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ABSTRACT Heterochrony has become a central organiz-
ing concept relating development and evolution. Unfortu-
nately, the standard definition of heterochrony—evolutionary
change in the rate or timing of developmental processes—is so
broad as to apply to any case of phenotypic evolution. Con-
versely, the standard classes of heterochrony only accurately
describe a small subset of the possible ways that ontogeny can
change. I demonstrate here that the nomenclature of hetero-
chrony is meaningful only when there is a uniform change in
the rate or timing of some ontogenetic process, with no change
in the internal structure of that process. Given two ontogenetic
trajectories, we can test for this restricted definition of
heterochrony by asking if a uniform stretching or translation
of one trajectory along the time axis superimposes it on the
other trajectory. If so, then the trajectories are related by a
uniform change in the rate or timing of development. If not,
then there has been change within the ontogenetic process
under study. I apply this technique to published data on fossil
Echinoids and to the comparison of human and chimpanzee
growth curves. For the Echinoids, some characters do show
heterochrony (hypermorphosis), while others, which had pre-
viously been seen as examples of heterochrony, fail the test—
implying that their evolution involved changes in the process
of development, not just the rate at which it proceeded.
Analysis of human and chimpanzee growth curves indicates a
combination of neoteny and sequential hypermorphosis, two
processes previously seen as alternate explanations for the
differences between these species.

A fundamental problem facing systematists and comparative
biologists is that of deciding just how different two separate
phenotypes are. While a number of morphometric techniques
exist for quantifying the differences between phenotypes, these
techniques in general do not address the issue of greatest
concern: namely, what genetic or developmental changes must
take place to derive a particular descendant phenotype from its
ancestor, and how readily do these changes occur in the
evolution of a lineage? Devising any general theory to address
these questions will require a formalism for comparing devel-
opmental processes and describing the relations between them.
One promising candidate for such a formalism has been the
idea of heterochrony.
This idea holds the promise of allowing us to map differ-

ences in growth trajectories, which can be measured with
relative ease for extant and, sometimes, even extinct organ-
isms, to differences in developmental processes. Any such
extrapolation from pattern to process, however, requires great
care. I argue below that if the concept of heterochrony is to be

up to the task, we must narrow and clarify its definition, lest
different processes be lumped together because we errone-
ously define their resulting patterns as similar.
Heterochrony is generally defined as a change in the relative

timing or rate of development of a character that persists from
ancestor to descendant (1–3). Most authors now recognize six
forms of ‘‘pure’’ heterochrony [progenesis, hypermorphosis,
neoteny, acceleration, and pre- and post-displacement (4)],
which are presumed to correspond to different kinds of
evolutionary transformations in development. Although the
term was originally applied at the level of the whole organism,
it is now generally applied to any developmental process [often
assuming it represents a causal sequence (5)], and different
characters within an organism can exhibit different types of
heterochrony. Using this expanded definition, heterochrony
can be invoked even in the origin of morphological novelties
through the rearrangement of inductive interactions (6).
This expanded definition, however, produces a problem: if

heterochrony is defined as a change in the rate or timing of any
developmental event, then it is hard to imagine an evolutionary
change in phenotype that could not be said to result from some
form of heterochrony. This problem has been noted by a
number of authors, some of whom see it as a potential
drawback, resulting from the fact that even changes that do not
directly involve timing can have consequences that look like
heterochrony (7, 8). Others, however, see it as implying that
there is really no other way to change an existing structure (3).
In this paper, I argue that the traditional nomenclature of

heterochrony, with its discrete categories, applies to only a
narrow set of cases. Below, I define these cases and show how
to identify them by comparing ontogenetic trajectories. Ulti-
mately, narrowing the definition of heterochrony will allow us
to better assess the biological processes behind both cases that
do and cases that do not represent some type of heterochrony.

Ontogenetic Trajectories and the Kinds of Heterochrony

De Beer (9) based his discussion of heterochrony on the
presence or absence of discrete characters in the juvenile and
adult stages of descendants relative to their ancestors. This
naturally leads to the identification of a finite number of
distinct types of heterochrony. Gould (1) continued this tra-
dition by sorting through De Beer’s list, discarding some types
and clarifying others. He also changed the nature of the
discussion by defining heterochrony in terms of continuous
variables, namely size and shape.
Gould’s ‘‘clock’’ model defines the different types of het-

erochrony by specifying the values of size and shape at a
standardized stage of development in a descendant relative to
its ancestor. Alberch et al. (4) took the next step of allowing
size and shape to change continuously by representing ontog-
eny as a path through phenotype-time space. This path, the
ontogenetic trajectory, explicitly treats development as a con-
tinuous time dynamic process. These authors were principally
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concerned with demonstrating that the various types of het-
erochrony could be represented and studied in terms of
ontogenetic trajectories. While this is clearly true, the oft-
assumed corollary, that any change in an ontogenetic trajec-
tory can be accurately described as some combination of six
‘‘pure’’ types of heterochrony, is not. I shall demonstrate below
that the nomenclature of heterochrony applies only to a small
(though potentially important) and well defined set of possible
changes in an ontogenetic trajectory.
Alberch et al. (4) noted that the study of an ontogenetic

trajectory could be simplified by linearizing the trajectory.
Once linearized, a trajectory is defined completely by its
endpoints, and the various types of heterochrony can be
defined as different ways of shifting these endpoints. More
recently, some authors (3) have dropped the convention of
linearizing the trajectory and focused on changes in the origin
and endpoints of whatever curve best represents the growth
function being considered. The operative term here is the
growth function. Because the various types of heterochrony
are defined as different ways of shifting the endpoints of an
ontogenetic trajectory, they cannot completely describe an
evolutionary change in ontogeny unless the same type of curve
connects those endpoints. I illustrate below what it means to
say that two curves are of the ‘‘same type,’’ and discuss what
restrictions this puts on our use of heterochronic terms.
I first focus on the simple kinds of growth functions con-

sidered by Alberch et al., those described by first order,
autonomous differential equations. For such a system, one can
indeed always find a transformation of the phenotype axis that
linearizes any particular trajectory. The hitch is that this is not
always the same transformation for any two trajectories.
As an example, consider a hypothetical organism (or organ)

that grows according to the logistic equation

df

dt
5 rf~1 2 f! [1]

(Fig. 1; f can represent any phenotypic character; I will use
body size in the example). Here, growth rate drops off linearly
as the overall size approaches some limit. The two curves in
Fig. 1a result from different values of the growth rate param-
eter, r. Fig. 1b shows the results of applying the same linearizing
transformation to the curves in Fig. 1a. Here, the difference
between the two curves can be seen clearly as a difference in
the slopes of the linearized functions. This illustrates that this
particular change is described completely by a shift in one of
the endpoints of the linearized ancestral trajectory.
In contrast, Fig.2 shows two growth trajectories that, al-

though similar, cannot be linearized by the same transforma-
tion. This is illustrated in Fig. 2b, which shows that the
transformation of the phenotype axis that linearizes the an-
cestral trajectory puts a distinct bend into the descendant
trajectory. What this might mean biologically is suggested by
a comparison of the functions that produced the two curves.
The ancestor in Fig. 2 is the standard logistic curve (Eq. 1). The
descendant trajectory is modified so that the feedback term is
nonlinear:

df

dt
5 rf~1 2 f3!. [2]

The difference between descendant and ancestor therefore
involves not just a change in the rate of growth (though that is
a consequence) but also a change in the rules that translate
overall size into growth rate.
The example in Fig. 1 represents a change that can be

described completely using the language of heterochrony, this
case being an example of acceleration. Fig. 2, however, shows
a change in ontogeny that involves more than just a change in
the endpoints of the ancestral trajectory. In fact, as we see from

Eq. 2, it involves a change in the very structure of the function
generating the trajectory. That there is a concomitant change
in rate is a consequence of the fact that any change in the
outcome of a dynamical system must involve a change in the
rate at which something happens. Defining a change such as
that in Fig. 2 as heterochrony is tantamount to making that
term synonymous with the term morphological evolution. In
contrast, I argue that the change shown in Fig. 1 is an example
of a biologically meaningful subset of phenotypic changes that
is deserving of a name and is accurately described by the
nomenclature of heterochrony.

Defining Heterochrony

So, what exactly are the conditions under which the nomen-
clature of heterochrony is useful? As indicated in the examples
above, and by the fact that the terms are derived from the
comparison of linear trajectories, one sufficient condition is
that the two ontogenetic trajectories are linearized by the same
transformation of the phenotype axis. TheAppendix shows that
this is tantamount to saying that the time derivative of one
function is a constant multiple of the time derivative of the
other. Heterochrony is thus a uniform change in the rate or

FIG. 1. Ontogenetic trajectories of a hypothetical ancestor and its
descendant. Both curves are defined by the logistic equation with
different values of r (see text). (a) Untransformed trajectories. (b)
Both trajectories after transforming the size data using the logistic
linearizing transform (Eq. A6). The transformation separates the
endpoints of the trajectories, which are so close as to look identical in
the untransformed case.
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timing of some ontogenetic process, with no change in the
nature of the biological interactions going on within that
process.
Biologically, this definition means that we are considering

only changes that speed up, slow down, or shift some devel-
opmental process as a unit.Mathematically, it means that given
two trajectories, f1(t) and f2(t), there is a constant, C, such
that for every value of the character f* that is visited by both
trajectories,

df1

dt
U

f*
5 C z

df2

dt
U

f*
. [3]

Though this discussion focuses on one-dimensional systems,
the main point—the difference between a uniform scale
change and a change in the form of the growth function—is just
as relevant to multivariate comparisons (8), especially if results
are grouped into the traditional classes of heterochrony (10).
This definition is much narrower than simply ‘‘any change in

timing,’’ but this narrowness is what makes it useful. Using this
definition, to say that a particular character transformation is
an example of ‘‘acceleration’’ or ‘‘neoteny’’ is to say something
about how the entire growth process of that character in the
descendant is related to that of the ancestor, not just how the
endpoints changed.

Of course, we could apply these terms in only a small portion
of cases. Rather than being a drawback, though, this leads to
another advantage of the narrow definition: saying that some-
thing is a case of heterochrony under this definition naturally
leads one to look for particular kinds of biological processes,
namely those that alter the ontogeny of the character as a unit.
Alternately, failure to satisfy this narrow definition of hetero-
chrony suggests that there has been change within the onto-
genetic process that we are studying.
Just saying that something is a special case is not the same

as labeling it unimportant, and there is good evidence that
developmental processes exist that can yield the sorts of
changes that fit this definition of heterochrony. These include
the effects of growth hormone-like compounds (11), the lin-
mutants in Caenorhabditis elegans (12), and studies of trans-
genic mice (13, 14).
To see how narrowing the definition of heterochrony leads

us to interpret data differently, consider the allometric trajec-
tories for Eocene Echinoids shown in Fig. 3 (redrawn from ref.
15). Here, two shape parameters are plotted against a measure
of body size. The solid lines are the best fit polynomials through
the data (not plotted), and the dashed lines indicate the rough
outlines of the clouds of data points. Note that we cannot

FIG. 2. (a) An ancestral trajectory (solid line) showing logistic
growth (Eq. 1) and a descendant (dashed line) resulting from a
modified growth equation (Eq. 2). (b) The same two trajectories
transformed according to Eq. A6. Note that the transformed trajectory
of the descendant is not a straight line.

FIG. 3. Allometric trajectories for three species of Eocene Echi-
noids. Redrawn from McKinney (15), who plots the data points and
calculates the best fit polynomial curves through them. Dashed lines
show the rough outlines of the actual clouds of data points. Periproct-
margin distance is the distance between the anus and the margin of the
test. The peristome comprises the mouth and surrounding structures.
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strictly ascertain heterochrony in these examples because
shape is plotted with respect to body size rather than to time.
We can still apply the same reasoning, though, so long as we
are careful to specify that we are studying the relationship
between two characters rather than one character and time.
In Fig. 3a, the trajectories of Oligopygus phelani and Oligo-

pygus wetherbyi definitely seem to lie along the same line, which
is nearly linear over values of the phenotype for which they
overlap with Oligopygus haldemani. The trajectory for O.
haldemani, though, is clearly not linear over that region. Using
classical heterochronic nomenclature, we would interpret this
as illustrating that, with respect to this character, O. wetherbyi
is hypermorphic with respect to O. phelani and O. haldemani
is neotenic and post-displaced with respect to the others (15).
Using the definition of heterochrony presented here, we still

say that O. wetherbyi is hypermorphic to O. phelani since the
same growth function that produces the latter can produce the
former if it is simply extended. O. haldemani, however, shows
a different kind of growth function altogether. Calling this
neoteny would imply that the growth process is uniformly
slowed down, when in fact there must have been some change
in the way that periproct-margin distance changed with respect
to body size, not just a change in the rate at which it did so. One
transition could be achieved by a change that influenced the
shape character and body size as a unit; the other must have
influenced the two characters differentially.

Fig. 3b shows trajectories for a different character in the
same three species. Once again, one of the species follows a
trajectory that cannot be linearized along with that of the other
two. In this case, though, it is O. phelani that exhibits the
different pattern of growth. Though neither of these trajecto-
ries is completely linear, we can tell that they could not both
be linearized by the fact that over the range in which they
overlap, one is convex and the other is concave. Not all
trajectories are so easily compared, though, so we seek an
easier way to identify cases that meet this definition of
heterochrony.

Comparing Trajectories

Linearizing trajectories is difficult, and is not even possible for
nonmonotonic curves. Fortunately, there is an easier and more
general test: If two trajectories, f1(t) and f2(t), differ by a
uniform rate change, as defined by Eq. 3, then there exists
some constant, z, such that for each value of f visited by both
trajectories, either f2(t) 5 f1(t 1 z) or f2(t) 5 f1(zt). This is
tantamount to saying that we can superimpose one trajectory
on the other simply by shifting it along the time axis or by
multiplying each value on the time axis by a constant so as to
linearly stretch it (Fig. 4 a–c). Note that trajectories that
represent hypermorphosis or progenesis are already superim-
posed (though hypermorphosis is a problematic concept when

FIG. 4. Comparing trajectories. The examples in a, b, and c correspond to the six traditional types of heterochrony. (a) Translation along the
time axis yields post- and pre-displacement. (b) Stretching the time axis yields neoteny and acceleration. (c) Hypermorphosis and progenesis. (d)
Both the time and the phenotype axes are stretched (to the same degree). This would result if the trajectory were made up of many small linear
segments, all of which underwent progenesis or hypermorphosis.
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dealing with nonlinear trajectories since it is not clear where a
trajectory would go if allowed to continue). If we can simul-
taneously linearize two trajectories, then they necessarily also
meet this more general criterion.
Defining heterochrony in this way leads us to pay extra

attention to the level of organization at which characters are
studied. For example, consider a character, f, composed of
two parts, w1 and w2 (for example, a forelimb composed of a
humerus and a radiusyulna complex). For simplicity, let each
component grow exponentially with different growth rates (r1
and r2). Then

df

dt
5 r1w1 1 r2w2 . [4]

If either r1 or r2 changes by itself, or if they change to different
degrees, then the overall change in f will not meet the criteria
discussed above, and the change would not be called hetero-
chrony at the level of f. Carrying out the same analysis with
the two parts, however, would identify one (or both) of them
as undergoing some form of heterochrony.
Clearly, there are kinds of transformations that are not

adequately described with the language of heterochrony alone.
This does not mean, however, that clarifying the meaning of
the traditional terms removes these other kinds of evolutionary
changes from consideration. In fact, it invites us to study them
more carefully.
Fig. 4d shows a kind of transformation that is not included

in the traditional nomenclature of heterochrony. It is clearly
related to the other kinds of changes, but it does not represent
a single uniform change in rate or timing. For a trajectory
composed of many small linear segments, the transformation
in Fig. 4d corresponds to a simultaneous extension of the
growth period, or hypermorphosis, of each segment. It thus
formalizes what McNamara (16) called ‘‘sequential hypermor-
phosis.’’ Observing such a pattern would suggest that we are
actually looking at a number of distinct developmental pro-
cesses, arranged in sequence.
As a last example, consider one of the classic cases in which

the nomenclature of heterochrony is applied. McKinney and
McNamara (3) argue that the relation of human growth to that
of chimpanzees is an example of hypermorphosis rather than
neoteny, as is usually stated. Shea (17) has argued a similar
case. In Fig. 5, I compare human and chimpanzee growth
trajectories (18, 19) using the analysis presented above. The
two trajectories can in fact be nearly overlapped, but to do so

requires two different transformations: one corresponding to
sequential hypermorphosis and the other to neoteny. This
illustrates the value of actually carrying out the transforma-
tions. It also helps to explain why there has been disagreement
as to which ‘‘kind’’ of heterochrony this represents.
Finally, if a particular case fails this test for heterochrony,

how it fails can suggest where we should look next. Imagine a
structure whose growth is retarded such that it comes into
contact with some other structure later than it would have in
the ancestor. If this new contact sets off some new set of
interactions, altering the process of development in our char-
acter, then we almost certainly could not superimpose the
ancestor and descendant trajectories. Fig. 6 shows such a case
and applies the transformation test discussed above to it. While
this comparison leads us to reject this case as an example of
pure heterochrony (at the level of the entire trajectory), it also
directs our attention to the particular point where the new
interaction becomes important.
Anyone with a healthy fear of excessive nomenclature may

suspect that I am about to propose a handful of new hetero-
chronic terms. Not so. Defining heterochrony as I propose
shifts attention from the naming of categories to the compar-
ison of trajectories. The analysis of the human–chimpanzee
example above could omit all references to hypermorphosis or
neoteny without losing any descriptive power.
The restricted definition of heterochrony proposed here is

not at odds with those of Gould (1) and Alberch et al. (4). In
fact, it is derived by specifying the conditions under which the
traditional terms really apply to the study of continuous

FIG. 5. Growth trajectories for male humans (18) and chimpanzees
(Pan) (19). The ‘‘Transformed Pan’’ curve, which closely overlaps that
for humans, is derived by applying the transformations shown in Fig.
4 b and d to the chimpanzee trajectory.

FIG. 6. (a) The descendant (dashed) trajectory is a neotenic
version of the ancestral (solid) one up to a point, then follows a new
growth function. Note that this is not revealed by simply looking at the
curves. (b) The dotted line is the image of the ancestor stretched along
the time axis as in Fig. 4b. Comparing this with the dashed curve
reveals the point at which the descendant is no longer just a slowed
down version of its ancestor.
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developmental processes. The concept of an ontogenetic tra-
jectory was originally devised to facilitate the study of hetero-
chrony. Because it does so so well, it is often not recognized
that this concept actually allows for an even broader approach
to the evolution of development. Much can be derived from a
full study of the shape of ontogenetic trajectories, not just the
endpoints. The traditional categories of heterochrony probably
do represent an important subset of the ways that ontogeny can
evolve, but this importance cannot be fully understood unless
we carefully specify the boundaries of this set. We should apply
the lexicon of heterochrony when it is appropriate, but we
should not let the traditional categories get in the way of
recognizing that there are far more than six ways to change size
and shape in ontogeny and phylogeny.

Appendix

To see what is implied when two trajectories can be simulta-
neously linearized, consider an ontogenetic trajectory describ-
ing phenotype (f) as a function of time (t), and satisfying the
differential equation

df

dt
5 v ~f, p1, p2, . . . , pn!, [A1]

where the pi are constant parameters that will hereafter be
ignored. We seek a function, L(f), such that L(f) is a straight
line when plotted against time. This function must therefore
satisfy

dL~f!

dt
5 C1, [A2]

where C1 is a constant. Expanding this last equation gives

dL~f!

df

df

dt
5 C1. [A3]

Substituting Eq. A1 into Eq. A3 and rearranging, we get

dL~f! 5 C1
df

v ~f!
, [A4]

which, upon integration, yields

L~f! 5 C1 E 1
v ~f!

df 1 C2 , [A5]

where C 1 and C2 are constants that, for the purposes of
comparing two different ontogenies, are arbitrary.
Thus, two different trajectories have the same linearizing

transform only if their derivatives [the v(f)] differ by, at most,
a constant multiple, which would be absorbed into the C1 value

in Eq. A5. Substituting v(f) 5 rf into Eq. A5, and setting C1
5 r and C2 5 0, yields L(f) 5 ln(f), the standard transfor-
mation for an exponential growth process. Substituting v(f)5
rf(1 2 f) into Eq. A5, with the same constants gives the
linearizing function for the logistic equation

L~f! 5 ln S f

1 2 f
D , [A6]

which is used in Figs. 1 and 2.
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