 3, if the goal
were simply to model the change in the mean value of the
character, &, a model that considers only additive effects (i.e.,
that follows the gradient) would do quite well. If we wish to
study the evolution of development, though, such a model
would be insufficient. As the figure shows, the initial ap-
proach to the optimum phenotype contour is followed by a
comparable amount of developmental change as the character
becomes canalized. This second phase of evolution results
from nonlinear interactions between the underlying factors,
manifest as a change in slope along the contour.

Our principal interest is in the impact of phenotypic se-
lection on developmental/genetic parameters. For this, we
return to the second term in equation (13) and the fact that
epistasis can cause the trajectory of evolution to veer away
from the gradient of fitness. Figure 4 shows the relation be-
tween the shape of the fitness function and its effect on de-
velopmental evolution. A decelerating fitness function causes
the trajectory to shift toward the less-steep region of the
surface, corresponding to canalizing selection on develop-
ment. Conversely, accelerating selection on phenotype pro-
duces decanalizing selection. (What I am calling decelerating
and accelerating selection have been called, respectively,
concave and convex by Templeton 1981.)

We can understand this intuitively by noting that with an
accelerating fitness function, mean population fitness increas-
es with increasing variance (holding the mean constant), be-
cause the benefit of deviating from the mean in the adaptive
direction is greater than the cost of deviating in the other
direction (Layzer 1980). A population subjected to such a
fitness function thus tends to shift toward steeper parts of the
phenotype landscape.

We generally assume that fitness functions are decelerating
near an optimum phenotype (if the function is continuous,
this is a requirement for an optimum), and Gillespie (1978)
and Templeton (1981) have argued that fitness functions are
generally concave (decelerating). These arguments were
based on assumptions about enzyme kinetics, and may not
apply to selection on general phenotypic characters. It seems
likely that selection is canalizing most of the time. Occasional
decanalizing selection, though, can have significant conse-
quences for developmental evolution. The degree to which
selection is canalizing or decanalizing is independent of ab-
solute fitness. Thus, a population could experience decan-
alizing selection without being in danger of extinction.

To understand when we might expect divergence in de-
velopment under uniform selection, consider a population
that is at a canalized point for some optimum phenotype (Fig.
5). If the optimum changes, so that the population now ex-
periences accelerating selection, what was a stable canalized
point becomes an unstable bifurcation point, because move-
ment in any direction along a contour increases slope. Nearby
populations can thus diverge from one another in the space
of underlying developmental factors, even as they show par-
allel evolution of the character under selection. This effect
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FiG. 5. Evolution away from a canalized point on the phenotype
landscape defined by ¢ = u,exp(ui). The combined effects of epis-
tasis and a diverging gradient field cause nearby trajectories to
diverge markedly. Note that the trajectories are definitely veering
away from the gradient, which is perpendicular to the contours of
equal phenotype. The fitness function here is Gaussian.

is compounded when the gradient field (V) itself diverges
in the direction in which the population is evolving. This is
the case in Figure 5; the two populations would diverge some-
what, though not as much, even if they followed the gradient
of the phenotype surface. We thus arrive at the surprising
result that stabilizing selection moves the system to a point
that is poised to become maximally unstable should it be
subjected to decanalizing selection.

In addition to showing us how to break von Baer’s laws,
this result has implications for speciation. Two isolated pop-
ulations may respond very differently at the genetic or de-
velopmental level to the same selection regime. They thus
may land at very different points on the new optimum phe-
notype contour. If there are multiple points of maximum can-
alization along that contour, subsequent stabilizing selection
could drive them apart (Barton 1996), and different ways of
achieving that phenotype may not be compatible if they are
later crossed, leading to reduced fitness among hybrids (Fig.
6).

Wright (1977) and Layzer (1980) also noted that a large
shift in the optimum phenotype can cause selection for in-
creased variance, which could lead to divergence. We see
here that the potential for such selection to drive initially
similar populations apart is greatest when the populations are
initially highly canalized. This suggests an empirical test for
this particular hypothesis for divergence: the degree to which
isolated parts of a population diverge under accelerating se-
lection should be reduced if the initial population from which
they are drawn is first moved away from a canalized state,
perhaps by being subjected to strong directional selection or
crossed with a different population.
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FiGg. 6. Decanalizing selection can cause initially similar popu-
lations to diverge permanently if the new optimum phenotype has
multiple canalized points.

The results presented here sit well with the observation
that von Baer’s laws are usually true, but are sometimes bro-
ken spectacularly. There is one environment, though, where
decanalizing selection is the norm: the laboratory. Truncation
selection can have the same decanalizing effect as a contin-
uous fitness function that is accelerating (Fig. 4). This occurs
when the selection threshold is set so that less than 50% of
the population is chosen to produce the next generation (see
Appendix). This is a common strategy in laboratory selection
experiments, many of which are thus imposing decanalizing
selection while studying the evolution of some particular
character.

This suggests another empirical test. If decanalizing se-
lection is in fact responsible for some of the genetic diver-
gence under uniform selection seen in experiments such as
those of Cohan (1984) and Cohan and Hoffmann (1989), then
the theory presented here predicts that such divergence could
be greatly reduced simply by resetting the selection threshold.

Figure 5 illustrates one possible mechanism for the break-
ing of von Baer’s laws. There are certainly others. For in-
stance, if selection for canalization is relatively weak com-
pared to stabilizing selection on phenotype, then genetic drift
can move a population along a contour of equal phenotype.
Equation (13) shows that whereas the strength of directional
selection goes as o2, the population variance, the strength of
canalizing selection goes as o This mirrors the results of
Wagner et al. (1997), who found that, in simulations, the
degree of canalization that arose increased abruptly with in-
creasing population variance. Selection holding a population
at a point of maximum canalization along a phenotype con-
tour is thus much more sensitive to population variance than
is the selection moving a population toward that contour.

We can approximate evolution along an optimum pheno-
type contour by the component of E-V¢ that is parallel to
that contour. This term, Z, is the component of canalizing
selection that is independent of directional selection. It is
given by

_ (Y, V)
STYE

(see Appendix for derivation). Here, (E-Vd, V) is the inner
product between the two vectors, which is related to the angle

Vb — EVd (15)
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between them—being zero when the vectors are perpendic-
ular to one another.

Note that if E is a multiple of the identity matrix, then
selection will not move a population along a phenotype con-
tour. A population on such a landscape with » underlying
factors is thus free to drift along a contour of dimension n
— 1. This was noted by Lande (1976) for a phenotype re-
sulting from additive allelic effects (E = 0). We see here that
the same thing happens with nonadditive effects as long as
the diagonal elements of E are all equal and the off-diagonal
elements are all zero. The contours on such a surface are
concentric circles (or spheres if n > 3), so the maximum
slope (||Vd|) is the same at each point around a contour.

The above examples assume that the shape of the distri-
bution of underlying factors does not change over a number
of generations. While this may hold approximately for weak
selection (Lande 1976), we might expect that the moments
of the distribution will evolve in response to stronger selec-
tion (Wagner 1989; Turelli and Barton 1994). There are two
consequences of this. First, selection could impose covari-
ation or unequal variances of the underlying factors even if
the distribution remains multivariate normal. Second, and
more importantly, the distribution could evolve to be asym-
metrical, with a nonzero third moment.

Changing the variances of the us or inducing covariation
can alter the rate at which canalization evolves and require
that we again transform the axes before applying equation
(13) for the next generation. This will not change the im-
portant aspects of the landscape, though, because the rela-
tionships between E and V¢ are invariant under rotation and
points of maximum canalization cannot be eliminated by uni-
formly stretching the axes.

Skewing the distribution of underlying factors has a dif-
ferent effect. By altering the way that the population samples
the phenotype landscape, a skewed distribution of the un-
derlying factors could shift the equilibrium slightly away
from a point of maximum canalization.

Note that this model does allow the distribution of ¢ to
be skewed and this can result in the population mean being
shifted slightly off of an optimum contour. In fact, both the
second and third terms on the right side of equation (13) may
be thought of as describing selection to change the form of
the phenotype distribution. The second term captures selec-
tion to decrease the variance in ¢ (canalization) or to increase
it (decanalization). The third term captures selection to skew
the distribution of ¢. Because I am constraining the distri-
bution of underlying factors, the only way to achieve a change
in the phenotype distribution is to move on the phenotype
landscape.

Since the underlying factors and the character that they
build are all quantitative characters, we could model their
joint evolution using a variance/covariance matrix (Cheverud
1984). Treating the partial derivatives in equation (11) as
regression coefficients, equation (13) does essentially the
same thing, but replaces the covariance of ¢ and u; with a
function derived from a hypothesized causal relationship in
development. The phenotype landscape approach thus makes
use of the fact that we know why ¢ and u; covary. This allows
us to describe phenotypic evolution in terms of the devel-
opmental changes that must accompany it and to see how

SEAN H. RICE

developmental processes can evolve even when the average
phenotype that they construct does not change.
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APPENDIX
n-Dimensional Landscapes
For the general case of n underlying factors contributing to a

character
n—1 343 2
C = |Vl = — Al
vl %(au,. (AD)
S0,
aC] [y 2 0% ]
du 7 Ou,0u ou;
| |y 9 9%
VC = ou, ZE 7 Ju;ou,ou; | - (A2)
aC b 3%
L?u,,_ U7 ou;0u,du; |

The vector of sums on the far right of equation (A2) is simply E-V,
so we get equation (8) agaln

To show that epistasis is sufficient for canalization to be possible,
we use the fact that E is symmetric. A result of this is that E has
distinct, orthogonal eigenvectors that we can arrange into a new
matrix, S, such that S-1ES = A, where A is a matrix with the
eigenvectors of E along the diagonal and zeros everywhere else.
Canalization is possible so long as E cannot be diagonalized to
produce the identity matrix. In other words, so long as A # I
Suppose that A = [, then

S-1ES =1
E = SIS-!
E = §5-!
E=1 (A3)

Therefore, E is the identity matrix if A = I, so any epistasis is
sufficient to allow for canalization somewhere along a contour.

Derivation of the Evolution Equation

To derive equation (13), we substitute equation (11) into equation
(9), then integrate as in equation (12). I shall consider the two-
dimensional case first. For u,, the upper integral in equation (12)
is
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dw a9 J
j j {w((b)xl + E(X% (b + xlxzﬁ +

32
+x?x2 ¢
8u16u2
2 5 2 2
il il d
A2 4 (22) L (2
ou, auz 4\ duj

x,x5 32 2 b @
+ =2 (b + x3x3 ® )y 2)c12x2—(h—(1>
4 \ou3 ou ouy duy duy

00 P, 9 82 oy 9 32
aulau, 2 U 2aulaulau2

d
P 42 b 92
L ¢+x 24) d)+2)c%x§_—qg—-¢
du, du3 du, 0u du,
%2d 3%

ou? du,0u,

Xlx%aZCb

ot xxd
2 du? 2 du?

L L
2dd2

| xx30% 0%
2 ou? oul

X X275

624) 3%
auz dudu,

+x%

(A4)

}p(xl’XZ) dx, dx,

and for u,,

b b x1x282¢
fj{w(¢)x2 ¢(Xlx2a ” +x%@ 2 ol +

2 (30N, L(30), xix (8%
5 X1X2 8—‘ + x ——2‘
U, auz 4 \dui

57924\ 2 2 2

x3{ad a dd a

+ =2 —i; + a2 2x1x%—(t—¢—
4\ ous ou,du, Juy dusy

3o
2 u3

ad 92 59 92 b 92
+ x?xz—d)——iz) + x,x3— ¢ 7% 2x%x§—¢———¢
ouy oui du, du3 Ouy Ou duy
50 32 b a2 d 82
A2 80, 20 gl S0
6u2 u? du, ou3 U, 0u oy
AP |45 2
2 du? du} 2 5u? du, duy
92 3%
+ Xlx%—‘f p(xy,x2) dxy dxs. (AS5)
ous ou,0u,

The key to integrating the result is to use the facts that, under the
assumptions in the text, only the terms in x?, x¥, and xzsz are
nonzero. These terms correspond to the moments of the normal

distribution.
J Jx?p(xi, x;) dx; dx; = o2

f fx?x}p(xi, x;) dx; dx; = o4
J Jx?p(xi, x;) dx; dx; = 304,

Recall that we are assuming equal variance in all characters and
no correlations. Integrating yields

(A6)
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_ dw dd w(dp d2d b 42
Auy = 02—— + o4—— — st
dd ou, dd2\ou, du?  du, du,du,
4 g2 2 2
L AW as (670 9% (A7)
2 db2ou\ou?  oui
and
AL dw dd w(dp az¢ 6<1> 82¢
=
2 dcb du, d¢ ouy 8u16u2 du, ou3
4 J2 92 82
L T dwod (97 %) (A8)
2 db2duy\du?  oui
Rearranging these gives equation (13).
For the n-dimensional case:
il
2x¢+ EEx'faa (A9)
and
abod 1 )
82 i N i o _ ¥, R
¢ Z 2;‘ g ;ou; 4 Z ; ; 2 x'x’xkxlauﬁujaukau,
b 9%
+ Al0
Z’ 2 2 F K g, w0, (410)

For the ath factor, multiply by x, and consider only terms that do
not integrate to zero. This yields

400 82 ad 32
3% + (b ¢ 2 2, 2 b d;
ou, “Qu, oul ' du, du?
ad 4
123 2l (ALl
iza " Ou; du,ou;’

Integrating this, for each factor, yields equation (13).

Truncation Selection

To specify the conditions under which truncation selection will
be decanalizing, consider a character, &, that is normally distributed
with mean p and variance o2. If we select every individual with
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character u greater than some threshold value, s, then the proportion
of the population selected is given by

|
w=
J; V2wao
If selection is decanalizing, then dw/do > 0, increasing the vari-
ance will increase the proportion of the population selected, so the
part of the population that lies on a steeper part of the phenotype
landscape will have higher fitness than the part lying on a less steep
part.
Substituting v = (# — w)/o into equation (A12) gives

- 1 ,
—ev72 dy,
j(—‘*ut)/(r 2

Let ®(v) be the cumulative standard normal density function.
Recalling that &(®) = 1, equation (A13) can be rewritten:

w=1—<D(s_M).
g

Setting y = (s — p)/o and differentiating with respect to o yields

elw=-w?V2e? gy (A12)

(A13)

(Al4)

d do(y) d do -
dw _ 4O dy _ dPQ)s — (A15)
do dy do dy o?
Since ®(y) is a continuously increasing function of y, we find that
d
d—w >0 iffs> p. (A16)

Thus, such selection is decanalizing when we select less than the
top 50% of the population.
Evolution along a Contour

To find the vector Z, which is the component of E-V¢ that lies
along a phenotype contour, we use the fact that the projection of
E-V onto a line in the direction of Vé is a vector, p, given by

 (EVo, Vo)
T ez

where (E V¢, V) is the inner product of the two vectors. The
direction of maximum increase in canalization along the phenotype
contour is then given by a vector, Z, pointing from E-Vé to p.

(A7)



