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Developmental evolutionary biology has, in the past decade, started to move beyond
simply adapting traditional population and quantitative genetics models and has begun
to develop mathematical approaches that are designed specifically to study the evolution
of complex, nonadditive systems. This article first reviews some of these methods,
discussing their strengths and shortcomings. The article then considers some of the
principal questions to which these theoretical methods have been applied, including the
evolution of canalization, modularity, and developmental associations between traits.
I briefly discuss the kinds of data that could be used to test and apply the theories, as
well as some consequences for other approaches to phenotypic evolution of discoveries
from theoretical studies of developmental evolution.
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Introduction

Heritable variation is the raw material of
evolution, and because most heritable pheno-
typic variation is translated through develop-
ment from genetic variation, a complete the-
ory of phenotypic evolution must be ready to
incorporate all the complexities of development
and genetic architecture. This was one of the
motivations for the emergence of evolution-
ary developmental biology as a distinct field.
However, much of the early interest in “evo—
devo” came from developmental biologists who
saw the relevance of comparative studies based
on phylogenetic relationships. This is basically
“devo” with a little bit of “evo” added for con-
text. A truly synthetic theory needs to incorpo-
rate development and genetic architecture into
the formal mathematical theory of evolution
and then connect this theory back to develop-
mental data. Here I review some recent steps
toward such a synthesis.
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I first discuss some of the theoretical meth-
ods that have recently been applied to studying
the evolution of development and genetic ar-
chitecture. My goal here is to outline how these
methods work and what some of their strengths
and weaknesses are. I then discuss some of the
principal things that we have learned from ap-
plication of these methods.

Methods for Modeling the
Evolution of Development and
Genetic Architecture

Quantitative Genetics

The most widely used approach to studying
the evolution of continuous variables is quan-
titative genetics (Roftf 1997; Lynch & Walsh
1998). Unfortunately, the very properties of
quantitative genetic models that make them
particularly useful for studying phenotypic evo-
lution make them ill suited to the study of the
evolution of genetic architecture.

Quantitative genetics theory makes several
simplifying assumptions that make it math-
ematically tractable. The most important of
these for our purposes is the assumption that
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only the additive contributions of genes to a
phenotype play a significant role in evolution.
The phenotypic consequences of nonadditive
phenomena such as dominance and epistasis
are averaged and grouped into components of
phenotypic variance (Lynch & Walsh 1998). As
I will discuss below, focusing only on additive
contributions of genes to phenotype precludes
most of the study of the evolution of genetic
architecture.

Though many quantitative genetic models
treat heritability and genetic covariance as fixed
values, these change over a few generations
(Bohren et al. 1966; Parker et al. 1970). Par-
ticular attention has been paid to genetic co-
variance since early studies suggested that this
evolves faster than additive genetic variance
(Bohren et al. 1966). Understanding exactly why
genetic covariance changes has been difficult
using only the machinery of quantitative ge-
netics. Although results can be obtained under
the assumption of weak selection and additivity
of gene effects (Lande 1980), understanding the
variation in genetic covariance seen in exper-
imental studies will require explicit models of
the specific gene interactions underlying quan-
titative traits (Riska 1989).

One approach is to study models of possi-
ble gene interactions. One such model that has
received considerable attention is the resource
partitioning model for two traits that are influ-
enced by developmental processes that draw on
the same resources (Sheridan & Barker 1974).
Several authors have used variants of the re-
source partitioning model to study the evolu-
tion of genetic covariance (Riska 1986; Houle
1991; de Jong & van Noordwik 1992). This
work showed that when gene products inter-
act nonadditively, genetic covariance changes
in response to selection on phenotype and that
this change is often not what we would expect
from an additive model. The logical extension
of these kinds of studies is to devise a set of
methods that would allow us to investigate the
evolutionary consequences of any kind of in-
teraction between gene products. This is what
phenotype landscape theory does.
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Phenotype Landscape Models

Phenotype landscape models treat the value
of some phenotypic trait (or set of traits) as a
function of a set of underlying factors, which
may be any measurable quantities, genetic or
environmental, that contribute to phenotype
(Rice 1998, 2002b; Wolf et al. 2001). Phenotypic
traits that are subject to direct selection are gen-
erally represented by ¢; underlying factors that
contribute to development of such traits are
generally represented by # (although we will
see cases where one trait plays both roles). Se-
lection is captured by a separate function that
maps phenotype to fitness. This structure is dif-
ferent from that taken in population genetics
(such as the modifier models discussed later),
where genotypes are generally mapped directly
to fitness, skipping over phenotype. By explicitly
inserting phenotype between the levels of geno-
type and fitness, phenotype landscape models
allow us to distinguish between the ways that
genes interact to influence phenotype (devel-
opment and genetic architecture) and the ways
that phenotypic traits interact to influence fit-
ness (selection).

An individual organism is a point on the
landscape, and a population is a distribution
of such points. Figure 1A shows a phenotype
landscape in which the underlying factors con-
tribute additively to phenotype; thus, the land-
scape 1s uncurved. The contours are lines of
equal phenotypic value. Fitness is not repre-
sented here, only phenotype as a function of
the underlying factors. The landscape itself thus
represents genetic architecture but says noth-
ing about selection. Figure 1B shows a curved
phenotype landscape, meaning that here the
underlying factors interact nonadditively to in-
fluence phenotype (this is actually one of the
phenotype functions used in the resource par-
titioning models mentioned earlier).

Curvature of the landscape allows genetic
architecture to evolve. To see this, consider the
points @ and 4 on the contour plot in Figure 1D.
At point « the landscape slopes steeply in the
uy direction, meaning that a change in #; has
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Figure 1. Examples of phenotype landscapes
corresponding to (A) purely additive genetic effects
and (B) nonadditive (epistatic) effects. In panels A
and B, the vertical axis is phenotype, not fitness. (C)
and (D) show contour plots of the landscapes in pan-
els A and B, respectively. Shaded circles represent the
distribution of individuals within a population, and
the Q vectors are those described in the text.

a large effect on phenotype. A change in uo,
though, produces little change in phenotype;
moving along the uy axis at point @ primar-
ily just changes the slope in the u; direction.
Thus, at point a, ¥; has a strong direct effect
on phenotype and us acts basically like a mod-
ifier of u;. This situation is exactly reversed
at point b, where uo has a strong direct effect
and u; acts like a modifier. This example illus-
trates why phenotype landscapes are useful for
studying the evolution of genetic architecture;
the relative roles of different underlying factors
change as the population moves over a curved
landscape.

This example also illustrates why quanti-
tative genetics 13 poorly suited to study the
evolution of genetic architecture; by assum-
ing that genes contribute additively to pheno-
type, quantitative genetics assumes a pheno-
type landscape like that in Figure 1A and C, on
which genetic architecture cannot evolve be-
cause it is the same everywhere on the land-
scape.

The general mathematical theory for evolu-
tion on a phenotype landscape has been de-
scribed by Rice (1998, 2002b). This theory
describes evolution as the sum of a set of vectors
(termed Q vectors) in the space of underlying
factors, each vector corresponding to a different
aspect of the local geometry of the landscape.
The simplest O vector, Q j, contains only first
derivatives of phenotype with respect to the un-
derlying factors and captures just the effects of
directional selection to change the mean phe-
notype. If the distribution of underlying varia-
tion is normal and the landscape uncurved (as
in Fig. 1C), then Q ; is the only vector present.
The vector Q ;9 (containing both first and sec-
ond derivatives of the landscape) appears on
curved landscapes (Fig. 1D) and captures the
effect of stabilizing selection to reduce pheno-
typic variance. The equations for these vectors
are

10
Q,= T%(PQ, Dl) and

@
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Here, P" is a tensor containing all the nth
moments of the distribution of underlying
variation, D" is a tensor containing all the nth
derivatives of phenotype with respect to the un-
derlying factors, and w represents fitness. The
general equation for all of the Q vectors present
on an arbitrarily complex landscape is given by
Rice (2002b).

The general theory of Q vectors applies
to an arbitrarily complex developmental sys-
tem with an arbitrary distribution of underly-
ing variation. For many of the questions that
we are interested in, though, a more restricted
model is actually easier to work with. One way
to simplify the general phenotype landscape
model is to focus on a subset of possible land-
scape geometries. This approach is essentially
what quantitative genetics does by considering
only additive effects. A more complex, though
still relatively tractable, set of models are the
multilinear models (Hansen & Wagner 2001;
Hermisson et al. 2003). In these models, many
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underlying factors can interact, but each has
a linear effect on the interactions between the
others. Restricting our attention to a subset of
surfaces increases our ability to study certain
processes, such as the evolution of mutational
variance (Hermisson et al. 2003). However, it
also limits our ability to study other processes.
For example, the third moment (measuring
asymmetry) of the phenotype distribution can-
not evolve on these multilinear landscapes.

Moments

The set of moments of a distribution char-
acterize the shape of that distribution. The
even moments measure symmetrical spread
about the mean, and the odd moments measure
asymmetry. The higher the order of a particu-
lar moment, the more sensitive it is to outliers.
Throughout this discussion, we will sometimes
come across “higher” (greater than second) mo-
ments of the distribution of underlying varia-
tion. Because nearly all evolutionary theory is
couched in terms of the mean (first moment)
and variance or covariance, it is worth briefly
discussing why we need to consider higher mo-
ments in any discussion of the evolution of ge-
netic architecture.

One rule of evolution is that if we want to cal-
culate the change over time in the nth moment
of the distribution of phenotypes, we need to
know the current (n 4 1)st and higher moments
(Rice 2004b chap. 6; this fact follows from Price
1970). When we model directional phenotypic
evolution, we are studying the change in the
mean (first moment) of the phenotype distri-
bution; we thus can model directional evo-
lution, at least approximately, by considering
only the variance of the current population
distribution.

Most processes implicated in the evolution
of development and genetic architecture in-
volve selection to change more than just the
mean phenotype in a population. Modeling
the evolution of canalization requires that we
consider the fourth moments of the distribu-
tion of underlying variation; the same goes for
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the evolution of genetic covariance. Selection
to change the overall degree of epistasis or to
change the curvature of a reaction norm acts
on the sixth moment (Rice 2004b). If we ac-
cept that selection for canalization, modular-
ity, and phenotypic plasticity are among the
important factors influencing the evolution of
genetic architecture, then we clearly cannot ig-
nore these higher moments. Some models have
addressed the evolution of phenotypic variance
without appearing to involve higher moments
(e.g., Lande & Arnold 1983; Rice 1998). This
approach is possible because these models as-
sume a normal distribution of variation, and
one property of the normal distribution is that
all higher moments can be written in terms of
the variances and covariances. Most distribu-
tions do not have this property, though, so these
models can lead to substantial errors if the ac-
tual distributions that we are dealing with in
nature are not exactly normal.

Consider the two distributions in Figure 2.
These two distributions have the same vari-
ance and so would respond the same to di-
rectional selection on an uncurved landscape.
However, because neither is a normal distribu-
tion, the higher moments are not constrained
to be functions of the variance. In fact, the sixth
moment of the distribution in Figure 2B is 10
times larger than the sixth moment of the distri-
bution in Figure 2A. Thus, if we are interested
in the evolution of phenotypic plasticity, selec-
tion to change the curvature of a reaction norm
would be 10 times stronger for the population
in Figure 2B than for the one in Figure 2A. This
fact would be missed if we considered only the
variance.

General Models and Dynamic
Sufficiency

Our having to always look at higher mo-
ments to study the evolution of a particular
moment brings up another issue relating to the
use of phenotype landscape models. I refer to
these models as being “general” because they
can be applied to any evolving developmental
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Figure 2. Two distributions with the same mean
but different sixth moments.

system, regardless of the kinds of interactions
involved between genes and the environment,
the distribution of variation within a popula-
tion, or the kind of selection acting on the sys-
tem. This does not mean, though, that they
answer all our questions. One reason for this
is that we can use the most general phenotype
landscape models only to calculate what will
happen over one generation; they cannot be
iterated indefinitely. Given the population dis-
tribution in generation ¢, we can calculate the
mean in generation ¢ + 1 only by using at least
the variance in generation ¢. If we then want
to calculate the mean in generation ¢ + 2, we
need the variance in generation ¢ 4 1, but this
can be found only if we know at least the third
moment in generation ¢. Therefore, we can it-
erate our model forward through time only if
we specify all the moments in the current gen-
eration, which is not practical. These models
are thus not dynamically sufficient.

If we assume that all distributions relevant to
our system are multivariate normal, then our
problem is solved because all the higher mo-
ments are functions of the second moments,
so we can calculate them all. Applying this as-
sumption makes phenotype landscape models

dynamically sufficient (Rice 1998). As I argued
earlier, though, this approach rapidly yields in-
correct answers (and misleading conclusions)
when we are dealing with real populations,
which are never exactly normally distributed.
Although models that can be iterated indefi-
nitely are clearly useful as descriptions of spe-
cial cases, and allow us to investigate the types
of dynamical behavior that evolution can ex-
hibit, they are never truly general in the sense
of applying to any evolving system.

Modifier Models

Modifier models focus on a few loci (usually
two or three) in which one locus acts as a mod-
ifier of the expression of the others. Modifier
models have been used to study the evolution of
dominance and of recombination (Feldman &
Karlin 1971; Feldman & Krakauer 1976; Feld-
man et al. 1997). In modifier models, genotypes
map directly to fitness, skipping over the inter-
vening phenotype. The term epistasis, as used in
these models, thus refers to nonadditive contri-
butions of loci to fitness. Therefore, even genes
that contribute additively to two different traits
may be said to interact epistatically if the two
traits contribute nonadditively to fitness. The
modifier approach has been combined with the
multilinear model approach by Kopp and Her-
misson (2006). This method allows including
more than three loci by assuming a specific
kind of interaction among loci.

Because they borrow the well-established
methods of two-locus population genetics,
modifier models are good for studying the role
that linkage and recombination may play in
the evolution of genetic architecture. Recent
applications of modifier models include Masel’s
(2005) study of the evolution of capacitance and
Liberman and Feldman’s (2005, 2006) studies
of the evolution of epistatic interactions. Be-
cause modifier models deal with a relatively
small number of discrete genotypes, they are
good for dealing with discontinuities in the
mapping from genotype to fitness.
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Functional Mapping Models

The approaches discussed above tend to fo-
cus on one phenotypic trait, influenced by
many loci. When multiple traits are considered,
they are represented by a vector of values (Rice
2002b). Development, however, is a continu-
ous process, and sometimes the “trait” that we
are interested in is actually the growth process
itself. The functional mapping approach (Ma
et al. 2002; Wu et al. 2002; Wu & Hou 2006)
deals with this problem by focusing on an onto-
genetic trajectory. The ontogenetic trajectory,
an idea borrowed from models of heterochrony
(Alberch et al. 1979; Rice 1997, 2002a), is a plot
of some phenotypic trait as a function of time
or of another trait.

Earlier methods for analyzing ontogenetic
trajectories simply compared the shapes of dif-
ferent trajectories, making no attempt to map
the shape of these curves to underlying genetic
processes. This approach can provide some
limited insight into developmental evolution.
Specifically, we can test whether or not a par-
ticular evolutionary transformation could have
come about as a result of uniformly changing
the rate, duration, or timing of developmental
processes (Rice 2002a). Although changes of
this sort (heterochrony) do sometimes appear
to be important, they represent only a small
subset of all of the ways in which development
can change.

Functional mapping models greatly increase
the utility of ontogenetic trajectories by param-
eterizing them in such a way that we can apply
quantitative traitlocus (QTL) methods to them.
By using some general assumptions about un-
derlying physiology, this approach allows us to
draw much richer conclusions from ontoge-
netic trajectories that do not fit the restrictive
conditions of heterochrony.

Artificial Gene Networks

The artificial gene network approach is pri-
marily computational, rather than analytical.
Such studies generally emphasize computer
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simulations, the results of which are inter-
preted after the fact, rather than predictions
based on the analysis of equations. Some ana-
lytical results can be obtained, though, espe-
cially for the earliest kinds of gene network
studies.

A widely used approach to studying artifi-
cial gene networks was devised by A. Wag-
ner (1996). Models of this type posit a popu-
lation of genetic networks, each designed to re-
semble a set of transcription regulation genes.
In each generation, recombination and muta-
tion were simulated within each network, and
then a selection process was imposed favoring
those networks closest to a defined optimum.
Wagner’s simulations showed that if there is
epistasis in the networks, then the structure of
the networks did evolve to become increasingly
canalized. This type of simulated gene network
has been used more recently by Siegal and
Bergman (2002), to study the evolution of ge-
netic architecture under different kinds of stabi-
lizing selection, and by Azevedo et al. (2006), to
study the consequences of sexual versus asexual
reproduction.

General Results from Theoretical
Studies

The methods outlined above have been used
to investigate a wide range of questions. I now
consider some of the major results.

Single-trait Distributions—Canalization
and Capacitance

Canalization refers to buffering of phenotype
against underlying genetic or environmental
variation. This phenomenon (also referred to
as “robustness”) has received extensive atten-
tion from researchers, and it was the desire to
model the evolution of canalization that moti-
vated much of the early development of mod-
ern theories for the evolution of development
and genetic architecture (Wagner 1996; Wag-
ner ef al. 1997; Rice 1998, 2000; see reviews in
de Visser et al. 2003 and Flatt 2005).
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Canalization is generally thought to evolve in
response to stabilizing selection, defined here as
selection to reduce phenotypic variance (Rice
2004b). We can visualize the process as evolu-
tion of a population toward parts of the pheno-
type landscape that minimize phenotypic vari-
ance. If the underlying factors are uncorrelated
and have equal variances, then points of max-
imum canalization for a particular phenotypic
value are points of minimum slope along the
contour corresponding to that value. However,
changing the shape of the distribution of un-
derlying variation will change the position of
points of maximum canalization (compare pop-
ulations A and B in Fig. 3). Points of maximum
or minimum canalization along a contour oc-
cur wherever the vector Q ; 9 (from Equation 1)
is normal to the contour line.

Nearly all analytical models that incorporate
nonadditive interactions between loci (Wagner
et al. 1997; Rice 1998; Proulx & Phillips 2005)
or between genes and environmental variables
(Gavrilets & Hastings 1994) exhibit some sort
of canalization under stabilizing selection. The
simplest genetic models focus on variation re-
sulting from mutation, but in fact variation re-
sulting directly from mutation is probably less
relevant to developmental evolution than are
other sources of variation, such as recombina-
tion, migration, and environmental fluctuation.
Selection is efficient at reducing variation re-
sulting directly from mutation, so the response
of a population to selection to reduce variation
is likely to be a rapid change in the mutation—
selection equilibrium rather than a restructur-
ing of genetic architecture (Wagner et al. 1997,
Rice 2000).

Selection acts on the entire distribution of
variation in a population, and this distribution
may look different from the distribution of mu-
tational effects alone. Hermisson et al. (2003)
used a multilinear model to study the conse-
quences of allowing the distribution of addi-
tive genetic variation to evolve as a population
moves over a phenotype landscape. They found
that if different underlying factors have differ-
ent mutation rates, then at mutation—selection
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U
Figure 3. Two populations at points of maximum
canalization along their contour, as determined by

the shape of the landscape and the distribution of
underlying variation.

equilibrium the population distribution tends
to elongate along the axis corresponding to the
underlying factor with the highest mutation
rate. This effect shifts the point of maximum
canalization away from the point of minimum
slope and yields an equilibrium state resem-
bling the population at point B in Figure 3 (the
landscape in Fig. 3 is in fact a multilinear land-
scape). Significantly, the equilibrium was not at
a point that minimized mutational variance.
Several simulated gene network studies have
demonstrated that canalization can evolve
stlico. A. Wagner (1996) found canalization
around an optimum regulatory network. Sie-
gal and Bergman (2002) used a similar simu-
lation approach to study cases in which there
was no optimum phenotype but rather just se-
lection to minimize variance among one’s de-
scendants. This study found that genetic archi-
tecture evolves to minimize phenotypic varia-
tion even when there is no single “best” phe-
notype to be canalized. There has been some
confusion about this work resulting from dif-
ferent uses of the term stabilizing selection. Siegal
& Bergman define stabilizing selection as “selec-
tion for a particular optimum gene expression
pattern.” Therefore, they interpret their results
as showing that canalization can evolve without
stabilizing selection. This definition of stabilizing
selection 1s consistent with that given in many in-
troductory texts, butitis not the same as the def-
inition used in most of the evolutionary genetics
literature, where stabilizing selection 1s defined as
selection to reduce phenotypic variance and is
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captured mathematically by the second partial
derivative of fitness with phenotype [or the par-
tial regression of fitness on (¢ — ¢)?] (Lande &
Arnold 1983; Rice 1998; Rice 2004b). A popu-
lation may thus experience stabilizing selection,
with a corresponding evolution of canalization,
even when it is not near an optimal pheno-
type (Rice 1998). Under this definition, Siegal
& Bergman’s simulations imposed stabilizing
selection within each lineage, so their result is
exactly in line with prior predictions.

Azevedo et al. (2006) used simulated gene
networks to compare the evolution of genetic
architecture in asexual and sexual popula-
tions. They found that “mutational robustness”
(canalization against mutational variation)
evolved in both sexual and asexual populations
when mutation rates were high but only in sex-
ual populations when mutation rates were low
or mutation was excluded. The key to this ob-
servation is that gene networks in sexual pop-
ulations underwent recombination, whereas
those in asexual populations did not. Canal-
ization thus evolved primarily in response to
underlying variation produced by recombina-
tion. This effect still registered as “mutational
robustness,” meaning that the genetic architec-
ture that buffered against recombination varia-
tion also buffered against mutational variation.

The phenomenon of a system that is buffered
against one source of underlying variation also
being buffered against other sources of underly-
ing variation has been called congruence (Ancel
& Fontana 2000). Congruence is usually dis-
cussed in the context of comparing environ-
mental canalization with mutational canaliza-
tion and has been seen as important because of
the limitations on mutational canalization dis-
cussed earlier. However, as the above example
makes clear, mutation is not the only source
of genetic variation. In addition to recombina-
tion, mutation, and environmental variation,
the phenotypic (and genetic) variation within
a local population is influenced by migration
(Proulx & Phillips 2005). All these processes
contribute variation that spurs selection for
canalization.
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Canalization clearly can evolve, and it does
so in simulated genetic systems. Exactly how
important selection for canalization is in struc-
turing development in natural populations,
though, is less clear. Other processes, such as
selection for a particular covariance between
traits (discussed later), also modify development
and will tend to pull populations away from
points of maximum canalization. Also, depend-
ing on the structure of the landscape, achieving
maximum canalization for multiple traits at the
same time may not be possible.

One observation that was long thought to
provide evidence for canalization is that pop-
ulations often express increased heritable vari-
ation after being perturbed either genetically
(such as through the introduction of new alle-
les of large effect) or environmentally. In fact,
though, several processes can cause variation
to increase after perturbations even if the trait
was not initially canalized (Goodnight 1988;
Cheverud & Routman 1996; Hermisson &
Wagner 2004).

A more direct way to assess whether genetic
architecture is likely to have been structured by
selection for canalization (or some other pro-
cess) would be to reconstruct the phenotype
landscape underlying a trait of interest. The
most direct way would be to use a mechanis-
tic model for development of the trait. Nijhout
etal. (2006) recently used this approach for body
size in Manduca. They drew on empirical studies
to identify three underlying factors that jointly
are sufficient to determine body size, and they
calculated the function that maps these traits
to size; this function is a phenotype landscape.
This is an important approach that will surely
become more common as we learn more about
the mechanics of different developmental pro-
cesses. Even with such a landscape, though, we
cannot tell if a population is at a point of maxi-
mum canalization without further information
about the distribution of variation of the under-
lying factors.

There is another approach to reconstruct-
ing phenotype landscapes that does not require
mechanistic knowledge of development and, at
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least approximately, scales the landscape ac-
cording to the distribution of variation in each
underlying factor. Regression-based QQT'L anal-
ysis (Visscher & Hopper 2001; Feingold 2002)
basically involves constructing a multivariate
regression of a phenotypic trait on a set of
markers distributed throughout the genome.
In most regression-based Q'T'L studies, the co-
efficients of this regression are tested against a
sampling distribution, and those markers corre-
sponding to statistically significant coefficients
are reported as putative Q' T'Ls. The entire anal-
ysis, though, effectively estimates the pheno-
type landscape, for which the individual QTLs
play the roles of underlying factors. There are
three points along each axis, presumably cor-
responding to different dosages of an allele at
some locus closely linked to the marker.

Because such analyses generally start by im-
posing strong divergent selection on different
strains and then produce inbred lines with ex-
treme phenotypes, the original population dis-
tribution probably sat near the middle of the re-
constructed landscape. The presence of a point
of minimal slope in this region, although not a
conclusive demonstration, is at least consistent
with the hypothesis that the genetic architec-
ture of that trait has been shaped by stabilizing
selection. By contrast, if no point of minimum
slope is found within the range of variation in
the population, then selection for robustness
alone is unlikely to explain the observed genetic
architecture.

Figure 4 illustrates this approach by using
data from Shimomura et al. (2001) on QT'Ls in-
fluencing circadian rhythms in mice. The land-
scape in Figure 4 has a saddle point near the
center of the graph. Saddle points are points
of zero slope at which the surface curves away
positively in some directions and negatively in
others. A population sitting near such a point is
thus well canalized. These data are thus consis-
tent with the hypothesis that the genetic archi-
tecture of this trait was substantially structured
by stabilizing selection. The specific trait in this
example, dissociation, measures the degree to
which different parts of the circadian cycle are
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Figure 4. (A) Phenotype landscape for a trait
relating to circadian rhythms in mice, reconstructed
from data in Shimomura et al. (2001). (B) A
quadratic surface fit to the data in panel A.

decoupled from one another. This value is near
zero in the original population and is something
that is probably always under strong stabilizing
selection (it is generally maladaptive to have no
connection between when an organism goes to
sleep and when it wakes up). It is thus not sur-
prising that this trait behaves as though it is well
canalized.

Adaptation of Higher Moments

Selection could in principle act to change
the third moment of a phenotype distribution
(measuring the degree of asymmetry of the
distribution) by moving the population to re-
gions of the phenotype landscape with different
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average curvature. Though we have no special
name for this sort of selection, it will happen
anytime that fitness drops off more steeply on
one side of an optimum phenotype than on
the other side. Such “skewing” selection should
modify genetic architecture by pushing a pop-
ulation toward regions of the phenotype land-
scape at which the mean curvature is high.

Figure 5 shows a landscape that exhibits ex-
actly the geometry that we would expect if there
has been selection to skew the phenotype dis-
tribution (data from Shimomura et al. 2001).
Unlike the saddle point in Figure 4, the surface
in Figure 5 curves in the same way in all direc-
tions. As a consequence, the mean curvature is
nonzero, meaning that a symmetrical distribu-
tion of underlying factors will produce an asym-
metrical phenotype distribution. One hint that
we have a reasonable picture of this phenotype
landscape is that the distribution of this trait
in the I'2 generation of mice is in fact strongly
negatively skewed (Fig. 5C). Though not an in-
dependent test of the data (these are the mice
from which the data in the figure came), this
finding at least confirms that our reconstruc-
tion of the landscape from nine points is not far
off the shape of the actual surface.

That this trait has evolved to a place on
its phenotype landscape that should produce
a skewed phenotype distribution might be
fortuitous—there is also a region of very low
slope near the center of the figure. In fact,
though, this is a trait for which we should ex-
pect selection to favor a skewed phenotype dis-
tribution. The phenotypic trait represented in
Figure 5, “phase,” measures the time at which
mice wake up relative to when it gets dark
(which is when wild mice begin foraging). A
phase value of zero means that the mouse
awakes precisely when the lights go off, a nega-
tive value means that the mouse wakes up early,
and a positive value means that it awakes after
dark. Foraging studies suggest that, at least for
nocturnal desert rodents, there is a substantial
cost to foraging later at night because resources
have been depleted by early foragers (Kotler
et al. 1993; Brown et al. 1994). Waking up late
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Figure 5. (A) Phenotype landscape for the trait
“phase” (discussed in the text) reconstructed from the
same source as Figure 4. (B) BesHit cubic surface
corresponding fo data in panel A. (€) Distribution of
the trait among the F2 progeny.

l,

thus probably carries a substantial fitness cost.
By contrast, waking up early does not impose
such a cost; individuals simply wait until dark to
begin foraging (Shimomura et al. 2001). There-
fore, it is plausible that the genetic architecture
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of this trait has been shaped by selection to both
minimize phenotypic variation and to skew, in
the direction that is least damaging, what vari-
ation remains.

This method of constructing phenotype
landscapes has some serious limitations. We are
constructing the landscape by using only three
points along each axis, which is not particularly
good resolution. Therefore, we must compare
the observed I2 phenotype distribution with
what we would predict from our reconstructed
landscape (Fig. 5). Also, most methods of QTL
analysis involve selecting different strains for
different extreme phenotypes and then cross-
ing these. We can thus view a slightly larger
region of the phenotype landscape than was
inhabited by the original population. Unfortu-
nately, it also means that all information about
the distribution of variation in the original pop-
ulation is lost.

That the extreme phenotypes crossed to gen-
erate the data were derived from variation in an
initial population means that there is some cor-
respondence, though not perfect, between the
scaling of the axes on our reconstructed land-
scape and the amount of variation that was ini-
tially present in the population. Unfortunately,
strong selection followed by inbreeding makes
it impossible for us to know whether the under-
lying factors were initially correlated with one
another (i.e., if the alleles at the loci in question
were in gametic equilibrium or not). Some of
these problems could perhaps be alleviated by
noting the patterns of variation among extreme
phenotypes in the population before selection
and inbreeding.

The other side of canalization is capaci-
tance, the expression—when a population ex-
periences a new selection regime—of new
heritable phenotypic variation. The term ca-
pacitance refers to the fact that the exposure of
such variation could facilitate adaptive evolu-
tion and raises the possibility that development
and genetic architecture could be structured
to buffer phenotype under stabilizing selection
and then abruptly express new heritable varia-
tion under conditions of directional or disrup-
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tive selection. Capacitance could arise in two
different ways. In one scenario, an environ-
mental change (or other perturbation) causes
genetic variation that is already present, but
not expressed, to suddenly be expressed as phe-
notypic variation. In the second scenario, the
perturbation causes the production of new ge-
netic variation.

The phenomenon of capacitance actually
arises easily from a wide range of models of
developmental evolution and genetic architec-
ture (Bergman & Siegal 2003; Hermisson &
Wagner 2004; Masel 2005). Furthermore, the
expression of novel variation when a popula-
tion is stressed has been observed in several
taxa (True & Lindquist 2000; Fares ez al. 2002;
Queitsch e al. 2002). Although this expression
of variation may facilitate adaptive evolution, it
does not follow that these systems have evolved,
wholly or in part, from selection for evolvabil-
ity. As noted above, the expression of varia-
tion is expected when a canalized system is
disrupted and is a common occurrence even
in noncanalized systems that involve substan-
tial epistasis. I'urthermore, error-prone DNA
repair increases mutation rates when a popu-
lation is stressed, but this is probably because
error-prone repair is better than no repair at
all, rather than selection to produce variation.

Though most instances of capacitance are
probably by-products of genetic architecture
and DINA repair systems, it is in principle pos-
sible for at least a limited kind of capacitance to
evolve as a direct result of selection for variabil-
ity. Masel (2005) used a modifier model to show
that selection can lead to the fixation of modi-
fier alleles that express variation at an optimal
rate.

Multiple Trait Distributions—Modularity,
Correlation, and Entanglement

Adaptation of an entire organism requires
that different traits be able to evolve indepen-
dently of one another. If any change in any un-
derlying factor influenced every trait, then there
would be no such independence and adaptive
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Figure 6. Two linear landscapes. Gradient vec-
tors point uphill on their corresponding landscapes.
The angle between these vectors determines the cor-
relation between traits.

evolution would be effectively impossible. This
problem is avoided if the genetic architecture
allows suites of traits that function together to
vary independently of one another. Along with
canalization, modularity (especially as it relates
to evolvability) is among the principal motiva-
tions for research into the evolution of genetic
architecture (Hansen 2006).

Modularity is sometimes taken to imply that
different sets of genes influence different mod-
ules (Wagner & Altenberg 1996). This infer-
ence is not necessarily true, though, because
there can be evolutionarily independent mod-
ules that are influenced by many of the same
genes. The genetic covariance between two
traits is a function of the distribution of un-
derlying variation and the genetic architecture
that maps that variation to phenotypic vari-
ation. In an additive system (i.e., no epista-
sis) with underlying factors distributed inde-
pendently, the genetic covariance between two
traits is determined by the orientation of the
two phenotype landscapes (Fig. 6). If the un-
derlying factors have equal variances and no
covariance, the correlation between two traits
is simply cor(¢p;, ¢2) = cos(®), where 6 is the
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Figure 7. Two cases in which the correlation
between the two traits is zero.

angle between the two gradient vectors (Rice
2004a).

Figure 7 shows two cases in which two dif-
ferent traits are genetically independent of one
another. In Figure 7A each trait is influenced
by a different underlying factor, whereas in
Figure 7B both traits are influenced by the same
two factors. Clearly, though, the traits in case
B are just as independent as are those in case
A; furthermore, there are an infinite number
of possible scenarios in which both underlying
factors contribute to both traits, but the traits re-
main independent. What matters is the relative
orientation of the two phenotype landscapes. In
fact, there is no reason to expect cases such as
that in Figure 7A, where traits are independent
because they are influenced by nonoverlapping
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sets of genes, are the norm. Though the
two cases In Figure 7 both exhibit zero
covariance between the traits, they may not
be identical with respect to evolvability. In the
example in Figure 7B, each trait can change as
a result of mutations in either underlying fac-
tor, meaning that each presents a larger target
for mutations than do the traits in Figure 7A,
each of which can be influenced by mutations
in only one underlying factor. Though more
mutations influence each trait in the second
case, those mutations have a smaller effect than
in the first case; the total mutational variance
should thus be the same. Having a shorter wait-
ing time until some mutation (albeit a small one)
comes along, though, could influence evolvabil-
ity. Supporting this claim, Hansen (2003) found
that in simulations, evolvability was not maxi-
mized in systems with minimal pleiotropy.

Some studies based on simulated gene net-
works have suggested that selection for evolv-
ability will in general favor increased modu-
larity and decreased epistasis for fitness be-
tween different loci (Pepper 2003, Altenberg
2004). Using a modifier model, Liberman and
Feldman (2006) showed that this result does
not follow when loci are sufficiently closely
linked. This outcome is not surprising when
we note that recombination, which is an ex-
plicit part of Liberman and Feldman’s model,
is another process that reduces evolvability,
here by actually destroying potentially adaptive
variants.

The other side of modularity is developmen-
tal covariance between traits. Such covariance
reduces the ability of traits to evolve indepen-
dently but may increase the probability that
they covary in adaptive ways. In quantitative
genetics, patterns of covariation between traits
are traditionally summarized using an additive
genetic covariance matrix, otherwise known as
a G matrix. The G matrix is an estimator of
the expected parent-offspring covariance ma-
trix, which is what determines how selection
influences multivariate evolution in a system in
which all phenotype landscapes are linear (Rice

2004b).

79

Classical quantitative genetics tended to treat
G matrices as fixed, but it is now universally ac-
cepted that patterns of genetic covariance can
and do evolve in natural populations. Jones et al.
(2003) used simulations to study the evolution
of G matrices under different conditions; they
found that the pattern of genetic covariation
1s stabilized when mutations have substantial
pleiotropic effects.

An important special case of evolution of
covariance between traits is the evolution of
phenotypic plasticity. Phenotypic plasticity has
traditionally been studied using quantitative ge-
netic models, treating either the value of a trait
in different environments (Via & Lande 1985)
or the reaction norm itself (Scheiner 1993) as
traditional quantitative traits (see Via et al. 1995
for a review). More recently, though, several
authors have begun to treat the evolution of
phenotypic plasticity as a problem within de-
velopmental evolution, either as a variation on
canalization (Debat & David 2001) or as a case
of the evolution of developmental covariance
(Rice 2004b, chap. 8).

The key to modeling the evolution of pheno-
typic plasticity as a kind of developmental co-
variance 1s recognizing that an environmental
variable can be both an underlying factor for
some phenotypic trait and, simultaneously, a
trait in its own right (albeit generally not a heri-
table trait). That an environmental variable can
be thought of as a phenotypic trait may seem
less odd when we recognize that we are saying
simply that the environment that an individual
lives in is one of the factors that, jointly with
the rest of its phenotype, determines its fitness.

Using this approach, Rice (2004b) showed
that selection on the slope of a reaction norm
involves two O vectors, one of which is the
same as the vector corresponding to canaliza-
tion (Q 19 in Equation 1 above) and the other
is a vector pointing in the direction of maxi-
mum sensitivity of the trait ¢ to the environ-
mental factor. The sum of these two vectors
moves the population precisely to the point on
the landscape corresponding to the optimal re-
action norm slope (assuming that such a point
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exists and 1s reachable). The evolution of re-
action norm slope thus does seem to contain
the term for the evolution of canalization as a
component. Rice also considered selection to
change the curvature (rather than the slope) of
a reaction norm and showed that this process
1s influenced by the sixth moment of the dis-
tribution of underlying variation, meaning that
outliers strongly affect the evolution of reaction
norm curvature.

Environment’s Role in Development
and Inheritance

Classical evolutionary theory tended to treat
the “environment” as something that influences
selection but that is separate from the genet-
ics or development of organisms. The exam-
ple above shows that it can be fruitful to treat
some environmental variables as part of the
process of development—and even as one of
the organism’s phenotypic traits (Rice 2004b).
Though in the simple model for the evolution
of phenotypic plasticity I treated the environ-
mental variable as nonheritable, often the en-
vironment really should be considered part of
the genetic architecture. Environmental factors
themselves may be heritable if parents influ-
ence the environment of their offspring (Laland
& Sterelny 2006). Furthermore, given that the
environment includes other organisms with
which an individual interacts, the environment
contains genes, some in close relatives. Wolf
(2003) demonstrated that taking into account
interactions with relatives can lead to substan-
tial changes in quantitative genetic parameters.

In fact, the environment can influence her-
itability even if no environmental parameters
are heritable. Consider a trait, ¢, that is a lin-
ear function of a genetic factor, u,, and an envi-
ronmental factor, u.. Now consider the trait in
both parents and their offspring. For simplicity,
assume that the genetic factor is passed on with
perfect fidelity (such as in an asexual haploid or-
ganism), but the environment experienced by
offspring is potentially different from the envi-
ronment of their parents; call the parent’s envi-
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ronment ., and their offspring’s environment
Ueo. We can now write the values of the trait in
parents (¢,) and offspring () as

d)p:
(l)o_

Ug + tep and

_ @

Ug T Ueco-

Rice (2004a) shows that for this simple case,
the regression of offspring phenotype on parent
phenotype (i.e., the heritability of ¢) is given by

Bo,p =h 2

var(ug) + cov(u,

Uep) + COV(Ug, Ueo) + COV(Uep, Uco)

(3)
The environmental factor clearly influences
heritability. Two of the terms in Equation 3
basically capture the heritability of the en-
vironment. The covariance between parental
genotype and offspring environment [cov(ug,
Ueo)] 1s expected to be important when par-
ents partially construct their offspring’s envi-
ronment, which is common among organisms
with parental care (Laland & Sterelny 2006).
The covariance between parent’s environment
and their offspring’s environment will be im-
portant in cases in which, for example, females
prefer to lay eggs in the type of environment in
which they were born.

The most surprising thing about Equation 3
is the presence of cov(ug, ucp), the covariance
between parents’ genotype and their environ-
ment, in both the numerator and denominator.
This term thus influences heritability even if
the offsprings environment is completely inde-
pendent of their parents’ environment. That
1s, if an environmental factor influences pheno-
type, and if there is any correlation between the
parents’ genotypes and the environments that
they experience, then heritability of phenotype
is altered even if the environmental factor itself
is not heritable (Schlichting 1989; Rice 2004a).
This example assumes only additive effects of
the genotype and the environment. If we allow
for any nonadditive interactions between any
of the underlying factors, then heritability can
evolve even in a constant environment with no
change in mean phenotype (Rice 2004b).

g’ﬂ
var(ug) + var(uep) + 2cov(ug, Uep)
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Epistasis and Genetic Covariance

If there are epistatic interactions between
the underlying factors, then the covariance be-
tween traits is no longer simply a function of
the angle between the gradient vectors (Rice
2004a). There are two important consequences
of this statement. First, correlation between
traits that is due in part to epistatic interac-
tions will change as the total amount of under-
lying variation in the population changes, even
if the shape of the underlying distribution re-
mains constant. Second, epistatic interactions
influence other joint moments of the phenotype
distribution, not just covariance. As a result, as-
sociations between traits resulting from epistasis
are likely to influence evolutionary dynamics in
ways that are undetectable to traditional quan-
titative genetic analyses.

One situation in which epistasis should have
significant consequences for phenotypic evo-
lution is the case of strongly developmentally
correlated traits. If the patterns of epistasis for
two strongly correlated traits are slightly dif-
ferent, the ability of the population to evolve
against the correlation will tend to be asym-
metrical. Figure 8 illustrates the consequences
of modifying by a small amount the pattern of
epistasis for one of two traits that are strongly
developmentally correlated. A slight difference
in curvature has little if any effect on the ability
of the population to respond to selection that
goes with the covariance (i.e., selecting to in-
crease or decrease both traits, if the covariance
1s positive) but creates substantial asymmetry in
the response to selection against the correlation
(antagonistic selection). This effect is most pro-
nounced when the two phenotype landscapes
nearly coincide with one another.

Because even highly correlated traits will
probably have at least slightly different genetic
architectures, the phenomenon of asymmetri-
cal responses to antagonistic selection should
be the rule, rather than the exception, in mul-
tivariate evolution. In fact, asymmetrical re-
sponses to antagonistic selection have been
noted for some time and recognized as de-

A

u,

Figure 8. Consequence of introducing differen-
tial curvature info a system of two traits that are
strongly correlated. The point marked (+ —) indicates
where the population would have to move to increase
trait 1 by one unit while decreasing trait 2 by one
unit. The point marked (— +) is the converse, the
point at which trait 1 is decreased, and trait 2 in-
creased, each by one unit. (A) These two points are
equidistant from the starting point, meaning that the
population could as easily evolve in one direction as
the other. (B) Differential curvature of the landscape
for trait 1 has substantially moved the point (— +),
meaning that it will require significantly more time to
evolve to decrease trait 1 and increase trait 2 than to
evolve the same phenotypic distance in the opposite
direction.

viations from quantitative genetic predictions
(Nordskog 1977; Scheiner & Istock 1991). Such
asymmetries appear in many studies, though
they are not always noted in the articles.
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Figure 9. Examples of asymmetrical responses to antagonistic selection. (A=C) Traits
are positively correlated, and the two trajectories represent the results of selecting against
the correlation. (D) Traits are negatively correlated, and two replicates are shown for each
direction. Data are from Nordskog 1977 (panel A), Bell & Burris 1973 (panel B), Rutledge
et al. 1973 (panel C), and Zijlstra et al. 2003 (panel D). Panels A-C are after Roff (1997).

Figure 9 shows four examples from diverse or-
ganisms.

Developmental Entanglement

The examples of an asymmetrical response
to selection suggest that traits can be associated
in ways that are not accurately captured by
covariance. Rice (2004a) used the term entan-
glement to describe the general case in which se-
lection to change some moment of a phenotype
distribution also leads to change in some other
moment. Genetic covariance, which causes se-
lection on the mean (first moment) of one trait
to influence the evolution of the mean of an-
other trait, is one kind of entanglement, but
there are many other ways in which the evolu-
tion of different traits can be linked.

Figure 10 shows a simple case in which two
traits are uncorrelated, so selection to change
the mean of one has no effect on the mean of the
other, but are nonetheless entangled such that
stabilizing selection on one changes the mean

of the other. Rice (2004a) provides an example
of three phenotypic traits that are entangled
such that directional selection on any one trait
changes the covariance between the other two
traits. Given the complexity of developmental
systems, forms of entanglement other than co-
variance between traits are probably common.

Drift

Nearly all theoretical research into the evo-
lution of development has focused on selection
as the process driving evolution. Drift undoubt-
edly plays a role, though, and may well be more
important in developmental evolution than it
is in the evolution of mean phenotypes. Rice
(1998) calculated the strength of canalizing se-
lection moving a population along a phenotype
contour and found that this force becomes weak
as a population approaches a point of maxi-
mum canalization. Furthermore, the point of
maximum canalization along a contour is a
function of the distribution of variation within
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Figure 10. Example of entanglement in which
traits 1 and 2 are uncorrelated, but selection to re-
duce the variance of trait 1 would cause directional
change in the mean of trait 2. The vectors V¢, and
Vo, point in the directions of maximum increase in
traits ¢ and ¢z, respectively. Stabilizing selection
on ¢ will push the population from point A toward
point B, where the landscape is less steep and there-
fore phenotype is more buffered against underlying
variation.

the population, which is likely to change be-
cause of random sampling if population size is
reduced. We thus expect that moderate-sized
populations, even if they are large enough for
selection to keep them near an optimal pheno-
type contour, may well drift along the contour
away from points of maximum canalization.
Such developmental drift on a curved land-
scape could facilitate speciation. Gavrilets
(2003) and Gavrilets and Gravner (1997) have
emphasized the significance for speciation of
“holey” adaptive landscapes. These are land-
scapes on which the regions of highest fitness
are notisolated peaks but rather form a network
of interconnecting ridges. This is exactly what
we expect for fitness landscapes over the space
of underlying factors (Rice 1998, 2000). Here,
the ridges of high fitness correspond to opti-
mal phenotype contours. Temporarily isolated
populations that drift away from one another
on an optimal contour can rapidly wind up on
opposite sides of a fitness “hole.” If such popu-
lations come back into contact (geographically,
not on the phenotype landscape), hybrids will
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not lie on the optimal contour and will be se-
lected against.

Conclusion

We now have a fairly large catalogue of pro-
cesses that in principle can lead to the evolution
of development and genetic architecture. These
processes include all kinds of selection that act
to change the shape of the phenotype distri-
bution (e.g., selection for canalization, integra-
tion, phenotypic plasticity, and evolvability) as
well as drift in development that may yield no
change in mean phenotype. Most, if not all,
of these processes probably do influence de-
velopmental evolution in natural populations.
These phenomena—and others that are sure to
arise—suggest that we will need to make some
changes both in the ways that we gather data
and the ways that we build theories.

Most of the data used in traditional evo—
devo research comes directly from developmen-
tal biology. It is thus largely concerned with
specific genes that have large effects when mu-
tated in the lab and has little to say about the
distribution of genetic variation that actually
contributes to phenotypic variation in natural
populations. The details of the distribution of
underlying genetic and environmental varia-
tion are even more important to understand-
ing how the development of a trait evolves than
they are to understanding the evolution of trait
itself. Empirical research in evo—devo may thus
have to expand out of the lab and into the field
more than it has.

On the theory side: Phenotypic evolution-
ary theory has been dominated by quantitative
genetics, which was made tractable and use-
ful by minimizing the relevance of most of the
phenomena that this review has discussed. Sev-
eral innovative researchers have devised ways
to apply the concepts of quantitative genet-
ics to developmental evolution. However, the
presence of fourth moments in models for the
evolution of even simple phenomena such as
canalization, and the asymmetrical effects of
complex developmental entanglement, make it
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clear that a body of theory based on partition-
ing phenotypic variance is inadequate for cap-
turing the complexity of developmental evo-
lution. We thus face the task of building a
coherent and widely applicable mathematical
evolutionary theory that does not discount the
complexity that we now know to underlie es-
sentially all phenotypic traits.
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