The Evolution of
Developmental Interactions

Epistasis, Canalization, and Integration

SEAN H. RICE

“Epistasis,” like “invertebrate,” is a term that really means “everything
else.” Traditionally defined as a situation in which the consequences of an allele
substitution at one locus are a function of what allele is present at another locus
(Crow and Kimura 1970), epistasis includes all possible ways that gene products
can conspire to shape phenotype, with the very unlikely exception of complete
additivity. To name a phenomenon in this way has the curious effect of making it
look like a special case, even if it is the most common situation. In fact, additivity
is the special case, but since it involves no distinct mechanism, it is best thought
of as simply one point on a continuum of possible kinds of gene interaction.
A general theory of epistasis, therefore, should consider all of the ways that gene
products can jointly contribute to phenotype; additivity is just one rare case that
happens to have been quite well studied.

In this spirit, we seek a way to model the evolution of systems in which the
underlying factors, genetic and environmental, that contribute to phenotype are
allowed to interact in a range of different ways, including additively. A useful way
to view this problem is to consider evolution on a phenotype landscape—a surface
that defines phenotype as a function of any number of underlying genetic or
environmental factors (S. H. Rice 1998a; see also Box 5.1). In the special case of
additivity, the phenotype landscape is simply a sloping plane (see Fig. 5.1). Any
nonadditive contribution of underlying factors to phenotype manifests itself as
curvature of the surface (Fig. 5.1; see Box 5.1 for a more detailed discussion of the
geometry and biology of phenotype landscapes).

It is important to keep in mind the distinction between “epistasis” and
“epistatic variance.” “Epistasis” is defined here as the influence of one genetic or
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Figure 5.1 Examples of additive and nonadditive phenotype landscapes. The contour lines
represent values of the underlying factors (u;, u,) that produce the same phenotypic value.

developmental factor on the phenotypic consequences of a change in another such
factor. “Epistatic variance” is the component of population variance that is left
over after we attribute as much variance as possible to additive and dominance
effects. Even if two factors interact mechanistically in a completely nonaddi-
tive way, it is often possible to treat a substantial component of variance in the
phenotype that results from this interaction as additive variance (see Cheverud,
chap. 4, this volume; Goodnight, chap. 8, this volume; and Box 5.1 for further
treatment of this issue).

Throughout this chapter, I will designate the value of some phenotypic character
by ¢ and the values of underlying factors that contribute (through development) to
that phenotype as u. Though these underlying factors could be thought of as
continuous measures of the expression of different gene products, it is useful to
extend the idea of epistasis to include interactions between quantitative characters
in development. This extension does not add any new cases, since any nonadditive
interaction between characters in development will almost certainly produce a
nonadditive effect of some gene products, and it facilitates the study of some
phenomena, such as canalization and integration, that are invisible to additive
models.

One value of the analytical approach used here (see Box 5.1} is that it allows us to
construct a wide range of hypothetical developmental systems and, when combined
with a measure of fitness (see Fig. 5.2), can be used to study how evolution would
proceed in each case. Most of this chapter will consider such hypothetical cases, for
the purpose of deriving general results that relate to the evolution of canalization,
phenotypic plasticity, and integration. It is worth noting, however, that we can
sometimes construct a phenotype landscape for a real organism if we have a model
for the development of some of the characters exhibited by that organism.



Box 5.1 Phenotype landscapes

A phenotype landscape is a plot of the value of a character (¢) as a function of some
underlying factors (u), u,, . . .) that contribute to that character. An underlying factor may
represent the degree of expression of some gene product, a quantitative character in de-
velopment (such as the size of a particular tissue at a particular time), or an environmental
factor that influences the phenotype (such as the temperature of an embryo at some
particular stage in development). The interactions between these factors, which consti-
tute the process of development, determine the shape of the phenotype landscape.

If the underlying factors contribute additively to phenotype, then the landscape is a
plane with no curvature (Fig. 5.1 A and 5.1B). If these factors contribute nonadditively (i.e.,
if there is epistasis), then the landscape is curved (Fig. 5.1C and 5.1D). How a population
evolves on a phenotype landscape is determined by how selection acts on the character
and by the local geometry of the landscape itself. Some geometric properties of such a
landscape have straightforward biological interpretations. For example, the slope at any
given point (indicated by the spacing between contours of equal phenotype in Fig. 5.1)
measures the degree to which the value of ¢ is sensitive to variation in the underlying fac-
tors. Thus, if the slope at a point is low, then that value of the phenotype is locally buffered
against genetic or environmental variation and is said to be canalized. Note that with com-
plete additivity (Fig. 5.1A and 5.1B), selection cannot increase the degree of canalization
since the contours are always equally spaced. With epistasis, the evolution of canalization
becomes possible.

Figure 5.1 also illustrates why we may see a substantial “‘additive’ component of var-
iance even when the contributions of the underlying factors are completely nonadditive.
At any given time, a population does not cover the entire landscape. In Fig. 5.1Cand 5.1D,
the equation that produces the landscape is completely nonadditive. However, if we look
at a small region of the surface (similar to what a population covers at any given time), it
will look very much like an uncurved plane. If the surface looks uncurved in a particular
local region, then we can describe most of the variance in phenotype in that region in
terms of “‘additive” effects of the underlying factors. Note, though, that if we move the lo-
cal region covered by the population, the “additive” contributions of the different under-
lying factors will change, since the surface will still look relatively uncurved but will be
tilted at a different angle.

Modeling evolution on a phenotype landscape requires that we assign some fitness
function, w(¢), to the character ¢. Once we have this, we can construct a fitness landscape
for the underlying factors (Fig. 5.2). The shape of this fitness landscape is thus determined
by how the underlying factors contribute to phenotype and how phenotype contributes
tofitness.

Figure 5.2 shows how to construct such a fitness landscape. Note that so long as there
are more underlying factors than phenotypic characters that they contribute to, then the
fitness landscape over the set of underlying factors will tend to consist of ridges that corre-
spond to contours of equal phenotype. The idea that fitness landscapes are principally a
network of ridges was suggested by Dobzhansky (1937) and has consequences for both
morphological evolution and speciation (Wagner et al. 1994; Gavrilets and Hastings 1996).
With the exception of Fig. 5.2, the contour lines in all figures in this chapter represent lines
of equal phenotype, not equal fitness.

(continued)
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Box 5.1 (continued)

In the following, | describe the critical mathematical terms that capture the local
geometry of a phenotype landscape and discuss the developmental and evolutionary
interpretations of these.

The Gradient
For afunction, ¢(uy, uy, . . . ,u,), the gradient, V@, is a vector defined as
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This vector points in the direction of maximum increase in ¢. It is thus the direction in
which we would expect a population to move under directional selection to increase ¢.
The magnitude (length) of the gradient vector, denoted by || V||, is the actual slope in the
steepest direction; it thus measures the sensitivity of the phenotype to variation in the
underlying factors. A low value of ||V¢|| represents a high degree of canalization, since a
low slope means that phenotype is buffered against underlying var

The Epistasis Matrixand E - V¢

This is a matrix of second partial derivatives (sometimes called a Hessian matrix in mathe-
matics books). The terms measure the curvature of the surface in different directions:

[ 0% 9% 9% |
%:w @:_ %Cn Ou 1 %::
0% 0% :

E= |Ondu 0y

mwe . . %9

|®:=®:_ ®|:w_

This matrix is symmetrical since 9¢/0u;0u; = mws\wc\@:_u These off-diagonal elements
describe: the degree to which a small change in one underlying factor influences the phenoty-
pic consequences of a small change in the other. This is a continuous description of the classical
definition of epistasis (Crow and Kimura 1970) as a situation in which a change in the allele

at one locus alters the phenotypic consequences of a change in an allele at another locus.
(continued)
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Box 5.1 (continued)

Multiplication of the gradient vector by the epistasis matrix yields a new vector, E- V¢,
which points in the direction of maximum increase in slope. Movement in the opposite di-
rection from this vector is thus the quickest way to achieve a canalized phenotype.

The Laplacian
The term V2 is called the Laplacian and is defined as
9%
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This is a number, rather than a vector, and measures the degree to which the surface
is convex or concave. If the Laplacian is nonzero, then a nonskewed distribution of under-
lying characters will translate into a skewed phenotype distribution.

The Inner Product

This relates to the angle between vectors. Consider two vectors:

uj
up

and

The inner product, written {u, v), is a number (not a vector) defined as

n

{u,v) = MU uiv;
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Now define the magnitude (length) of each vector as ||u|| and ||v||, and the angle between
them as §. Then, the inner product is related to these as:

{u,v) = |

|v||cos 8

The inner product is thus zero if the vectors are at right angles, maximally positive if
they point inthe same direction, and maximally negative ifthey point in opposite directions.
This is why the inner product of two phenotypic gradient vectors provides a measure of
integration.
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Figure 5.2 Construction of a fitness surface (bottom) over a space of underlying factors
(u1, up) from a phenotype landscape and a function that relates phenotype () to fitness (w).

Figure 5.3 shows an example of an actual phenotype landscape for a character
for which we can model development. The shells of gastropods and cephalopods
grow through addition of new shell material around the lip of the shell’s aperture.
The shape of most gastropod and cephalopod shells is determined if we specify
(1) the relative rates of shell production at different points around the aperture,
(2) the growth rate of the aperture, (3) the total amount of shell produced relative to
aperture size, and (4) the shape of the aperture. Figure 5.3 shows the phenotype
landscape for the apex angle of a shell (measured as the degree to which the top of
the shell is flattened) as a function of the last two of these factors (the others are held
constant only for the purposes of drawing a two-dimensional surface). This par-
ticular character is ecologically significant, since crabs (a major predator in the
intertidal zone) often break into shells by snapping off the spire. Such an attack is
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Figure 5.3 An actual phenotype landscape for gastropods. The character “apex angle”
measures the degree to which the apex of the shell is flattened. The underlying factors
considered are (1) the total rate of production of new shell material relative to aperture
size and (2) the degree to which the aperture is elliptic (as opposed to circular) and
elongated along the coiling axis.

made more difficult if the shell is not pointed (Vermeij 1987). See S. H. Rice (1998b)
for a more extensive discussion of these and other developmental factors that
influence shell form. The surface in Fig. 5.3 is definitely not flat, which echoes the
fact that these underlying factors contribute nonadditively to the value of the apex
angle. Modeling evolution on such a surface requires that we assign a fitness to each
value of the phenotype, and then derive an equation for the joint change in the
underlying factors as a result of selection on the phenotype to which they
contribute.

Equation 5.1 describes evolution on a phenotype landscape for a single character
that is a function of any number of underlying factors. Here, ¢ is some phenotypic
character, V¢ is the gradient of the phenotype function (a vector that defines the
direction in which ¢ changes most quickly; this points “uphill” on the surface), E is
a matrix of second partial derivatives, and V24 is the Laplacian function;
w represents fitness (and is a function of ¢), o2 represents phenotypic variance, and
H is a matrix with heritability values of the different underlying factors along the
diagonal, and zeros elsewhere. We want to study the change in the underlying
factors, which we represent together as a vector, u, defined as the transpose of

(uy, Uy, . .., u,). The change in the mean value of u over one generation is given by
H[ ,0w 1 0%w ot 9w )
= |g222 —E == 5.1
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Figure 5.4 A geometric interpretation of the
terms in eq. 5.1. Any movement in this space
corresponds to some change in the values of the
underlying factors u; and u,. The three vectors
point in the directions in which change in the u
values most rapidly changes different aspects of
the shape of the resulting phenotype distribution,
shown in the surrounding diagrams.

[We assume here that the surface has continuous second derivatives and that the
portion that a population covers at any particular time is well approximated by a
quadratic function. We further assume that the axes have been transformed so as to
eliminate covariances and equilibrate variances, such as by a principal components
analysis. See S. H. Rice (1998a) for further discussion.]

Rather than focusing on the mathematical meanings of the various terms in
eq. 5.1, I will describe what they mean geometrically and then discuss their bio-
logical interpretations. We can find the biology in this equation by noting that it
describes movement in the space of underlying factors in terms of three vectors,
Vo, EV¢, and V¢ - V¢, which define the directions in the space of underlying
factors that produce the most rapid change in, respectively, the mean, variance, and
skewness of the phenotype distribution (Fig. 5.4). Each of these vectors is
multiplied by a term that describes the strength of selection that acts to change the
phenotype distribution in that particular way: o> - dw/d¢ for change in the mean of
the distribution, o*- 8°w/8¢> for the variance, and o*/2 - 8°w/d¢? for skewness.
Note that each of these terms has the familiar components of variance multiplied by
the dependence of fitness on phenotype.

The three vectors in Fig. 5.4 correspond to the three terms on the right side of
€q. 5.1. The peripheral diagrams show the kinds of changes in the shape of the
phenotype distribution that are most quickly achieved by moving along each
vector. Note that these are not necessarily orthogonal—moving along EV ¢ is likely
to change the mean as well as the variance. [Keep in mind that the contour lines in
this and other figures (not including Fig. 5.2, which contains an example of a fitness
landscape) in this chapter are contours of equal phenotype, not fitness contours.]

By showing how to map changes in the shape of the phenotype distribution to
changes in development, eq. 5.1 and Fig. 5.4 suggest a general way to think about
phenotypic evolution. In classical population genetics, the thing that selection acts
to change, and that models track, is allele frequency. This formalism does not
translate well to morphology, where no single parameter presents itself as the
obvious currency of evolution. It is also difficult to map phenotype frequency to
allele frequency for most characters of interest. A tempting alternative to the view
of evolution as change in allele frequency is to think of phenotypic evolution as
change, over generations, in the overall shape of the phenotype distribution. (Note
that this is really what the classical theory does. We are able to model evolution by
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tracking allele frequencies only when allele frequency completely determines the
distribution of genotypes, which are the things that are assigned fitness.) We see
here that the different measures of the shape of the phenotype distribution emerge
naturally, along with their associated selection coefficients, when we model evolu-
tion on a curved phenotype landscape.

Using the approach outlined above, we can begin to investigate how different
kinds of selection act to reshape developmental systems. I will focus first on canal-
ization and, then, by extending the model to include multiple characters, focus on
the evolution of integration.

Canalization

Canalization refers to the buffering of phenotype against variation in underlying
factors (Waddington 1949). In terms of evolution on a phenotype landscape, this
means moving along a contour to a region of relatively low slope. It is apparent
from Fig. 5.1 that this is impossible in a completely additive case, since slope is the
same everywhere.

Wagner et al. (1997) and Stearns and Kawecki (1994) draw a distinction between
genetic and environmental canalization based on the source of variation against
which phenotype is buffered. The words “genetic” and “environmental” must be
understood here in terms of their meanings in quantitative genetics, rather than
by their ordinary meanings. The real distinction (understood by these authors) is
between heritable and nonheritable. Some nonheritable sources of variation reside
within the cell nucleus (Lynch and Walsh 1998), but are treated as “environmental”
variables because they do not respond to selection. Similarly, an organism’s exter-
nal environment may be heritable if that organism modifies its surroundings
(Laland et al. 1996) or simply chooses to lay her eggs in the same environment in
which she hatched.

There is a straightforward way to incorporate nonheritable effects into this
model: for each environmental variable that influences phenotype, we simply add
an axis to the space of underlying factors. Since we do not want to allow the popu-
lation to evolve along the environmental axes as it does along the developmental
ones, we simply put zeros in those entries in the matrix H that would correspond to
the heritabilities of the environmental factors. Note that if we take a slice of the
phenotype landscape along an axis that corresponds to an environmental variable,
we have a norm of reaction for that phenotype relative to that environmental
variable (see Wade, chap. 13, this volume; Brodie, chap. 1, this volume).

In this way, variation along the environmental axes can influence the direction of
EV ¢, but the population cannot evolve along these axes. Though this differs from
the conventional way that environmental effects are introduced into quantitative
genetics models (as a component of variance that is simply added on to the equa-
tion), it has the conceptual advantage of treating aspects of the environment as full
members of the developmental process, differing from internal biological factors
only in that they are not heritable.

The issue of heritability is important for our understanding of the evolution of
canalization. This is because there are two different ways to reduce phenotypic
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Figure 5.5 Evolution along an optimal contour under
stabilizing selection. In both cases, variation in u; is
—@>-+———— A heritable. In part (A), the variation in factor u, is partly
heritable; reduction in phenotypic variance thus involves
/: both reduction in the variance of u#, and movement to a less
steep (more canalized) part of the landscape (as indicated
- by the greater spacing between phenotype contours on the
\\\\\\\ - right side of each diagram). As the variance in u, gets
smaller, selection to move along the contour becomes less
strong. In part (B), u, is not heritable, so the only way to
reduce phenotypic variation is to shift the system to a
u,  more canalized state.

variance: move to a point of lesser slope on the phenotype landscape (canalization)
or modify the joint distribution of the underlying factors so that this distribution
flattens along a contour. Both of these processes may be going on at the same time,
but only the first involves a change in the process of development.

Figure 5.5 illustrates how heritability influences the outcome of canalizing
selection. In each case, the underlying factor u, is heritable, so the population can
evolve along the u; axis. How rapidly it does so, however, is influenced by the
heritability of u,. If the underlying factor u, is heritable, as in Fig. 5.5A, then a
population that evolves along an optimal contour tends to become flattened along
that contour, thereby reducing the strength of stabilizing selection and thus slowing
further developmental evolution. If, on the other hand, u, is an “environmental”
variable (Fig. 5.5B), then selection cannot reduce the variance in it and so
phenotypic variance can be reduced only by movement to a region of higher
canalization. Thus, environmental canalization will, in general, be more important
than genetic canalization in driving the evolution of development. A similar result
is seen in simulations carried out by Wagner et al. (1997). [ This distinction, between
change in development that minimizes the phenotypic consequences of underlying
variation and reduction in the underlying variation itself, is similar to
Waddington’s (1953) distinction between canalization and “normalization.”]

The converse of environmental canalization is the evolution of adaptive
phenotypic plasticity. Here, fitness is directly influenced by some environmental
underlying factor (rather than indirectly influenced through that factor’s effect
on phenotype), such that the optimum phenotype is a function of that environ-
mental factor. Let us call this environmental underlying factor u., and denote the
optimum phenotypic value by ¢*. (Note that the value of ¢* is determined by how
selection acts on phenotype, not by development.) Selection will move a population
towards a point (if it is accessible) at which d¢/du, = d¢*/Ou.. That is, the popu-
lation moves towards a point at which the dependence of phenotype on the envir-
onmental factor (this dependence being a function of the developmental process)
matches the dependence of the optimum phenotype on that same factor (this being
determined by the fitness function, irrespective of development). The evolution of
adaptive phenotypic plasticity may thus entail movement away from a point of
minimum slope, if the minimum attainable slope is less than d¢*/0u..
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Integration

We have so far been able to envision evolution as movement of a population over a
surface; this is because we have considered only the case of a single phenotypic
character on which selection acts. Modeling the evolution of integration requires
that we extend this model to include multiple phenotypic characters that are direct
targets of selection.

In the multicharacter case, each character has its own phenotype landscape and
many of these may be superimposed over the space of underlying factors. While this
makes visualization of the process a bit more difficult, the model is actually a
straightforward extension of the single character case.

The general model for selection that is acting on n phenotypic characters jointly
influenced by any number of underlying factors is given in eq. 5.2:

1
Au= M 5, VT >3 50 &N%\ A@q& Ve v 52

i=1 j=1

Written in this form, the structural similarity to eq. 5.1 is clear, but there are
some new terms, such as £;V¢; with i #j, for which the biological interpretation is
not obvious. In order to see what new biology has emerged in this general case, it is
helpful to rearrange eq. 5.2 in this way:

1
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The first part of eq. 5.3 is just the single-character equation applied separately
to each of n characters; the second part (lower line) describes change in the joint
distribution of phenotypic characters. Just as the terms in eq. 5.1, for the one-
character case, correspond to vectors along which different aspects of the shape of
the phenotype distribution change, the new term in eq. 5.3 corresponds to the direc-
tion along which the joint phenotype distribution changes. The most interesting
term here is V(V¢;, V§,), the gradient of the inner product of the two phenotypic
gradient vectors. This is a vector that shows the direction to move in order to most
quickly produce a correlation between characters i and j (Fig. 5.6).

[The inner product of two vectors ((, }) relates to the angle between them; this is
zero when they are at right angles, large and positive when they point in the same
direction, and negative when they point in opposite directions (see Box 5.1 for
details). Thus, V(V¢;, V,), the direction of maximum increase in (V;, V), isa
new vector that points in the direction along which V¢, and V¢, most quickly line
up with one another. Movement along this vector leads to increased developmental
correlation between the characters.]
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Figure 5.6 Two different phenotype functions. The
solid lines in the top figure represent the contours of
one phenotypic landscape, the dashed lines the
contours of the other. At every point, each landscape
has its own gradient vector. Where these vectors line
up, the two characters are “integrated” in that they
respond in the same way to changes in underlying
developmental factors. The vector V(V¢,, V,)
points in the direction in which integration occurs
most rapidly. The lower figure shows the
consequences of movement along this vector for

the joint distribution of phenotypic characters.

If the gradient vectors for two characters point in the same direction, then any
change in development that alters one character also alters the other in the same
way. If these vectors point in opposite directions, then the characters will be nega-
tively correlated. Correlations that arise in this way are due to the structure of the
developmental system, not just the distribution of alleles. This therefore represents
true integration—change in the structure of the developmental system such that
characters are influenced (locally) in the same ways by the same set of underlying
factors.

Equation 5.3 shows that two characters tend to become positively or negatively
correlated, depending on the sign of 8*w/d¢$;8¢,, which measures the degree to
which a change in ¢; alters the fitness consequences of a change in ¢,—in other
words, the degree to which the two phenotypic characters interact in their contri-
bution to fitness. If this term is zero, then there is no selection for integration. Thus,
in the two-character case, we can see selection for either a positive or negative
correlation, or no selection on the correlation at all. What does not appear to be
possible is selection that would move the system to a point at which the charac-
ters maintain independent variation; there is no such thing as selection for
deintegration.

This changes when we consider three or more characters. Consider selection to
be acting jointly on three characters such that the fitness function (w) has the
following property: ,

O*w *w O%w
— <0 — <0 — <0 5.4
091002 Op10¢3 001003 (54)

In such a case, selection would tend to move the population to a point in the
space of underlying factors where each pair of gradient vectors point in opposite
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Figure 5.7 A condition under which selection favors deintegration. The three gradient
vectors essentially repel one another (i.e., are in opposition), which leads to the
maintenance of independent variation in the different characters.

directions (all characters are negatively correlated with one another). But this is
impossible for three or more dimensions—if V¢, and V¢3 both point in the
opposite direction to V¢, then they cannot point opposite to one another. Thus, in
such a case the gradient vectors essentially repel one another, which leads to the
maintenance of independent variation in the different characters (Fig. 5.7).

The simplest fitness function that meets these criteria is one for which selection
acts on the sum of different phenotypic characters. We might imagine a case in
which selection acts on surface area of a structure that is composed of many flat
elements, such as the roof of the cranium in vertebrates——the set of skull roof bones
together must cover the brain, but the relative contributions of different bones is
(in most cases) not important. Note that to say that selection acts on the sum of a set
of elements is not the same as to say that those elements contribute additively to
fitness (that would be the case only if fitness were a linear function of the sum).

We can visualize this sort of fitness function for three characters (¢, ¢, ¢3) by
considering a space of these characters in which fitness drops off as we move away
from the two-dimensional plane defined by ¢, + ¢ + ¢3=C, where C is some
constant. An important point that is not visually apparent in the three-dimensional
case is that as the dimension of the system (the number of characters) gets larger,
more and more of the phenotypic variation lies close to the plane. Figure 5.8
illustrates this by showing a plot of the proportion of the surface area of an
n-dimensional sphere that lies close to an (n — 1)-dimensional plane that bisects it.
For our purposes, think of the plane in Fig. 5.8 as the (n — 1)-dimensional set of
points at which the » phenotypic characters sum to the optimal value. Points close
to the plane are effectively neutral (since they all have nearly the same sum). The
fact that for large n most of the surface of a sphere lies close to the plane thus means
that most variation is neutral in that case. Drift will therefore be most pronounced
when there are many elements whose sum determines fitness, and will become less
significant as elements are lost.

In such a case, eq. 5.3 predicts that selection will, where possible, break up cor-
relations between characters. Closely related species should be expected to show
substantial nonadaptive variation in such characters, and, over time, individual
elements will tend to be lost by drift, just as neutral alleles are. This prediction
squares well with observed trends in vertebrate skull evolution.
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Figure 5.8 Demonstration that the
amount of variation that is effectively
neutral increases with the dimension
(number of elements) in a case in
which selection acts on the sum of
many elements. The curve shows the
proportion of the surface of an
n-sphere that lies close to an (n — 1)-
dimensional flat surface on which

3 Number of Dimensions 100 the sphere is centered.

0.2 radii of the plane

Proportion of sphere lying within

Closely related vertebrates often exhibit substantial differences in the relative
sizes, and even the positions, of skull bones (Fig. 5.9). Of course, this variation
could be the result of selection for different orientations in the different species.
Testing the predictions of the model discussed above requires us to consider the
pattern of variation between bones within a species; the model predicts that
correlations between skull bones should be low, thereby providing the raw material
for drift to rearrange them. By contrast, if differences between-species result from
selection, then we should expect high within-species correlations among different
skull elements. In the case of the muskrat zygomatic arch shown in Fig. 5.9B, the
expectation of the drift hypothesis seems to be upheld.

The jugal and maxilla bones, which differ substantially between-species in their
contribution to the arch, show little correlation within muskrats (Fig. 5.10). This
suggests that the relative contributions of these bones to the zygomatic arch is
not under much stabilizing selection, and keeps open the possibility that the
between-species variation results from drift. I do not, at present, know the herit-
abilities of these bones within a species, and thus cannot say for sure whether drift
could rearrange them. It is interesting to note, however, that there is a strong
correlation between the left and right maxilla. Although this does not speak directly
of heritability, it does suggest that the variation in bone size is not simply a result of
developmental noise.

Drift in skull elements may manifest itself in a much larger scale pattern than can
be seen within the rodents. A pronounced long-term trend in vertebrate evolution,
which proceeds in parallel in lineages as different as crossopterygian fish, amphib-
ians, and mammal-like reptiles, has been the successive loss of skeletal elements in
the skull roof (Fig. 5.11; Romer and Parsons 1977; Hildebrand 1995). This trend is
difficult to explain by selection alone, both because it has proceeded independently
in very different environments and because it has taken place over very long periods
of time, but it is exactly what we should expect if the sizes of skull elements have
been drifting.
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Figure 5.9 Variation in skull bone shape between closely related species. (A) The pterion
region of the primate skull: (i) arrangement that characterizes the common chimpanzee,
(ii) arrangement that characterizes the pygmy chimpanzee, (iii) arrangement that is most
common in humans; however, all three arrangements are seen in humans. (B) The
zygomatic arch of a muskrat and a beaver, showing the change in the relative contribution
of the jugal bone.

Thus, drift, made possible by selection for deintegration, may have played an
important role in at least one large-scale evolutionary trend. Most elements of the
axial skeleton will not behave in this way since selection tends to act on the ratio,
rather than the sum, of bones involved in articulating joints. In such cases, the
fitness function will not meet the conditions in eq. 5.4 and selection will shape
development so as to induce positive correlations between different elements.

Given that skull bones are generally identified by their positions relative to other
bones (i.e., the interparietal is the bone between the parietals and the supraoccipi-
tal), the results presented above suggest that caution is needed in the assessment of
homology between skull bones in different vertebrates, especially those—like the
early crossopterygians—that have many small skull elements. We should also note
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Figure 5.10 Scatter plots of linear measurements of two bones in the zygomatic arch of
muskrats (specimens from the Yale Peabody Museum of Natural History). The left figure
plots the maxilla on the right versus the left side, and shows a high degree of symmetry.
The second plot shows values of the maxilla on the left side versus the jugal on the same
side. These two bones are uncorrelated with one another, even within a species.

that there are adaptive reasons to maintain a minimum number of skull elements in
some organisms, such as the need for flexibility of the skull during its passage
through the birth canal in humans, and the articulating joints found in the skulls of
some lizards and birds.

Though deintegration occurs when selection acts on the sum of many characters,
it is possible only when those characters are the result of developmental factors that

A B C

Figure 5.11 Representative skulls of (A) an early reptile (cotylosaur), (B) a therapsid, and
(C) a mammal (opossum), showing the loss of skull elements. Shaded bones are ultimately
lost. [Parts (A) and (B) are modified from Romer and Parsons (1977), Part (C) from Yale
Peabody Museum.]
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interact epistatically, thereby allowing selection to shape patterns of developmental
variation and covariation. The same holds for the evolution of integration,
canalization, and adaptive phenotypic plasticity. None of these phenomena could
occur on a surface like that shown in Fig. 5.1A. Only with epistasis, captured here
as curvature of a phenotype landscape, can selection to change the shape of a
phenotype distribution achieve this by restructuring development.
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