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ABSTRACT
Statistical associations between phenotypic traits often result from shared developmental processes and

include both covariation between the trait values and more complex associations between higher moments
of the joint distribution of traits. In this article, an analytical technique for calculating the covariance
between traits is presented on the basis of (1) the distribution of underlying genetic and environmental
variation that jointly influences the traits and (2) the mechanics of how these underlying factors influence
the development of each trait. It is shown that epistasis can produce patterns of covariation between traits
that are not seen in additive models. Applying this approach to a trait in parents and the same trait in
their offspring allows us to study the consequences of epistasis for the evolution of additive genetic variance
and heritability. This analysis is then extended to the study of more complicated associations between
traits. It is shown that even traits that are not correlated may exhibit developmental associations that
influence their joint evolution.

ONE of the most important ways in which develop- focus on the traditional decomposition of variation into
additive genetic, dominance, and environmental com-ment influences evolution is by producing statisti-

cal associations between different phenotypic traits that ponents [although such a decomposition can be recov-
ered from the phenotype landscape (Wolf et al. 2001)influence the joint evolution of those traits (Maynard

Smith et al. 1985). Most theoretical models of develop- given a model of transmission]. In this article I assume
that phenotype landscapes are continuous and infinitelymental associations between traits have focused on ge-

netic covariance, resulting either from additive pleiotro- differentiable. This assumption is for illustrative pur-
poses only; a slight modification of the theory presentedpic effects (Lande 1979; Roff 1997) or from particular

models of development, usually involving differential here applies as well to discontinuous landscapes (Rice
2002). A note on terminology: The term “epistasis” isallocation of resources to growing structures (Rendel

1963; Riska 1986; Houle 1991). These models generally used in a number of different ways in the literature
(Phillips 1998). Throughout this article, I use the wordassume that any developmental association between two

traits can be satisfactorily captured by the genetic covari- epistasis to refer to nonadditive interactions between
underlying factors in their contributions to phenotype.ance between them.

In this article, I present a way to model developmental Thus, the phenotype function φ � au 1 � bu 2, where φ
is the value of a trait, u1 and u 2 are values of geneticassociations between traits that is amenable to any sort of
underlying factors, and a and b are constants, exhibitsepistatic interactions between genetic and environmental
no epistasis since the underlying factors contribute addi-factors influencing those traits. I apply this approach
tively to the trait value. By contrast, phenotype functionsto the question of how epistatic interactions influence
such as the following do exhibit epistasis: φ � u 1u 2, φ �phenotypic and genetic covariation and to the study of
u1/u 2, φ � u 2

1, etc.developmental associations that are more complicated
The mathematical tools for the representation andthan covariance.

analysis of phenotype landscapes are the same as thoseThe analysis that follows is phrased in terms of pheno-
presented in Rice (2002). The local geometry of thetype landscapes (Rice 2002). A phenotype landscape is
phenotype landscape and the distribution of underlyinga map of some phenotypic trait as a function of all of
genetic or environmental variation are captured withthe underlying genetic and environmental factors that
tensors. For our purposes, a tensor is an array of valuescontribute to it. In this theory, environmental factors (such
(such as a vector or a matrix) that has the property thatas temperature at a particular stage of development, salin-
the relationship to other such arrays is unchanged ifity, etc.) are treated as underlying factors that may not
we rotate the coordinate axes (I discuss the biologicalbe heritable (although they can be). We thus do not
meaning of this below). The rank of a tensor is the
number of subscripts necessary to identify each element.
Thus, a vector is a tensor of rank one and the matrices

1Address for correspondence: Department of Ecology and Evolutionary
used in this article are tensors of rank two (nonsquareBiology, Osborn Memorial Labs, 165 Prospect St., Yale University,

New Haven, CT 06520. E-mail: sean.rice@yale.edu matrices are not tensors, but we have no use for these

Genetics 166: 513–526 ( January 2004)



514 S. H. Rice

in this article). (The dimension of a tensor is just the am calling the inner product is sometimes called the
“n-fold inner product,” to signify that we are summingnumber of values that each subscript can take; so a 3 �
over all n indices.)3 matrix has rank two, because two subscripts are re-

The outer product (�) of two tensors of rank r1 andquired to identify any particular element, but dimension
r2 is another tensor of rank r1 � r2. The outer productthree, because each subscript can take any of three
is formed by multiplying each element of one by eachvalues).
element of the other. For example, the outer productThe notation follows that in Rice (2002). Let Pn be an
of D1

1 and D1
2 , both of which have rank one, is a newnth rank tensor with elements being the nth moments of

tensor of rank two, which we can write as a matrix inthe distribution of underlying factors (throughout this
which the ijth element is the product of the ith elementarticle, “moments” refers to central moments). Defin-
of D1

1 and the jth element of D1
2 . If each trait is influenceding xi � (ui � ui), i.e., each value of the ith trait mea-

by the same two underlying factors, thensured relative to the population mean for that trait, the
elements of Pn are

Pn(i1, i2, . . . , in) � E[xi1xi2 . . . xin]. (1)
D1

1 �








�φ1

�u1

�φ1

�u2








, D1
2 �








�φ2

�u1

�φ2

�u2








⇒ D1
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2 �








�φ1

�u1
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�u1

�φ1

�u1
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�φ1
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�φ2

�u1

�φ1

�u2

�φ2

�u2








.
Because xi � (ui � ui), the vector (or tensor of rank 1)
P1 is zero. P2 is the standard covariance matrix, with ele-

(4)ments P2
ij � E(xixj) � Cov(ui , uj). P3 is a third-order array

of third moments. Higher-ranked P tensors contain the The general rule for tensors of arbitrary rank is
higher-order moments; these include univariate terms

(Dn
1 � Dm

2 )x1,...,xn,y1,...,ym
� (Dn

1)x1,...,xn
(Dm

2 )y1,...,ymsuch as kurtosis (P 4
1111 � E[x 4

1]) as well as higher-order
mixed moments, which do not generally have names.
An important property of the P tensors is that they are �

�nφ1

�ux1
. . . �uxn

�mφ2

�uy1
. . . �uym

. (5)
highly symmetrical. For the familiar case of P 2 (the
covariance matrix) P 2

12 � E(x1x2) � E(x2x1) � P 2
21, this

The outer product is good for forming all combina-represents just the fact that covariances are symmetrical.
tions of elements, and the inner product is good forSimilarly P4

1222 � P4
2122 � P4

2212 � P4
2221 � E(x1x3

2). In other
summing over multiples of these. Outer multiplicationwords, it is the number of each kind of subscript that
uses the same symbol (�) as the Kronecker productmatters, not their order. Since the rank of a tensor is
and in fact is identical to the Kronecker product whenthe same as the number of subscripts needed to identify
applied to vectors. The two operations are different,any particular element, I sometimes drop the super-
though, for higher-rank tensors. For example, the Kro-script indicating rank when this is obvious from the
necker product of two matrices is another matrix, whilenumber of subscripts; thus Pijkm � P4

ijkm .
the outer product of two second-rank tensors (whichLet Dn

a be a tensor of rank n, associated with pheno-
can be written as matrices) is a fourth-rank tensor, whichtypic trait φa, with elements defined as
cannot be written as a matrix.

An underlying factor may be any measurable value,
Dn

a(i1, i2, . . . , in) �
�nφa

�ui1�ui2 . . . �uin

. (2) continuous or discrete, that influences the phenotypic
traits of interest. The fact that the theory puts few restric-
tions on how these factors are defined and measuredIn words, Dn

a contains all of the nth derivatives of pheno-
(see the discussion of coordinates below and in thetypic trait φa with respect to the underlying factors. D1

appendix) is one of the virtues of the phenotype land-is just the gradient vector, �φ. D2 is a matrix of second
scape approach, since it allows us to simultaneously con-partial derivatives of phenotype with respect to the un-
sider the expression of individual genes, the activitiesderlying factors [this is the same as the matrix E in Rice
of complex enzymes, environmental factors, and any(1998, 2000)].
other quantity that is biologically relevant in the systemGiven two tensors of the same rank, the inner product
of interest. Just what the underlying factors are is thus(symbolized by �,�) of them is just the sum of the products
determined by the particular system under study andof all the corresponding elements, which is a number (the
is not necessary for the derivation of general results.inner product of two tensors of different rank is not a
Nonetheless, it is often helpful to visualize somethingnumber, but this is not an issue in this article). For exam-
(gene sequence, enzyme, etc.) when working throughple, the inner product of P3 and D3 is calculated as
the derivations below. Some areas of research that yield

�P 3, D3� � �
i
�

j
�
k

P 3
i,j,kD3

i,j,k . (3) values that could be treated as underlying factors for
characters of interest are models of metabolic processes
based on enzymatic activity, quantitative trait locus anal-The familiar example of the inner product of two vectors

(tensors of rank one) is a special case of this. (What I ysis, and studies of gene expression rates.
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The activities of different enzymes are often the main covariance between the traits. Below, I consider the special
case of Equation 6 appropriate to uncurved landscapesparameters in models of metabolic pathways. Such mod-
and then turn to the effects of curvature (i.e., epistasisels, in which the trait being studied is the flux through
and dominance) on covariation between traits. [It isa particular pathway, allow us to derive phenotype land-
interesting to note that the form of the right-hand partscapes directly from the models (Nijhout 2002). In
of Equation 6—the inner product of a P tensor withterms of the theory presented here, we know how to
the outer product of a set of D tensors—is similar to thecalculate the D tensors for models involving enzymatic
form of the vectors defining the direction of evolutionpathways. The D tensors can also be estimated, in this
under selection (Rice 2002).]case from empirical data, using quantitative trait locus

Uncurved landscapes: If both phenotype landscapes(QTL) analysis. While quantitative trait loci are mecha-
are uncurved (completely additive), then Dn is zero fornistically ambiguous, being regions of a chromosome
all n � 1, so we need consider only the first term:that somehow contribute to variation in a trait, they

have the advantage that the degree to which each QTL Cov(φ1, φ2) � �P 2, D 1
1 � D 1

2� . (8)
contributes to a trait can be estimated, along with first-

This equation captures the contributions to phenotypicand second-order epistatic interactions.
covariance of both covariance between the underlyingAlthough metabolic models and QTL analyses allow
factors (the off-diagonal elements of P2) and pleiotropy.us to identify the underlying factors for certain traits
Figure 1 illustrates how a particular covariance betweenand to calculate the D tensors, they yield no information
two traits may be due to either covariation of the under-about the distribution of underlying variation in a popu-
lying factors or pleiotropy. In the case where φ1 is thelation, which defines the P tensors. Gene expression
value of the trait in the parents and φ2 is the expectedrates, while less often incorporated into mathematical
offspring value, then �P2, D1

1 � D1
2� is the additive ge-models of phenotype, have the advantage that we can

netic variance for the trait (Kojima 1959).estimate the actual population level distribution of ex-
Figure 1A shows the contour lines and gradient vec-pression rates using DNA microchip methods. The pos-

tors (D1
a � �φa) for two traits defined by the functionssibility of combining QTL analysis with DNA chip analy-

sis (Schadt et al. 2003) could potentially provide a way
φ1 � u1 �

1
2
u2to fill in all the pieces.

φ2 �
1
2
u1 � u2 . (9)

COVARIANCE BETWEEN TRAITS

Because the phenotype functions in Equation 9 are lin-Two traits, φ1 and φ2, correspond to two different pheno-
ear (second and higher derivatives are all zero) we needtype landscapes over the set of all underlying factors
consider only P2 (corresponding to D1 � D1), which isthat contribute to either trait (Rice 2000, 2002; Wolf
the same as the covariance matrix. If the two underlyinget al. 2001). Each trait thus has its own set of D tensors
factors are uncorrelated and have unit variances, thendescribing the local geometry of its landscape, with Di

j
the relevant tensors arecontaining all of the ith derivatives of trait φj. There is

only one set of P tensors, though, because the distribu-
tion of underlying factors is a property of the population
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as a whole. The appendix shows that we can write the

phenotypic covariance between the two traits as

Cov(φ1, φ2) � �
∞
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�
∞
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1
i ! j !

�P i�j � P i � P j, D i
1 � D j

2� . (6)
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The variance of either trait is found by calculating its covari-

ance with itself; thus (10)

and, from Equations 6 and 7, we find
Var(φ1) � �

∞

i�1
�
∞

j�1

1
i ! j !

�P i�j � P i � P j, D i
1 � D j

1� . (7)

Cov(φ1, φ2) � �P 2, D1
1 � D1

2� �
1
2

�
1
2

� 1
Equation 6 describes the phenotypic covariance be-

tween two traits as a function of the distribution of underly-
Var(φ1) � �P 2, D1

1 � D1
1� � 1 �

1
4

� 1.25ing factors and the manner in which those factors interact
in development of the traits. If each of the underlying
factors is a gene that is passed accurately to the next Var(φ2) � �P 2, D1

2 � D1
2� �

1
4

� 1 � 1.25. (11)
generation, then we are also calculating the genetic
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among the underlying factors; if we change the way in
�

1
4

�P 4 � P 2 � P2, D2
1 � D2

2� . (18)which we measure those factors, the elements of D2

change, but its relation to the other tensors does not.
We can further simplify Equation 6 in the special case Equation 18 shows that curvature of either or both

in which the underlying factors are uncorrelated with of the phenotype landscapes (captured by the D2 terms)
one another and are all measured in units of standard can contribute to the phenotypic covariance. To see how
deviations (i.e., scaled so that the variances are all equal this occurs, consider the case of quadratic phenotype
to 1); then P2 is just the identity matrix and �P2, D1

1 � landscapes and a multivariate normal distribution of
D1

2� is just the sum of the diagonal elements of D1
1 � underlying variation with no covariances between the

D1
2, which is ��φ1/�ui · �φ2/�ui. This is the same as the underlying factors and equal variances designated by

inner product of the two gradient vectors, so for this �2. Under these circumstances P3 � 0, P4
1111 � P4

2222 �
special case (zero covariances and variances equal to 3�4, P4

ijkm � �4 when the sequence ijkm contains exactly
one) we have two 1’s and two 2’s, and P4

else � 0. Focusing on the fourth
term on the right-hand side of Equation 18, we find

Cov(φ1, φ2) � ��φ1, �φ2� . (14)
(P 4 � P2 � P2)1111&2222 � 2�4

A standard result from the definition of the inner
product of two vectors is (P 4 � P2 � P2)1221&2112&1212&2121 � �4

(P 4 � P2 � P2)else � 0. (19)��φ1, �φ2� � ‖�φ1‖·‖�φ2‖·Cos(�), (15)

The condition for epistasis to contribute to phenotypicwhere ‖�φi‖ is the length of the vector �φi and � is the
covariance given these assumptions is thusangle between the two gradient vectors. Under the as-

sumption of unit variances and no covariances between
the underlying factors, the variances of the traits are �2φ1

�u2
1

�2φ2

�u2
1

�
�2φ1

�u2
2

�2φ2

�u2
2

� 2
�2φ1

�u1�u2

�2φ2

�u1�u2

� 0. (20)
given by Wolf et al. (2001):

Figure 3 shows a case that meets this condition. Even whenVar(φi) � ‖�φi‖2 . (16)
the gradient vectors are at right angles and there is no

Combining Equations 14, 15, and 16, we can calculate covariance between underlying factors, epistatic effects
the correlation coefficient for the two traits as produce a covariance between the phenotypic traits.

Phenotypic or genetic covariance induced by epistaticCor(φ1, φ2) � Cos(�). (17)
effects differs in two important ways from covariance

Thus, in an additive system with unit variances and resulting from additive pleiotropic effects or covariance
no covariances between the underlying factors, the cor- between underlying factors. First, in cases such as the
relation between the two traits is exactly the cosine of one in Figure 3, the correlation between the traits is a
the angle between their gradient vectors. function of the total amount of underlying variation. Uni-

Interestingly, there are cases in which the covariance formly reducing the variances in both underlying factors
between the underlying factors has no effect on the in Figure 3 would reduce the correlation between φ1
covariance between the traits. If one of the gradient and φ2, because the landscapes would look more nearly
vectors is a reflection of the other in one of the axes, flat over the range of variation present in the popula-
then the covariance between the two traits is determined tion. This is not the case in the examples shown in
by the angle between their gradient vectors and by the Figure 1, where increasing or decreasing the amount
variances (but not covariances) of the underlying fac- of underlying variation, without changing the shape of
tors. This is illustrated in Figure 2. This independence the distribution, has no effect on the correlation be-
of phenotypic covariance and underlying covariance re- tween the phenotypic traits.
sults because P2 is symmetrical (P2

ij � P2
ji) but (D1

1 � D1
2) Second, the association between φ1 and φ2 in Figure

is not. Whenever (D1
1 � D1

2)ij � �(D1
1 � D1

2)j i , then the 3 is asymmetrical. Curvature of the landscapes makes it
two terms containing P2

ij cancel one another out, so easier to simultaneously increase both φ1 and φ2 than it
P2

ij contributes nothing to Cov(φ1, φ2). In such a case, would if there were no epistasis, but it is actually harder
selection for integration of the two phenotypic traits to simultaneously decrease both traits, since the propor-
will not lead to covariance of the underlying factors tion of the distribution of variation that lies in the region
(such as through gametic phase disequilibrium), al- in which both traits are smaller is less than it would be
though it may lead to change in their variances. with the same gradient vectors on uncurved landscapes.

Curved landscapes: Consider first two quadratic land- A number of studies, including Bell and Burris (1973)
scapes. Using the fact that P1 � 0 (since we are using with Tribolium, Rutledge et al. (1973) with mice, and
central moments), Equation 6 yields Nordskog (1977) with chickens, have observed an asym-

metry in selection experiments on correlated characters
Cov(φ1, φ2) � �P 2, D1

1 � D1
2� �

1
2

�P 3, D1
1 � D2

2� �
1
2

�P 3, D2
1 � D1

2� [e.g., body weight and tail length in mice (Rutledge et
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mediately see that because the diagonal elements of both
D2

1 and D2
2 are all zero, (D1

1 � D2
2)111 and (D1

1 � D2
2)222

D1
p � D1

p �






	2 	ε 0
	ε ε2 0
0 0 0





, (26)must both be zero, as must the corresponding elements

of D1
2 � D2

1 . We thus know that whatever the values of
P111 and P222, which measure the skewness in the u 1 and

from which, using Equations 6 and 7, we findu 2 directions, respectively, they have no influence on
the covariance between φ1 and φ2, since they are both Cov(φo, φp) � 	2P11 � 	εP13 � 	εP21 � ε2P23

multiplied by terms that equal zero. This is relevant to
Var(φp) � 	2P11 � 	εP12 � 	εP21 � ε2P22 . (27)interpreting the generality of the model; because u1

has a lower bound at zero and no upper bound, it is The regression of offspring on parents, 
o,p, is then
reasonable to expect that the distribution of values of
u1 would be positively skewed. An analogous argument 
o,p �

Cov(φo, φp)
Var(φp)

�
	2P11 � 	εP13 � 	εP21 � ε2P23

	2P11 � 	εP12 � 	εP21 � ε2P22

.
shows that the mixed third moments, such as P112 and

(28)P122, do contribute to the covariance between the traits.
These moments measure, roughly, the degree to which The terms P12, P13, and P23 are, respectively, the covari-
the conditional variance of one underlying factor is a ance between the parent’s genotype and the parent’s
function of the value of the other factor (there is an environment (P12 � P21), the covariance between the
example in the final section below). parent’s genotype and the offspring’s environment

(P13), and the covariance between the parent’s environ-
ment and the offspring’s environment (P23). If all ofPARENT-OFFSPRING COVARIANCE
these covariances are zero, then we haveAND HERITABILITY

One interesting application of this theory is to the calcu-

o,p �

	2P11

	2P11 � ε2P22

, (29)lation of parent-offspring covariance. Here, instead of con-
sidering two different traits in the same generation, we

which corresponds to the standard quantitative geneticscalculate the covariance between a trait in the parents,
notion of heritability, with the denominator being theφp, and the same trait among their offspring, φo. Dividing
total phenotypic variance among the parents and thethis covariance by the variance in parental phenotype
numerator being the component of that variance thatyields the regression of offspring on parents, 
op, which I
is due to heritable factors (the “additive genetic vari-treat as identical to heritability. In sexually reproducing
ance”). Note, though, that when we use the full Equa-diploid organisms, we can use the midparent pheno-
tion 28 the numerator contains terms that do not appeartypic value as φp without changing our calculations. [A
in the denominator, so we cannot represent the regres-number of different definitions of heritability exist in
sion of offspring on parents in terms of the ratio ofthe literature (Jacquard 1983); I focus on the regres-
additive genetic variance to phenotypic variance, sincesion of offspring on parents and the corresponding
this would require that the additive genetic variance beoffspring-parent covariance, since this is most directly
either negative or greater than the phenotypic variance.related to the response to selection.]

In the linear case of Equation 25, the regression ofConsider first the simplest case, in which phenotype
offspring phenotype on parent phenotype is not a func-is an additive function of a heritable underlying factor,
tion of the values of the underlying factors. This is notu 1, and an environmental factor. We assume that the
the case, though, when there are nonlinear effects, suchexpected value of u 1 is the same in offspring as in their
as epistasis or genotype-by-environment interactions. Asparents, but that the environment experienced by the
an example, consider a trait in the parental generation,offspring is (potentially) independent of that of their
φp, influenced by two genetic factors, u1 and u2, and theparents. In such a case, we really have two different
environment. For simplicity, we assume that u1 and u2environmental factors: the environment experienced by
are transmitted without modification to the offspringthe parents, u 2, and the environment experienced by
(i.e., assume asexual reproduction). As before, we havetheir offspring, u 3. We can now write the phenotype of
two environmental factors, the value of the environmentthe parents, φp, and that of their offspring, φo, as
experienced by the parents, u 3, and the environmental

φp � 	u1 � εu2 value experienced by their offspring, u 4:
φo � 	u1 � εu3 . (25) φp � u2

1 � u2u3

To find the parent-offspring covariance we note that the φo � u2
1 � u2u4 . (30)

relevant D tensors are
Note that the two equations are the same except that
φp contains u3, the parent’s environment, where φo con-

D1
p �





	
ε
0




, D1

o �




	
0
ε




, D1

p � D1
o �






	2 0 	ε
	ε 0 ε2

0 0 0





, tains u4, the offspring’s environment. The first rank D

tensors are
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function, which now behaves in an evolutionary sense entangled if, because of developmental associations,
changing some moment of the distribution of one traitlike a distinct trait.
leads to a change in some moment of the distribution
of the other trait. Genetic covariance resulting from

SELECTION DIFFERENTIALS pleiotropy is one sort of developmental entanglement;
below I give a couple of examples of other cases.This article is concerned primarily with the statics,

Consider two traits with phenotype landscapes de-rather than the dynamics, of phenotypes, meaning that
fined bywe are concerned with concepts such as genetic and

phenotypic covariance, heritability, and the like, which
are relevant to evolution but can be defined indepen- φ1 �

1
2

(u2
1 � u2

2)
dently of any particular evolutionary process. I have thus
made no formal reference to fitness. There is a link to φ2 � u1 � u2 . (37)
selection theory, though, since the selection differential

The contour maps of these are shown in Figure 7. Thefor a trait (the change due only to selection, prior to
relevant D tensors areany changes introduced by recombination, etc.) is equal

to the covariance between fitness and the trait value,
D1

1 � �φ1 � 


u1

�u2



, D2

1 � 

1 0
0 �1



, D1

2 � 

1
1



, D2

2 � [0] .divided by mean population fitness (Robertson 1966;
Price 1970). We can thus calculate the selection differ- (38)
ential for the trait φ, denoted Sφ, by substituting fitness

If the joint distribution of u1 and u2 is uncorrelatedfor one of the phenotypic traits in Equation 6:
with equal variances, then the traits φ1 and φ2 are also
uncorrelated (from Equation 6, using the fact that u1 �Sφ �

1
wCov(w, φ) �

1
w�

i
�

j

1
i ! j !

�P i�j, D i
w � D j

φ� . (36)
u2 at this point). Thus, at least locally around this point,
the two traits should evolve independently under direc-

Equation 36 gives the effects of selection on a trait in tional selection. The two traits are not, however, inde-
terms of a fitness landscape and a phenotype landscape. pendent under other kinds of selection.
Note, though, that the fitness landscape is over the space As shown in Rice (1998), stabilizing selection on trait
of underlying factors, rather than over the space of φ1 should, all else held equal, move the population along
phenotypic traits, as in most quantitative genetic models the optimal contour toward a region of lower slope (as
(e.g., Lande 1979). Note that Equation 36 gives the indicated by greater spacing of the contour lines). The
selection differential for the trait, φ. It is thus different direction of maximal decrease in slope for φ1 is given
from the selection differential for the set of underlying by the vector �D2

1�φ1 (Rice 1998). At the point u1 � u2 �
factors derived elsewhere (Rice 2002). 2, this vector points in the exact opposite direction of

�φ2. Thus, stabilizing selection on trait φ1 leads to direc-
tional change of trait φ2, although the two traits are

OTHER DEVELOPMENTAL ASSOCIATIONS
uncorrelated with one another.BETWEEN TRAITS

We could not identify such a system by looking at just
Covariance between traits is of interest primarily be- the covariance between the traits. This does not mean

cause it influences the joint evolution of the traits, iden- that there is no telltale signature, only that other mo-
tifying cases in which directional selection on one trait ments of the joint distribution of the traits need to
is expected to produce a change in the mean value of be considered. In the example above, a symmetrical
both traits (Lande 1979). In a completely additive distribution of underlying factors would produce an
model, in which all phenotype landscapes are uncurved, asymmetrical distribution of the traits, corresponding
this is the only kind of developmental association that to a nonzero value of the mixed third moment E[x1x2

2],
could influence joint evolution of the traits. When non- as shown in Figure 8.
additive interactions are allowed between underlying The resource allocation model shown in Figure 5 also
factors, though, other kinds of relationships become exhibits entanglement of the traits other than mere
possible, because moving in the space of underlying covariance. In Figure 5, it is not possible to change the
factors can change other moments of the phenotype degree of canalization of φ1 without also changing the
distribution, not just the mean. mean of φ2.

We can think of correlated evolution as being a case Any number of traits can potentially be entangled
in which changing the first moment (the mean) of one with one another. For example, consider the following
trait leads to a change in the first moment of the other system:
trait. With epistasis, it is possible to have a situation in

φ1 � u1u2which changing the nth moment of one trait leads to
a change in the mth moment of another trait or to a φ2 � u1u3change in the joint moments of a set of other traits.

I shall say that two phenotypic traits are developmentally φ3 � u2u3 . (39)
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underlying factors (both genetic and environmental) Another consequence of epistasis is the possibility of
entanglement between higher-order moments of theand the interactions between these factors in develop-

ment. The results are thus largely independent of how distributions of the traits concerned. For example, if at
least one trait exhibits first-order epistatic effects, thenwe choose to measure the underlying genetic and envi-

ronmental factors. it is possible to have a case in which stabilizing selection
on one trait leads to directional change in the mean ofThis approach allows us to study general develop-

mental entanglement of traits. Two traits are develop- the other trait. This may occur even when the two traits
are phenotypically and genetically uncorrelated.mentally entangled when a developmental change that

alters some moment of the distribution of one trait leads The idea of integration of traits resulting from shared
to a change in some (potentially different) moment of developmental pathways has been one of the principal
the distribution of the other trait. An important special concepts linking development and evolution. Most au-
case of developmental entanglement is developmental thors who have discussed integration have defined it in
covariance between two traits, in which case the mean terms of covariance between the traits involved (Olsen
(first moment) of one trait is entangled with the mean and Miller 1958; Wagner 1990; Magwene 2001). Un-
of the other trait. Covariance is the only sort of develop- der these definitions, integration of traits would be a
mental association possible when the underlying factors subset of what I am calling entanglement. The above
contribute additively to both traits. In the additive case, examples show that simply saying that two traits are
covariance between traits is determined completely by not integrated is not the same as saying that they are
the distribution of underlying variation and the angle evolutionarily uncoupled. Many physiological and mor-
between the gradient vectors of the phenotype land- phological traits are probably under strong stabilizing
scapes corresponding to each trait. When underlying selection for long periods of time. Also, for some charac-
factors interact epistatically, though, then these nonad- ters such as the components of articulating skeletons,
ditive interactions may contribute to phenotypic and selection probably acts more strongly on the ratio of
genetic covariance. different parts than on their absolute sizes. In such cases,

Covariance resulting from epistatic interactions dif- entanglement between the variance or degree of inte-
fers in at least two ways from that resulting from pleiot- gration of certain traits and the mean values of others
ropy in an additive system. First, phenotypic and genetic may influence the direction of evolution as strongly as
correlation in nonadditive systems is a function of the do genetic covariances between traits.
total amount of underlying variation, because increas-

This article benefited greatly from comments by Bruce Walsh and
ing underlying variation exposes more of the curvature two anonymous reviewers.
of the phenotype landscapes. Second, epistatic interac-
tions can produce asymmetries in the joint distribution
of phenotypic traits. One result of this is that, for corre-
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APPENDIX measured with a Euclidean metric [i.e., the distance
between points x and y, where x � (x1, x2, . . .) and y �Derivation of Equation 6: Equation 6 is derived by
(y1, y2, . . .), is [�(xi � yi)2]1/2]. Below I briefly discuss anoting that Cov(φ1, φ2) � E[φ1 φ2] � φ1 φ2 . The mean
standard result from tensor analysis (see, for example,value for a trait can be written
Simmonds 1994) that allows us to use the results derived
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1. u*1 is perpendicular to u2 and u*2 is perpendicular to

u1 [i.e., �u*1 , u2� � �u1, u*2 � � 0].
(A2)

We find the expectation by multiplying Equation A2 by 2. �u1, u*1 � � 1 and �u2, u*2 � � 1.
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Figure A1.—Construction of a covariant basis from a contravariant basis. A shows how a point is located with respect to the
contravariant basis vectors u1 and u2. B shows the corresponding covariant basis vectors, u*1 and u*2 .

For spaces with more than two dimensions, we extend variant basis vectors (whatever we choose these to be)
and describe the distribution of underlying variationrule 1 to require that u*i is perpendicular to uj for all

j � i. The vectors u*1 and u*2 are referred to as the (the P tensors) in terms of the corresponding covariant
basis vectors. This requires no new information, since“covariant” bases of our space. (The unfortunate terms

contravariant and covariant derive from the manner in we can always find the covariant basis vectors from the
contravariant vectors using the two rules listed above.which the elements of the vectors change when we rotate

the space; they have nothing whatsoever to do with the Note that if we start out with Cartesian coordinates, in
which u1 and u2 are at right angles and each of unitstatistical concept of covariance used elsewhere in this

article.) All of the equations in this article remain cor- length, then these coordinates are both contravariant
and covariant and we need not worry about the distinc-rect so long as we represent the phenotype landscapes

(and thus measure the D tensors) in terms of the contra- tion.


