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The development of most phenotypic traits involves complex
interactions between many underlying factors, both genetic and
environmental. To study the evolution of such processes, a set of
mathematical relationships is derived that describe how selection
acts to change the distribution of genetic variation given arbitrarily
complex developmental interactions and any distribution of ge-
netic and environmental variation. The result is illustrated by using
it to derive models for the evolution of dominance and for the
evolutionary consequences of asymmetry in the distribution of
genetic variation.

During development of a phenotypic trait, gene products
interact in highly nonadditive ways with one another and

with environmental factors (1). Despite this, much evolutionary
theory assumes additive contributions of gene products to
phenotype (2). Specific models involving epistasis have been
studied since the inception of population genetics, and they have
attracted increased interest in recent years (3–8). The complex-
ity introduced by epistasis, however, has meant that only special
cases have been studied.

Below, I construct a theory for the evolution of developmental
interactions that requires no simplifying assumptions about the
number of underlying genetic and environmental factors in-
volved, how they interact, or the distribution of variation in a
population. The theory is framed in terms of movement of a
population over a phenotype landscape, a plot of a phenotypic
trait as a function of the underlying genetic and environmental
factors that contribute to its development. I first discuss the idea
of a generalized phenotype landscape, then introduce some
notation that facilitates mathematical analysis of such land-
scapes, and finally use this notation to derive an equation for
evolution of a population on an arbitrarily complex phenotype
landscape.

Generalized Phenotype Landscapes
Consider a phenotypic trait, f, influenced by a set of underlying
factors, u1, u2, . . . , uk. An underlying factor may represent the
degree of expression of some gene product, a quantitative
character in development (e.g., concentration of an inducer), or
an environmental factor such as salinity or temperature. There
is no distinction here between environmental and genetic un-
derlying factors; each underlying factor is assigned a heritability
and even those with zero heritability can influence the evolution
of other, heritable, factors (7). Although I will treat the under-
lying factors as continuous variables, their distribution need not
be continuous. For example, uj may represent the enzymatic
activity of a gene product (a continuous value), whereas the
distribution of values of uj in a population may be discrete,
corresponding to distinct alleles.

Plotting phenotype as a function of the k underlying factors
yields a k-dimensional surface, the phenotype landscape (Fig.
1). Contours on this landscape are sets of values for the
underlying factors that produce the same phenotypic value (6).
The standard quantities used in quantitative genetics, such as
additive and epistatic variance, can be calculated from the
shape of the phenotype landscape and the distribution of
underlying variation (9).

The geometry of this surface is determined by how the
underlying factors interact to influence phenotype, in other
words, by development. There is a straightforward relation
between the terminology of gene interaction and the geometry
of the phenotype landscape. If u1 and u2 are genetic (heritable)
factors, then the degree to which the value of u1 influences the
phenotypic consequences of changing u2 (i.e., the epistatic
interaction between them) is ­2fy­u1­u2, which measures the
curvature of the landscape in one direction. Similarly, ­2fy­u1

2

measures the nonlinear effects of changing u1 and thus (when u1
is genetic) provides a measure of dominance (10). If u1 is a
genetic factor and u2 an environmental factor, then ­2fy­u1­u2
measures the genotype by environment (G 3 E) interaction. If
we hold all of the environmental underlying factors constant and
consider only the genetic factors, then we have the ‘‘genotype–
phenotype map.’’ Conversely, if we take a ‘‘slice’’ of the pheno-
type landscape along one of the environmental axes, then we
have a ‘‘norm of reaction,’’ a plot of phenotype as a function of
that particular environmental variable. The slope of the land-
scape at a particular point determines how sensitive phenotype
is to underlying variation at that point; it thus provides a measure
of ‘‘phenotypic robustness’’ or ‘‘canalization.’’

The real value of the phenotype landscape is that we can solve
analytically for how selection will act on a population placed on
this surface. To do this, we write the selection differential (the
change due only to selection, prior to other processes such as
recombination) in terms of a set of vectors, each of which gives
us insight into the evolutionary consequences of a different kind
of developmental interaction or aspect of the distribution of
genetic variation.

Fig. 1a shows an uncurved phenotype landscape, correspond-
ing to a case in which all underlying factors contribute additively
to the trait (i.e., no epistasis or dominance) and a symmetrical
distribution of underlying variation. In this case, the selection
differential is described by a single vector (called Q1; the
notation will be explained below), pointing in the direction of the
optimal phenotype contour and influenced by the variance and
covariance values of the distribution of underlying variation. The
formula for the vector Q1 contains only first derivatives of
phenotype with respect to the underlying factors (­fy­u), which
are the only derivatives that exist on an uncurved landscape.

In Fig. 1b, the landscape is curved (here a quadratic function),
indicating epistatic interaction between the underlying factors.
The vector Q1 still exists and has the same interpretation as
before, but now there is another vector, Q1,2, that points in the
direction in which the slope of the landscape changes most
quickly. This vector contains terms involving the product of the
first and second derivatives of phenotype with respect to the
underlying factors (­fy­uz­2fy­u2) and thus does not exist on an
uncurved landscape.

Previously (6), I showed that evolution on a quadratic phe-
notype landscape (all derivatives higher than second are zero,
meaning that we are considering only first-order epistatic inter-
actions) is given by the sum of Q1 and Q1,2, one vector moving
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the population toward the optimal phenotype contour and the
other moving it toward a point of minimum slope along that
contour. Below, I show how to extend this approach to arbitrarily
complex phenotype landscapes. Not surprisingly, more vectors
appear, corresponding to ways of changing the population
distribution that are not possible on an uncurved or quadratic
surface.

One such new vector is shown in Fig 1c. On a landscape with
nonzero third derivatives, moving in the direction of the vector
Q3 causes the distribution of f to become positively skewed. This
new vector contains third derivatives of the phenotype land-
scape, which correspond to cases in which, for example, one gene
influences the epistatic interaction between two others. This
vector thus does not exist on an uncurved or a quadratic surface.

As developmental interactions become more complex, new
evolution vectors appear. The theory presented below provides
a way to solve for any particular vector, given the set of
phenotypic derivatives that underlie it. First, I present a couple
of mathematical concepts that greatly simplify analysis of evo-
lution on phenotype landscapes.

Some Useful Notation
Define xi 5 ui 2 u# i, so that xi measures each value of underlying
factor i by its deviation from the population mean. Let w be the
fitness function associated with the phenotypic trait, f. For now,
we assume that the underlying factors influence fitness only
through their influence on f (later, I will discuss the general case
in which fitness is influenced by multiple traits, possibly including
direct effects of the us). Like f, w is treated here as a smooth
function, though nonlinear partial regressions can be substituted
for derivatives to yield an equivalent result (see Appendix).

The derivations that follow are framed in terms of tensors,
which for our purposes are simply arrays of elements. The ‘‘rank’’
of a tensor is just the number of subscripts necessary to identify
all of its elements. Any first-rank tensor can be written as a
vector, with elements Vi identified by a single subscript, and any
second-rank tensor can be written as a matrix, with elements Mij
requiring two subscripts. (Strictly, to be a tensor, the array must
transform under rotation of the coordinate axes in such a way
that its actions are unchanged; all of the tensors discussed in this
paper have this property but it will not be relevant to our
analysis.)

Let Dn be a tensor of rank n with elements defined as

Dn~i, j, . . . , n! 5
­nf

­ui­uj · · · ­un
U

u#

. [1]

In words, Dn contains all of the nth derivatives of phenotypic trait
f with respect to the underlying factors, evaluated at the
population mean value of the underlying factors. For example,
D2(1, 1) 5 ­2fy­u1

2 and D2(1, 2) 5 ­2fy­u1­u2. D1 is just the
gradient vector, ¹f, that points in the direction of maximum
slope on the landscape. D2 is a matrix of second partial deriva-
tives of phenotype with respect to the underlying factors (this is
the matrix E in refs. 6 and 7).

(This derivation assumes that the landscape is differentiable.
The Appendix shows a parallel derivation based on regressions,
which exist even for a kinked or discontinuous surface.)

Let Pn be an nth-rank tensor with elements being the nth
central moments of the distribution of underlying factors. Each
element is then defined as

Pn~i, j, . . . , n! 5 E@xixj · · · xn#, [2]

where E[] denotes expected value. Because xi 5 (ui 2 u# i), P1 is
zero. P2 is the covariance matrix, with elements P2(i, j) 5
E(xixj) 5 Cov(ui, uj). P3 is a third-order array of third moments.

Higher moments of the distribution will come up repeatedly
in the discussion that follows. The important thing to keep in
mind is that the even moments measure symmetrical spread
about the mean, with higher-order even moments being increas-
ingly sensitive to outliers; so the fourth moment is more sensitive
to outliers than is the variance. Odd moments measure asym-
metry, with the higher-order odd moments being increasingly
sensitive to asymmetrical outliers.

We will be using two operations from tensor analysis, the inner
product, designated ^,&, and the outer product, designated R. The
outer product of two tensors of rank n and m is a new tensor of
rank (n 1 m ) with elements defined as the products of each of
the elements of the initial tensors. For example, D1 R D2 is a
third-rank tensor with elements defined as

~D1 ^ D2!i, j,k 5 Di
1zDj,k

2 5
­f

­ui

­2f

­uj­uk
. [3]

The outer product as defined here is sometimes referred to as the
direct or tensor product.

The inner product of two tensors of rank n and m (chosen so
that n $ m) is a new tensor of rank (n 2 m). If n 5 m, then the
result is a number (a tensor of rank zero). The elements of the
new tensor are formed by summing over the products of each
element in the lower-rank tensor with the corresponding element
in the higher-rank tensor, like this:

Fig. 1. Three phenotype landscapes and the evolution vectors that are relevant on them. The contours are lines of equal value of the trait, with the solid contour
in each case being the optimal value of the trait. (a) An additive landscape (f 5 u1 1 u2). (b) A quadratic landscape. It is assumed here that ­2wy­f2 , 0. Otherwise,
Q1,2 would point in the opposite direction. (c) A cubic landscape.
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^P4, D3&i 5 O
j

O
k

O
m

Pi, j,k,m
4 zDj,k,m

3 . [4]

Note that taking the inner product of a rank-two tensor (a
matrix) and a rank-one tensor (a vector) is just the same as
premultiplying the vector by the matrix. The generalized inner
product defined here is sometimes referred to as a contraction.

On a curved landscape, the mean value of the phenotype may
differ from the phenotype value associated with the mean of the
underlying factors. Using the tensor notation presented above,
we can write the mean value of a phenotypic trait f as

f# 5 f~u# ! 1 O
i52

` 1
i!

^Pi, Di& [5]

(see Appendix for derivation). The summation starts with i 5 2
because P1 contains all zeros.

The Theory
The details of the derivation are presented in the Appendix. We
wish to derive the evolutionary consequences of some combi-
nation of interactions between underlying factors, described
mathematically by a set of one or more derivatives of phenotype
with respect to the underlying factors.

For the general case, consider a set of derivatives like this:

­a1f

­ua1

­a2f

­ua2 · · ·
­anf

­uan . [6]

Here, ai denotes the degree of differentiation, which is all that
matters for our analysis; thus ­2fy­u2 includes both ­2fy­uj

2 and
­2fy­uj­uk. For example, the set of derivatives ­fy­uz­2fy­u2

corresponds to a1 5 1, a2 5 2 (the evolutionary consequences
of which are shown in Fig. 1b as Q1,2).

Every such set of derivatives that is nonzero has a correspond-
ing vector in the space of underlying factors; this vector shows the
contribution of that combination of developmental interactions
to the total selection differential (the change attributable only to
selection). To solve for these vectors, we need to specify the
number of phenotypic derivatives of each type. Define bj as the
number of derivatives of order j. For example, if we are
concerned with a set of derivatives of the form ­fy­uiz­fy
­ujz­2fy­uk

2, then b1 5 2 and b2 5 1, because there are two first
derivatives and one second derivative; (b is the total number of
derivatives that we are considering. Given this definition, the
general equation for the vector of selection differentials corre-
sponding to the set of derivatives in Eq. 6 is

Qa1· · · an
5

g

w#
­(bw
­f(b ^P11(ai, Da1 ^ · · · ^ Dan&, [7]

where g 5 1y(Pai!Pbj!). (See Appendix for details.)
In Eq. 7 the rank of the P tensor is always one greater than the

sum of ranks of the D tensors. The inner product is thus a
rank-one tensor, which we can write as a vector, Q. (In general,
Di R Dj Þ Dj R Di, but the symmetry of the P tensors makes it
so that the order does not matter in Eq. 7.)

We can read some important results directly from Eq. 7. First,
note that the relevant moments of the distribution of underlying
variation are of order ( a 1 1, which is the summed order of the
derivatives plus one. For example, the vector corresponding to
­fy­uiz­fy­uj involves the third-order moments (measuring
skewness) of the distribution of underlying factors; it will thus not
be relevant to evolution unless the distribution of underlying
variation is skewed. The second thing that we can read directly
from Eq. 7 is that the degree of the fitness derivative (­jwy­fj)
is equal to the total number of phenotypic derivatives that we are

considering. Thus, the degree to which ­fy­uiz­fy­uj (two first
derivatives) contributes to the selection differential is deter-
mined by the second derivative of fitness with respect to phe-
notype, ­2wy­f2.

The terms ­iwy­fi can be replaced by the ith-order nonlinear
regression of w on f if fitness is not a continuous function of
phenotype; the theory then applies even when the regression is
due to stochastic factors (i.e., drift) rather than selection.

The vectors defined by Eq. 7 give the components of the
selection differential. The response, in the next generation, of
the population mean to selection is a function of the selection
differential and the specific patterns of inheritance of the
underlying factors. If the value of each factor, ui, in offspring is
related to the values of all of the underlying factors in their
parents by a linear regression with random noise, then the
response to selection is the sum of the Q vectors multiplied by
a heritability matrix (more complicated patterns of inheritance
will be treated in another paper). The total change in the vector
of mean values of the underlying factors over one generation is
then

Du# 5 HOQ 1 d~u# !, [8]

where (Q is the sum of all Q vectors and H is a heritability matrix
with elements hi, j representing the partial regression of the
expected value of ui in offspring on the parental value of uj. The
new term, d(u# ), represents change in the mean resulting from
processes other than differential reproduction, such as recom-
bination. For underlying factors that are not heritable, such as
some (but not all) ‘‘environmental’’ factors, we simply enter
zeros in the appropriate places in the H matrix.

So far, we have considered how selection on a single trait
changes the means of the underlying factors. Below, I briefly
discuss the extensions to multiple traits and change in higher
moments of the distribution; details of these issues will be
elaborated on elsewhere.

Because change in the mean of the distribution of underlying
factors is a function of the other moments of the distribution (the
P tensors), we would also like to know how these other moments
change as well. When the notation introduced here is used, this
requires only a slight modification of Eq. 7. The change attrib-
utable to selection alone (the selection differential) in the kth
moment of the distribution of underlying factors is simply

Qa1 · · · an

k 5
g

w#
­(bw
­f(b ^Pk1(a, Da1 ^ · · · ^ Dan&. [9]

The only difference between Eq. 9 and Eq. 7 is the rank of the
P tensor, which is now greater than the summed ranks of the D
tensors by an amount k. Setting k 5 1 in Eq. 9 yields Eq. 7, as
it must because the mean is the first moment. Note that (from
the inner product rule given above) Qk is a tensor of rank k. This
makes sense; the change in the kth moments attributable to
selection is written in the same form as we are using to describe
the set of kth moments before selection. Thus, Q2 is the change
in the varianceycovariance matrix, P2.

The total response to selection for the kth moment can now
be written as

DPk 5 ^Rk H, OQk& 1 d~Pk!, [10]

where Rk H stands for H R H R z z z k times. The term d(Pk), the
change in the kth moments introduced by the process of repro-
duction, is likely to take on a more significant role in the
evolution of higher moments than it does for the change in the
mean (k 5 1) because processes such as segregation, recombi-
nation, mutation, etc. generally have greater power to introduce
variation than to change the mean.
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From Eq. 9 we can quickly see that purely directional selection
(i.e., only considering the first derivative of fitness with respect
to phenotype) on an uncurved landscape will not change the
variance if the initial distribution is symmetrical, because Q1

2

contains the distribution tensor P3, which is zero for a symmet-
rical distribution. However, the same selection will introduce
skewness in the next generation, because Q1

3 goes with P4, which
is nonzero for a symmetrical distribution. Note that, as expected,
stabilizing or disruptive selection will change the variance on an
uncurved landscape, because Q1,1

2 contains P4.
The discussion above has focused on selection acting on a

single trait (f). The extension to selection acting jointly on
multiple traits is straightforward; all of the Q vectors defined
above exist unchanged, but there are now more possible com-
binations. For example, if selection acts jointly on two traits, f1
and f2, and some underlying factors influence both of these
traits, then there will be new vectors corresponding to terms that
involve derivatives of both traits, such as ­f1y­uz­2f2y­u2.

The Q vector corresponding to a set of derivatives like that in
Eq. 6 but containing n derivatives of trait f1 and m derivatives
of trait f2 is

Qa1;a2
k 5

g1g2

w#
­~(b11(b2!w

­f1
(b1

­f2
(b2 ^P k1(a, ^D&, [11]

where RD stands for the outer product over all derivatives that
we are considering. For example, the vector corresponding to
­f1y­uz­2f2y­u2 is

Q1;2 5
1

2w#
­2w

­f1­f2
^P4, D1

1 ^ D2
2&. [12]

The equations presented above give a general description of
evolution by selection, requiring no simplifying assumptions
about the distribution of genetic and environmental factors,
about how these factors influence phenotype, or about how
phenotype maps to fitness (although we did make an assumption
about inheritance). Given a developmental system, we could use
this result to model evolution of that system under any fitness
scheme and with any distribution of underlying variation.

Alternatively, we can investigate the evolutionary conse-
quences of a particular kind of developmental interaction or a
particular distribution of underlying variation by looking at the
corresponding vectors. I consider four such special cases below.
The first two cases show how previous results can be quickly
derived from Eq. 7; the final two cases, concerning dominance
and the effects of asymmetric genetic variation, are new treat-
ments of these subjects.

Case 1: Additive Landscape, Directional Selection. The simplest Q
vector, corresponding to ­fy­u, is

Q1 5
1
w#

­w
­f

^P2, D1& 5
1
w#

­w
­f

P2¹f. [13]

On an uncurved (additive) landscape with a quadratic fitness
function, symmetrical distribution of underlying factors, and
d(u# ) 5 0, the response to selection is described completely by
Du# 5 HQ1 (the ‘‘breeder’s equation’’). Substituting Eq. 13 into
Eq. 8, measuring fitness relative to w# , and noting that ­wy
­fz¹f 5 ¹w and that HzP2 is equal to the genetic covariance
matrix, G (11), yields Du# 5 G¹w.

Q1 captures the effects of directional selection (Fig. 1),
describing the direction of evolution toward an optimal contour
on the phenotype landscape. Even on a more complex landscape,
Q1 is still often the principal determinant of evolution for a
population far from selective equilibrium (6). Once the surface
curves, however, other vectors come into play as well.

Case 2: Quadratic Landscape, Canalizing Selection. The sensitivity of
f to underlying variation is determined by the slope of the
landscape, measured by the length of the vector ¹f (written
i¹fi). The gradient of this slope is made up of terms of the form
­fy­uz­2fy­u2 (6). Here, a1 5 1 and a2 5 2, so to study the
evolution of phenotypic sensitivity (or canalization) we use these
values in Eq. 7 to obtain

Q1,2 5
1

2w#
­2w
­f2 ^P4, D1 ^ D2&. [14]

This is a generalization of a vector previously described in ref. 6
under more restrictive assumptions; it describes how develop-
ment evolves so as to increase or decrease the sensitivity of
phenotype to variation in the underlying factors (i.e., the evo-
lution of canalization) (6). Q1,2 contains both the terms E¹f and
¹f¹2f from ref. 6.

On a quadratic phenotype landscape with a multivariate
normal distribution and a quadratic fitness function, we need
only consider Q1 and Q1,2. Q1 moves the population to a contour
corresponding to the local optimum phenotype; Q1,2 then moves
the population along that contour to a point of locally minimum
slope, at which point the phenotype is maximally buffered
against underlying genetic or environmental variation.

To understand what Q1,2 does, note that ­2wy­f2, when
evaluated on an optimal phenotype contour, measures how fast
fitness drops off as we move away from that contour, thus
capturing the strength of stabilizing selection (11). In addition to
reducing the amount of genetic variation, stabilizing selection
tends to change development, by pushing the population toward
less steep parts of the landscape, such that remaining genetic or
environmental variation translates into minimal phenotypic
variation (6, 7).

Case 3: Cubic Landscape, Evolution of Dominance. As noted above,
the second derivative with respect to a particular underlying
factor, ­2fy­ui

2, measures the degree to which that factor exhibits
dominance (or recessiveness) in its effects on phenotype (11).
The sum of these dominance effects, (i(­2fy­ui

2), is known as
the Laplacian function, written as ¹2f. If dominance is to evolve,
then these second derivatives, ­2fy­ui

2, must themselves change
as some underlying factor changes. We are thus concerned with
the evolutionary effects of third-order interactions, measured by
­3fy­u3 (recall that this includes ­3fy­ui­uj­uk as well as
­3fy­ui

3). To derive the appropriate evolution vector, we thus set
a 5 3 and b 5 1 in Eq. 7 to get

Q3 5
1

6w#
­w
­f

^P4, D3&. [15]

For two underlying factors, normally distributed with equal
variances (s2) and no covariance, this becomes

Q3 5
s4

2w#
­w
­f 3

­3f

­u1
3 1

­3f

­u1­u2
2

­3f

­u1
2­u2

1
­3f

­u2
3
4 5

s4

2w#
­w
­f

¹~¹2f!. [16]

The vector in Eq. 16 is the gradient of the Laplacian (the sum
of the dominance effects). Thus, the vector Q3 points in the
direction in which the sum of dominance effects increases most
rapidly.

Note that Q3 contains the first derivative of fitness with respect
to phenotype. It thus shows that directional selection can alter
development to change the net degree of dominance. To un-
derstand this effect, note that the net degree of dominance also
relates to the degree to which a symmetric distribution of
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underlying factors translates into an asymmetric phenotype
distribution. Increasing ¹2f causes the distribution of pheno-
typic values to become positively skewed. This can be confirmed
with Eq. 5 by setting all variances equal to 1 [P2(i, i) 5 1]
and all covariances equal to 0 [P2(i, j) 5 0 for i Þ j], then
^P2, D2& 5 ¹2f.

Thus, in addition to shifting the mean of the phenotype
distribution, directional selection alters development to skew the
distribution in the direction of increasing fitness. Note that this
is different from the direct effect of selection on skewness
discussed after Eq. 10. There, directional selection was reshaping
the distribution of underlying variation. Eq. 16 shows that, on a
cubic or higher-order landscape, directional selection also shifts
the population to regions of the landscape that induce skewness
in the distribution of f.

Case 4: Asymmetric Underlying Variation. The assumption that the
distribution of underlying variation is multivariate normal (en-
suring a symmetrical distribution) is central to much of quanti-
tative genetics, and is sometimes even taken as a defining
characteristic of that field (12). This assumption is not always
realistic (13), so it is worth looking at what we are missing by
insisting on normality.

To investigate the effects of asymmetry in the distribution of
underlying variation, we look for Q vectors that contain the third
moment of the distribution of us. Recall that the relevant
moment for a particular vector is ( a 1 1, or 1 greater than the
summed order of the derivatives, so the only two vectors that
include the third moment are Q1,1 and Q2, corresponding to the
terms ­fy­uiz­fy­uj and ­2fy­ui­uj, respectively. To see one
consequence of asymmetry, consider the case of complete
additivity (no epistasis). Here, ­2fy­ui­uj 5 0, so we need to
consider only the vector Q1,1. From Eq. 7 we find this to be

Q1,1 5
1

2w#
­2w
­f2 ^P3, D1 ^ D1&. [17]

To see the effects of a skewed distribution, consider a case of
two underlying factors with equal variances and no covariance,
but with u1 being positively skewed. Here, P3(1, 1, 1) 5 E[x1

3] is
nonzero but all of the other elements of P3 are zero, so we can
write

Q1,1 5
1

2w#
­2w
­f2 FE~x1

3!S­f

­u1
D2

0
G . [18]

The only other vector that we need worry about on an uncurved
landscape with quadratic fitness is Q1. Under the assumptions
given above, Q1 is

Q1 5
1
w#

­w
­f 3E~x1

2!
­f

­u1

E~x2
2!

­f

­u2

4 . [19]

Q1,1 does not point in the same direction as Q1 (Fig. 2).
Furthermore, it is nonzero even if there is no epistasis or
dominance (because it depends only on ­fy­ui) and when the
population is at phenotypic selective equilibrium (because it is
multiplied by ­2wy­f2). Thus, with a skewed distribution of
underlying variation, the underlying factors may continue to
evolve even in a completely additive system that is at phenotypic
equilibrium.

Fig. 2 illustrates this result. Because more individuals are far
from the mean on one side than on the other, and fitness drops
off nonlinearly around the optimum, there is a net selective

pressure pushing the population mean away from the optimum.
This is countered by directional selection pushing the mean
toward the optimum (Q1). If these vectors do not point in exactly
opposite directions, then there is a component of evolution along
the optimum phenotype contour. A similar phenomenon occurs
when the fitness function is asymmetrical and Var(u1) Þ Var(u2),
as can be confirmed by examining Q1,1,1.

Applications
In addition to providing general rules for how selection acts to
change development, the theory described above could be used
to determine how any given selection regime would influence a
particular trait if we have either (i) a theoretical model for
development of the trait or (ii) data on what genetic factors
contribute to variation in the trait and estimates of their direct
and interaction effects.

Examples of developmental models that allow us to define the
entire phenotype landscape include reaction-diffusion models of
pattern formation (10) and mechanical growth models (14, 15).
In these cases, the underlying factors are the model parameters,
such as diffusion rate or growth rate of a tissue.

Quantitative trait locus (QTL) analysis (16) could be used to
estimate the local geometry of the phenotype landscape. Each
QTL would be treated as a different underlying factor, and the
direct, dominance, and pairwise epistatic effects of these would
provide estimates of the first and second derivatives (or regres-
sions) of phenotype with respect to the different factors. Just
given first- and second-order terms, one could construct the local
quadratic approximation to the phenotype landscape. Such an
approximation could be used to, among other things, determine
whether the population is at or near a point of local maximum
canalization, or phenotypic robustness to underlying variation. If
a point of maximum canalization [at which the angle between the
vectors ^P4, D2 R D1& and ^P2, D1& is either 0° or 180° (6)] occurs
within the range of variation found in a population, it would
indicate that the developmental process had been structured, in
large part, by stabilizing selection.

Appendix
Derivation of Eq. 5. Define p(x1, . . . , xn) as the probability density
at the point (x1, . . . , xn). The mean of f is

Fig. 2. The vectors Q1 and Q1,1 for a skewed distribution of two underlying
factors and an additive phenotype landscape. The solid diagonal is the opti-
mum phenotype, with fitness dropping off symmetrically away from the
optimum.
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f# 5 E
2`

`

. . . E
2`

` O
k50

` 1
k!Oi

k ­kf

­ui1 · · · ­uik

xi1 · · · xik

z p~xi1, . . . , xik!dxi1 · · · dxik, [A1]

where (k
j 5 (k(1)(k(2) . . . (k(j). Integrating the [x1, . . . ,

xk p(x, . . . , x)] terms converts them into moments, so we can
write

f# 5 f~u# ! 1 O
k51

` 1
k! Oi

k ­kf

­ui1 · · · ­uik

E@xi1 · · · xik#. [A2]

The second summation on the right side is just ^Pk, Dk&, yielding
Eq. 5.

Derivation of Eq. 7. The selection differential, S, for a particular
underlying factor, ui, is given by 1yw# Cov(w, xi) (17), which we
can write as an integral as

S~ui! 5
1
w#E . . . Exiw~f!p~x1, . . . , xk!dx1 . . . dxk . [A3]

Expanding both w(f) and f(u) as Taylor series (6) [letting df 5
f 2 f(u# )] yields

w~f! 5 O
k50

` 1
k!

­kw
­fk~df!k [A4]

and

df 5 O
j

1
j! Ok

j
xk1

xk2
· · · xkj

­jf

­uk1
­uk2

· · · ­ukj

. [A5]

Substituting Eq. A5 into Eq. A4 into Eq. A3 and integrating
converts the products of xs into moments, as above, but now the

moments are 1 greater than the degree of the derivatives because
of the extra xi (underlined) in Eq. A3. This gives the selection
differential for underlying factor ui. Aligning all of these func-
tions shows that the vector of selection differentials can be
decomposed into a set of vectors corresponding to different
combinations of phenotypic derivatives (Fig. 3). Note that all we
are doing is expanding the numerator of Eq. A3 and collecting
terms. All of the resulting terms will be divided by w# , which is a
scaler and need not be expanded in the same manner.

The combinatorial term g in Eqs. 7 and 8 combines the
coefficients of the Taylor expansion of f [51yPa!] and of
w [51y((b)!] and the number of terms that involve a particular
combination of derivatives [5((b)!yPb!].

Change in Higher Moments and Multiple Traits. Change in Cov(ui,
uj) is just change in the mean value of xixj, so to calculate the
selection differential for the second moments, we simply sub-
stitute xixj for the underlined xi in Eq. A3. The same approach
works for any moment.

Eq. 11 is derived by replacing Eq. A4 with an expansion of
w(f1, f2) in terms of both traits. The rest of the derivation is the
same as for Eq. 7.

Using Regressions Instead of Derivatives. If we replace Eq. A4 and
Eq. A5 above with regressions we get

w~f! 5 w~f# ! 1 O
i51

`

bw,fidfi

df 5 O
j51

` Ok

j
xk1

· · · xkj
bf,xk1

· · · xkj
,

[A6]

where by,x represents the partial regression coefficient of y on x.
The rest of the derivation proceeds as above, except that we
replace the combinatorial term g with g9 5 ((b)!yPb!.
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