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Development plays a critical role in structuring the joint offspring–parent phenotype distribution. It
thus must be part of any truly general evolutionary theory. Historically, the offspring–parent
distribution has often been treated in such a way as to bury the contribution of development, by
distilling from it a single term, either heritability or additive genetic variance, and then working
only with this term. I discuss two reasons why this approach is no longer satisfactory. First, the
regression of expected offspring phenotype on parent phenotype can easily be nonlinear, and this
nonlinearity can have a pronounced impact on the response to selection. Second, even when the
offspring–parent regression is linear, it is nearly always a function of the environment, and the
precise way that heritability covaries with the environment can have a substantial effect on
adaptive evolution. Understanding these complexities of the offspring–parent distribution will
require understanding of the developmental processes underlying the traits of interest. I briefly
discuss how we can incorporate such complexity into formal evolutionary theory, and why it is
likely to be important even for traits that are not traditionally the focus of evo–devo research.
Finally, I briefly discuss a topic that is widely seen as being squarely in the domain of evo–devo:
novelty. I argue that the same conceptual and mathematical framework that allows us to
incorporate developmental complexity into simple models of trait evolution also yields insight into
the evolution of novel traits. J. Exp. Zool. (Mol. Dev. Evol.) 314B, 2011. & 2011 Wiley-Liss, Inc.
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Most of the attention given to developmental evolutionary

biology has focused either on the evolution of developmental

processes themselves or on phenomena, such as novelty and

genetic assimilation, which seem to force us to acknowledge

development. My initial goal in this article is to consider how

developmental biology must ultimately be a part of the rest of

evolutionary theory. In other words, I aim to identify where

development necessarily enters into any truly general evolu-

tionary theory, even when we are not explicitly studying the

evolution of development per se. Having considered this broad

question, I will return to a more traditional concern of

evolutionary developmental biology—novelty—and discuss how

the same principles that link development to directional,

incremental, change can shed light on the evolution of novel

traits.

Offspring–Parent Distribution

I shall argue that the principle place where development

necessarily enters into evolutionary theory is in transmission

across generations. Specifically, developmental processes are

critical to evolutionary theory because they determine the

distribution of phenotypes among the offspring of an individual

(or pair of individuals) with a particular phenotype. Because

evolution is a population-level process, we are ultimately

concerned with the set of offspring distributions associated with

each parental phenotype in the population. We thus arrive at the

joint distribution of offspring and parental phenotypes (Fig. 1).

This distribution is a central element of any formal evolutionary

theory.

Transmission was long considered the domain of genetics, not

development. This, however, was an artifact of focusing on

alleles, which seem to be transmitted directly—without any
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intervention by development. Classical population genetics is

framed in terms of allele (or haplotype) frequencies, and genotype

is generally mapped directly to fitness. Of course, this mapping

includes (at least) two distinct parts: mapping genotype to

phenotype (largely the domain of development) and then

mapping phenotype to fitness (the domain of ecology, biome-

chanics, etc.). Because of the complexity of this mapping, though,

population genetics often takes it simply as a given, without

reference to the mechanics underlying why a particular genotype

has a particular fitness.

Quantitative genetics, by contrast, explicitly considers the joint

distribution of offspring and parent phenotypes. However, in most

cases, a single quantity is abstracted from the distribution. This

quantity is either a measure of heritability (the slope of the linear

regression of offspring on parents) or the ‘‘additive genetic variance’’

(the covariance between offspring and parents). Originally, quanti-

tative genetics was seen as an extension of multilocus population

genetics, made tractable by assuming many loci, each of small,

additive, effect. As a result, quantities such as additive genetic

variance (VA) and heritability (h2), were defined in terms of the

contributions to phenotype of individual loci. Under this definition,

the covariance between offspring and parents was seen as an

estimator of VA, which was assumed to be the real value of interest.

General Phenotype-Based Theories. Recently, there has been a

trend toward treating quantitative genetics as a first order

approximation to a general, phenotype-based, evolutionary

theory (Rice, 2004b; Heywood, 2005). Under this formulation,

what really matters is the offspring–parent distribution, and this

leads to a subtle but important shift in definitions: although

additive genetic variance and heritability were classically seen as

latent properties of an individual that could be estimated by the

relationship between offspring and parents, under phenotype-

based theories, they are defined by the offspring–parent

distribution. Specifically, heritability is defined as the regression

of expected offspring phenotype on midparent phenotype.

To see why the offspring–parent distribution plays such a

crucial role, we need to look at the basic equation underlying any

evolving system. We denote an individual’s phenotype by f and

the average phenotype of an individual’s offspring by fo (this is

the average phenotype of the offspring that the individual

actually produces; it is thus a random variable and is distinct

from the expected offspring phenotype, which is the expected

value of the distribution of possible offspring phenotypes). An

individual’s relative fitness (the number of descendants that it

leaves divided by the average number of descendants for all

individuals in the population) is denoted by O. Both fo and O are

random variables, meaning that they have distributions, rather

that specific numerical values (i.e. we cannot know ahead of time

exactly how many descendants an individual will leave or

exactly what they will look like; Rice, 2008).

The fact that mean offspring phenotype and fitness for an

individual have distributions, rather than fixed values, means

that we will be concerned with means, variances, and covariances

of these distributions. We will also, though, be concerned with

the means, variances, and covariances of various values across

individuals in the population. We thus need to distinguish

operations over random variables from operations over indivi-

duals in a population. Consequently, we will denote operations

over individuals in a population with straight symbols (such as �f
for the mean phenotype in a population, ½½2f�� for variance in f,

and ½½f; Ô�� for covariance between phenotype and expected

relative fitness), and operations over random variables with

angled symbols (such as ŵ for the expected fitness of an

individual), hh2wii for variance in an individual’s fitness

distribution, and hhh2;Oii for covariance between an individual’s

relative fitness and heritability of some trait).

Using this notation and defining �̂d as the expected difference

between mean offspring phenotype and mean parent phenotype

in the absence of selection, the most general description of

change in mean phenotype in a closed population (i.e. one with

no migration) is then (Rice, 2008)

cDf ¼ ½½cfo; bO��1hhfo;Oii1b�d: ð1Þ

The first term on the right in Equation (1) captures the change

due to deterministic associations between expected relative

fitness and expected offspring phenotype. The second term

captures the stochastic contributions, resulting from correlations

between relative fitness and heritability (the biological inter-

pretation of this term will be discussed below). The final term, �̂d,
captures change, such as that due to mutation or recombination,

that occurs in the process of reproduction.

The key thing to note for now is that parental phenotype, f,

does not appear anywhere on the righthand side of Equation (1).

What appears instead is offspring phenotype, fo. In other words,

what ultimately matters in evolution is the relationship between

the fitness of parents and the phenotype of their offspring (Frank,

’97; Rice, 2004b; Heywood, 2005). If we are to describe evolution

in terms of the relationship between fitness and parental

Phenotype of parents

Ph
en

ot
yp

e 
of

 o
ff

sp
ri

ng

Phenotype of offspring

Fr
eq

ue
nc

y

Individual parent
    (mated pair)

Population

Figure 1. Offspring distribution for an individual or mated pair and

offspring–parent distribution for a population.
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phenotype, we thus need a description of how the phenotypes of

offspring are derived from those of their parents.

Reemergence of Development

Much of quantitative genetics tacitly assumes that a single value

derived from the offspring–parent distribution is all that we need

to know to calculate evolutionary change, and that this value is

relatively consistent over time. If this were the case, it would be

reasonable to say that, although developmental processes clearly

underlie the phenotypic traits that we study, understanding

development would not improve our ability to model evolution

of those traits. Under this approach, heritability (or additive

variance) ‘‘screens off’’ development from evolution (Reichenbach,

’56), meaning that knowledge of how a trait develops would

provide no extra information not already contained in the

heritability value. In fact, though, there are a number of reasons

that fixed heritability alone is insufficient as a descriptor of

transmission. I will focus on two such reasons: the fact that the

relation between offspring and parents is often not linear and the

fact that heritability is a function of the environment.

The Relation Between Offspring and Parent Phenotypes is Often

Nonlinear. The idea that we can collapse transmission genetics

and development into a single term (either heritability or additive

genetic variance) is predicated on the assumption that the actual

relationship between expected offspring and parent phenotype is

linear. If this relationship is nonlinear, then not only are more

terms necessary to describe the response to selection, but also the

shape of the relationship becomes an object of study itself.

Figure 2 shows two examples of offspring–parent distributions

that appear to show significant nonlinear elements.

Though the majority of quantitative genetics studies do not

even consider the issue of nonlinear offspring–parent regression

(the two distributions in Fig. 2 are from articles that did not

mention the apparent nonlinearity in the data, reporting only that

the linear regression is significantly greater than 0). There is now

a substantial body of experimental and theoretical work

suggesting that the regression of expected offspring phenotype

on parent or midparent phenotype is often nonlinear; further-

more, this nonlinearity is sufficient to cause the response to

selection to differ notably from the predictions of linear models.

In one of the earliest attempts to experimentally evaluate the

adequacy of linear models, Clayton et al. (’57) found that,

although overall responses to selection on Drosophila were in

‘‘fair’’ agreement with expectations, they differed in some

important ways, including that the responses to upward and

downward selection were different. This phenomenon is often

taken as evidence that the offspring–parent regression is

nonlinear. Clayton et al. suggested that some of the unexpected

results could be owing to genetic idiosyncrasies of Drosophila

(and, in a classic case of advice that was not taken, suggested that

Drosophila ‘‘should therefore be used with care in experiments

intended for extrapolation to other species’’; Clayton et al., ’57;

p 150).

Other studies have confirmed that nonlinear offspring–parent

regressions are not unique to one trait in Drosophila, but in fact

appear in a variety of traits and organisms, including body

weight in mice (Nishida, ’72) and chickens (Shimizu and Awata,

’79), milk yield in cattle (Beardsley et al., ’50; Fuerst-Waltl et al.,

’98), and pupal weight in Tribolium (Meyer and Enfield, ’75), as

well as several traits in Drosophila (Gimelfarb, ’86; Gimelfarb and

Willis, ’94). Theoretical studies that have addressed the conditions

under which the offspring–parent regression is expected to be

nonlinear (Nishida and Abe, ’74; Robertson, ’77) suggest that the

phenomenon can arise readily, resulting from epistasis (Bradford

and Vleck, ’64; Gimelfarb, ’86) or differential contributions of

genetic and environmental factors (Robertson, ’77). Most

importantly, Gimelfarb and Willis (’94) showed that nonlinear

transmission in Drosophila can significantly alter the response to

selection and creates a situation in which the ‘‘realized

heritability’’ (the response to selection divided by the selection

differential) is a function of the strength of selection. This last

observation shows that a single heritability parameter, defined

before selection, is inadequate to describe evolution even in

characters such as body size and wing length. (It also suggests

that simply arguing that a large portion of phenotypic variance

can be assigned to additive genetic variance (Hill et al., 2008)

does not address the question of how nonlinearities influence the

response to selection.)

All this raises the question of how to expand our formal

theory to incorporate the nonlinearities that are clearly there.

Because heritability is defined as the slope of a linear regression

of expected offspring phenotype on parent phenotype, it is

tempting to simply substitute a nonlinear regression. Unfortu-

nately, the coefficients derived from a standard polynomial

regression are all functions of how many terms we include in the

polynomial. This means that the linear term in a quadratic
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Figure 2. Offspring–parent distributions with a clear nonlinear

component. (A) Growth rate in earthworms. (B) Tarsus length in

hybrid Buntings. The line is the best fit line using the orthogonal

polynomials in Equation (2). (Data in A from McElroy and Diehl,

2001, data in B from Ryan, 2001).
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regression (which includes both linear and second order terms) is

not the same as heritability (the sole regression term from a

purely linear regression), and that the linear term in a cubic

regression (which includes linear, second, and third order terms)

will be different from both of these. The coefficients of a standard

nonlinear regression thus cannot be assigned to distinct

biological interpretations. This is one of the things that has

hindered development of a formal theory of evolution with

nonlinear offspring–parent relationships.

One way around this problem is to regress expected offspring

phenotype on a series of orthogonal polynomials. These are

polynomials of increasing order (a zero order polynomial,

followed by a first, then a second, and so on) that are defined

by the distribution of parent phenotypes, such that changing the

regression of some variable on one of them has no effect on the

regressions on the others. The regression coefficient associated

with each polynomial thus does not change as we consider

successively higher order polynomials.

Orthogonality, for functions, is defined over a specific region.

In our case, the region of interest is the distribution of parental

phenotypes, which may take on nearly any form. Because of this,

we cannot use standard sets of orthogonal polynomials (such as

the Legendre polynomials used by Kirkpatrick et al. (’90) to model

growth trajectories), because these are defined over sections of

the real line, rather than arbitrary distributions of points.

Fortunately, we can construct a set of orthogonal polynomials

that are defined in terms of the distribution of parental

phenotypes. Denoting the nth central moment of the distribution

of parent phenotypes as ½½nf��, the first four orthogonal

polynomials for an arbitrary distribution of phenotypes are:

P0 ¼1

P1 ¼f

P2 ¼f
2
�
½½3f��
½½2f��

f� ½½2f��

P3 ¼f
3
� gf2

�
½½4f�� � g½½3f��
½½2f��

f1½½2f��g� ½½3f��

ð2Þ

where

g ¼
½½2f��½½5f�� � ½½3f��½½4f�� � ½½2f��2½½3f��
½½2f��½½4f�� � ½½3f��2 � ½½2f��3

ð3Þ

The set of all such orthogonal polynomials is the basis of a

function space that, by virtue of being defined by the distribution

of variation within a population, can be thought of as the natural

space in which to study population level processes, such as

heritability and selection. A variant of P2 was presented in the

Appendix to Lande and Arnold (’83), but has not been

subsequently incorporated into quantitative genetics theory.

We can now write expected offspring phenotype (cfo) as a

function of these polynomials. Because P1 5f, the regression of

cfo on P1 is just the expected heritability, ĥ2, denoting the

regression of expected offspring phenotype (cfo) on polynomial Pi

as (and noting that, by convention, , which is the

expected value of the average offspring phenotype), we now

have:

ð4Þ

Substituting Equation (4) into Equation (1) gives us an

equation for evolutionary change written in terms of the full

shape of the offspring–parent distribution:

ð5Þ

The three lines on the right in Equation (5) are just the

three terms on the right in Equation (1), the first two terms

expanded to write offspring phenotype in terms of parental

phenotype. The boxed terms in Equation (5) are equivalent to the

standard model of population and quantitative genetics (½½f; bO��
is equal to the ‘‘selection differential,’’ often denoted S, so

considering just the first term on the right yields the standard

‘‘breeder’s equation’’).

The unboxed terms in Equation (5) represent the consequences

of nonlinear offspring–parent relationships and stochasticity.

An important thing to note is that the higher order polynomials

also contain first order terms (P2 and P3 in Equations (2)

each contain terms involving f raised to the first power). This

means that nonlinearities in the offspring–parent regression

influence the response of the population even to the directional

component of selection (captured by the linear relationship

between bO and f).

To see this, consider just the first two terms in Equation (5)

(corresponding to a case in which expected offspring phenotype

is a deterministic quadratic function of parent phenotype). Using

the equation for P2 from Equation (2) and rearranging yields:

ð6Þ

Note that the linear selection differential (½½f; bO��) is no longer

multiplied only by the heritability, but also by , which

measures the curvature of the offspring–parent function.

Including higher order P functions would add still more first

order terms. Thus, accurately predicting even the simplest

selection response requires knowing the full shape of the

offspring–parent regression. Note that a model that assumes that

phenotype is exactly normally distributed (as most quantitative

genetics does) would miss this term, even if it allowed a

curvilinear offspring–parent relation, because this extra term is

also multiplied by ½½3f�� (the third central moment of the

distribution of parent phenotypes) and the third central moment

of the normal distribution is zero.
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The response to selection thus depends on the full shape of the

offspring–parent distribution. Because understanding why this

distribution has the form that it does will almost always require

some understanding of the developmental processes underlying

the trait of interest, it is much harder to sweep development

under the rug than it was when we were considering only a single

value to capture the entire offspring–parent distribution. Note

that the traits that we are discussing here, body weight, wing

length in Drosophila, growth rate in Annelids, and bone length in

Birds, are not the sorts of traits that evo–devo advocates tend to

hold up as examples. These are the sorts of traits used in

introductory texts to illustrate the use of the breeder’s equation.

Upon close examination, though, they all show complexity that

simultaneously reduces the value of linear models and prompts

the question of why these particular developmental processes

produce these distributions.

Heritability is a Function of the Environment. Even if we consider

only heritability in the traditional sense (the linear regression of

offspring on parents), this value often changes if the environment

in which organisms develop changes (Merila and Sheldon, 2001;

Charmantier and Garant, 2005; Wilson et al., 2006; Husby et al.,

2011). By itself, stochastic variation in heritability does not

influence expected change in mean phenotype (Rice and

Papadopoulos, 2009). This changes, though, when variation in

heritability is correlated with variation in fitness (Rice et al.,

2011). Figure 3 shows how adaptive evolution can be altered by

covariation between heritability and selection (the figure is

modified from Rice et al., 2011). In this example, a population

encounters two different environments at random, with very

different optimal phenotypes in different environments. When

heritability is the same in each environment (h2
1 ¼ h2

2 ¼ 0:5 in

the example), then the population evolves to an intermediate

phenotype that does moderately well in both environments. By

contrast, when heritability is correlated with environment, such

that h2
1 ¼ 0:6 in environment 1 while h2

2 ¼ 0:4 in environment 2,

the population evolves to an equilibrium at which it is well

adapted to environment 1, but quite poorly adapted to environ-

ment 2. This is despite the fact that the organisms encounter

environment 2 half the time and have appreciable heritability in it

(h2 5 0.4 is well within the range of observed heritability values).

The effects of covariation between selection and inheritance

emerge from the second term on the righthand side of

Equation (1), hhfo;Oii. This is the average, across the population,

of the covariance within an individual between the mean

phenotype of that individual’s offspring and the number of those

offspring produced. Rice et al. (2011) show that, under the standard

quantitative genetic assumption of a linear offspring–parent

regression (but making the slope a random variable), this term

becomes ½½f; hhh2;Oii�� (this is the first term on the second line in

Equation (5)). This is the covariance, across the population (square

brackets), between individual phenotype and the covariance, within

an individual (angle brackets), between that individual’s relative

fitness and the heritability experienced by the population (note the

need to distinguish the two kinds of covariances).

There is good reason to expect covariation between selection

and heritability, because both are strongly influenced by the same

thing—the environment in which the organisms in question develop

and function. It is well established that offspring phenotype is often

influenced by environmental factors; this is the basis of phenotypic

plasticity. That the environment also causally influences fitness is

the basis of the very idea of selection. The key here is to note that if

any of the same environmental factors influence both offspring

phenotype and the direction of selection, then we expect a

correlation between selection and transmission of the type shown

in Figure 3. There is also some direct empirical evidence suggesting

covariation between selection and heritability. Heritability is often

reduced in environments in which the organisms are stressed, and

thus are likely to have reduced fitness (Charmantier and Garant,

2005; Wilson et al., 2006). Similarly, a recent study of breeding in

Great Tits (Husby et al., 2011) found a significant correlation, across

years, between selection differentials and heritability.

As with nonlinearity of the offspring–parent regression, the fact

that inheritance correlates with the environment immediately

suggests the question of why it does so. Because the basic

machinery of genetic transmission is relatively insensitive to

environmental variation while development is sometimes strongly

influenced by it, this seems to be another case in which

development finds its way into even simple (and in this case

linear) evolutionary models.

Novelty

Unlike the examples discussed above, understanding the evolu-

tion of novel traits has long been seen as requiring an explicit
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Figure 3. Illustration of the consequences of covariation between

heritability and selection. Heritability in environments 1 and 2 are

designated h2
1 and h2

2, respectively. The arrows indicate the

evolutionary equilibrium phenotypes when heritability is a constant

(h2
1 ¼ h2

2 ¼ 0:5) and when heritability covaries with the environ-

ment such that h2
1 ¼ 0:6 and h2

2 ¼ 0:4.
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consideration of development. Biologists have proposed a

number of different criteria for identifying evolutionary novelty

(Müller and Wagner, ’91; Moczek, 2008; Brigandt and Love,

2010). Some of these focus on the history of a trait (Müller and

Wagner, ’91; Hall and Kerney, this issue), whereas others

emphasize its future consequences (Erwin, this issue). I shall

argue that these ideas can be clarified and unified by focusing

instead on change in the offspring–parent distribution.

A phenotypic trait can be any property of an organism to

which we can assign a value (the ‘‘value’’ may be a number or a

vector). Such traits include simple functions like body mass or the

ratio of lengths of two bones, as well as complicated functions of

many elements, such as the uniformity of position and

orientation of spicules in the mantle of an Aplacophoran mollusk.

What determines if and how such a trait can evolve under

selection or drift is the shape of the offspring–parent distribution

for the trait. A century of experimentation shows that the vast

majority of simple traits (measuring the size or position of a

single structure) are heritable, meaning that they show at least a

significant linear relationship between offspring and parents (as

mentioned above, nonlinear terms have often been observed as

well, but not systematically investigated). This is why nearly all

such traits respond to selection. For more complex traits, though,

such as the joint orientation of a large number of separate

elements, offspring phenotype may be largely random relative to

that of their parents. In such cases, even though we can measure

the character in question, it would not be a true evolutionary

trait.

I thus suggest the following definition for evolutionary

novelty: A novel evolutionary trait appears when there is a

change in the expected offspring–parent distribution for some

character of an organism, such that there is sufficient heritable

variation in that character for it to evolve under selection or drift.

Such a newly evolvable character is a novel evolutionary trait.

This is essentially saying that a new evolutionary trait comes into

existence when there is sufficient additive variance for it to

respond to selection.

An important property of this idea of evolutionary novelty—

and one way in which it differs from many definitions of novelty

discussed in the literature (Brigandt and Love, 2010)—is that it

makes no reference to whether or not a striking morphological

change occurs that a taxonomist or paleontologist would notice.

We thus could be in the situation of saying that a novel trait has

arisen, even though the morphology of the organisms in question

has not changed. Conversely, a striking morphological change

might occur in a trait that was previously under stabilizing

selection. If that trait was already able to respond in this way but

simply had not encountered the right selection regime, we would

say that the new changes do not constitute an instance of

evolutionary novelty.

In this view, novelty is about evolutionary potential, rather

than how distinct the trait is or how poorly we understand how it

arose. It is informative to compare this notion of novelty with

biological species concepts. The very idea of species arose

because different groups of organisms consistently look different.

Despite this, the most widely used species concepts, variants of

the biological species concept or the closely related genetic

species concept, say nothing about morphology. This is because

the key to understanding species is to understand what allows

two populations to evolve independently of one another.

The increasing number of recognized ‘‘cryptic species’’—that

are morphologically indistinguishable but show genetic evidence

of having been isolated for a long time (Suatoni et al., 2006)—

shows that the potential for morphological divergence does not

always lead to such divergence. Nonetheless, we call these

organisms different species because permanent reproductive

isolation has allowed them to evolve independently, even if that

independent evolution has not produced striking morphological

differences. In the same way, the idea of evolutionary novelty

discussed here focuses on the conditions that would allow

evolution to go in a new direction.

As a hypothetical example, consider the molluscan shell. The

mineralized shell is presumably derived from spicules, such as

those seen in the mantle of modern Aplacophorans, and putative

fossil molluscs, such as Wiwaxia. It seems likely though that

merely having calcium carbonate secreting cells in the mantle is

insufficient to allow for selection of a shell. Getting a shell gland

from spicule-producing cells distributed in the mantle requires

that those cells be coordinated and concentrated in a particular

way. If spicule-producing cells are sparse and randomly

distributed within the tissue, then it is unlikely that selection

for a rigid covering would produce a shell.

If, however, the spicule-producing cells become concentrated

in distinct areas near the surface, as has been recently observed in

one modern Aplacophoran (Scheltema and Ivanov, 2002), and if

there is significant heritable variation in the density and

orientation of these cells, then the potential exists to select for

increasing local coverage that would lead to the appearance of a

shell. Under this view, the appearance of a novel trait occurred

when the distribution of spicule-producing cells was such that

selection for a rigid shell could lead to the appearance of such a

structure, even though the shell itself was probably not yet

present.

I say that this example is hypothetical because we do not

know, even for modern Aplacophorans, the pattern of heritable

variation in the density and orientation of spicules. This is,

however, something that could be determined experimentally. In

fact, one of the potential advantages of the approach to novelty

that I am advocating is that we could unambiguously catch it in

the act. Selection experiments or just estimates of heritability

could tell us whether a particular population has heritable

variation for a trait that is lacking in related species (or even

other populations of the same species). We could thus potentially

identify the appearance of an evolutionary novelty as it happens.
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The idea of a change in the distribution of variation is not a

new concept in ideas about novelty (Müller and Wagner, ’91;

Brigandt and Love, 2010). A number of authors have argued that

novelty results from regulatory changes in development that

allow for new kinds of phenotypic change (Britten and Davidson,

’71; Carroll, 2000; Wray et al., 2003). Such developmental

genetic changes could certainly facilitate the kind of change in

heritable variation that I am highlighting here, but they are not

necessary. The expected offspring–parent distribution is, in part,

not only a function of developmental processes generating an

offspring distribution for each parental phenotype, but it is also a

function of the distribution of phenotypes among the parents.

Thinking about novelty in terms of the offspring–parent

distribution is thus compatible with ideas about the evolution

of novelty that focus on genetic architecture, as well as those that

focus on environmental effects on the phenotype distribution.

Role of Genetic Architecture. All complex phenotypic traits are

influenced both by heritable underlying factors, such as gene

products, and nonheritable factors, such as unpredictable

environmental fluctuations. The way in which heritable and

nonheritable underlying factors contribute to a trait is something

that can itself evolve. Figure 4 shows an example of how a new

evolutionary trait could come into existence through change in

the underlying genetic architecture of the trait (the figure is

modified from Rice (2004a), where the specific functions are

derived). The solid black lines are contours of equal phenotypic

value on a phenotype landscape defined by the function

f ¼ u2
11u2u3, where u1 and u2 are heritable underlying factors,

and u3 is a nonheritable ‘‘environmental’’ factor (I am using the

term ‘‘environmental’’ in the quantitative genetics sense of ‘‘not

heritable,’’ regardless of whether it is internal or external to the

organism).

The colors in Figure 4 show the heritability of the trait f for

different values of the heritable underlying factors (the

nonheritable factor is not shown but has mean value 1). In the

blue regions, the trait has very low heritability (close to 0),

whereas the heritability is very high (close to 1) in the red

regions. A population moving along the f5 10 contour from

upper left to the bottom of the diagram experiences no immediate

change in the mean value of f, but its potential for future

evolution is changed because f changes from being simply an

arbitrary function of the underlying factors to being an

evolutionary trait—able to respond to selection and undergo drift.

Various different processes could cause the population to

move along a contour in this way. If either u1 or u2 also

influences some other trait, then selection on that other trait

could pull this trait into a region in which it is heritable. It is also

possible for drift alone to move the population along a contour.

One thing to note, though, is that, in general, selection acting on

the trait in question is unlikely to move it out of a region of low

heritability. Thus, the appearance of a novel evolutionary trait in

this way may be prompted by many different changes in the

organism or its environment, but it will generally not result from

selection on this trait.

Role of Phenotypic Plasticity. Some authors have emphasized the

importance of environmental modifications of phenotype in the

evolution of novelty (West-Eberhard, ’89; Palmer, 2004). There

are two ways that this could alter the offspring–parent

distribution. First, changing an environmental factor that

interacts nonlinearly with some heritable underlying factors will

change the shape of the phenotype landscape over the set of

heritable underlying factors, potentially exposing new traits to

selection. This is essentially the same thing as shown in Figure 4,

except with the population moving along a nonheritable axis.

Second, the offspring–parent distribution, and in particular

the evolutionary importance of nonlinearities in this distribution,

is a function of the distribution of phenotypes actually present in

the parent generation. This is apparent from Equation (2), which

includes functions of the central moments of the parent

distribution. For instance, if the distribution of parent phenotypes

is symmetrical, then [[3f]] 5 0 so the second order polynomial,

P2, contains only a f2 term and a constant, with no term

involving f to the first power. Making the parent distribution

asymmetrical will cause the ½½3f��
½½2f��

f part of P2 to matter in

evolution. As we saw in Equation (6), this will change the

2u

u1

=
10

50

01
0

=
30

=
20

Parents

O
ff

sp
ri

ng

Parents

O
ff

sp
ri

ng

Parents

O
ff

sp
ri

ng

Low Heritability

High Heritability

Figure 4. Evolution of heritability. The contour lines are for a trait

defined as f ¼ u2
11u2u3, where u3 is an environmental factor. As

a population moves along the f5 10 contour, the heritability

changes from very low to near 1. In this example, all underlying

factors are uncorrelated and normally distributed with variance 1.

The mean value of the environmental factor is 1.
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response to selection. This formalizes the idea that the appearance

of a novel trait may result purely from a change in the

distribution of parental phenotypes (see Palmer, this issue).

Thus, seemingly disparate ideas concerning the evolution of

novelty can be unified when we think of novelty in terms of the

offspring–parent distribution. This is not surprising given that, as

illustrated by Equation (1), what matters in evolution are the

relative fitnesses of individuals in the current generation and the

phenotypes of individuals in the next generation. This is not to

say that developmental biology and ecology are not critical to

our understanding of novelty, only that to fully understand how

they influence evolutionary novelty we need to understand how

they impact the offspring–parent distribution.

CONCLUSIONS
It has long been recognized that the relationship between

offspring and parents may be nonlinear and may change over

time and across environments. Until recently, though, we have

lacked the mathematical tools to fully capture the offspring–

parent distribution. Consequently, much of formal evolutionary

theory has distilled from this distribution a single value, variously

the additive genetic variance or heritability, which has had to

summarize all the complexities of transmission. This has

discouraged focusing on the role of development in evolution,

for although development must play a role in determining

heritability, there does not seem to be much need to elaborate on

the origins of a single value that can be measured by comparing

relatives and is assumed to change slowly if at all.

Using orthogonal polynomials and an explicitly stochastic

description of evolution, we can now incorporate complex

nonlinear offspring–parent relationships into our mathematical

evolutionary theories. In so doing, we find that the entire shape

of the offspring–parent distribution influences the response to

even simple directional selection. Because we are now dealing

with a much more complex object (a multivariate distribution,

rather than a single numerical value), we naturally seek

explanations as to why this distribution has the form that it

does. Development thus reemerges as a potential explanatory

factor, even in the study of incremental change in quantitative

traits.

Another consequence of using a more detailed description of

the offspring–parent distribution is that we can ask questions

about how this distribution changes. This means that we can use

formal evolutionary theory to address some questions, such as

the origin of evolutionary novelty, that were essentially invisible

when we used a very simplified description of transmission. This

also challenges a pervasive idea in recent discussions of

evo–devo: that there is a distinction between mathematical and

mechanistic descriptions of evolution (Laubichler, 2010). The

mechanics of evolution involve stochastic processes acting at the

level of populations. Such processes can be captured accurately

only with a formal mathematical description. Furthermore, unlike

development, all evolutionary processes satisfy certain basic

mathematical rules. Thus, any theory connecting the mechanics

of development with the mechanics of evolution (which

presumably both evo–devo and devo–evo must do) will

necessarily involve mathematical descriptions. This is not to

diminish the importance of empirical descriptions of develop-

mental processes, but merely to say that mechanistically linking

those processes with evolution must ultimately involve mathe-

matical descriptions of processes at the population level.
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