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The bio-geometry of mollusc shells

Sean H. Rice

Abstract.—The shells of gastropods and cephalopods grow by production of new material, by the
mantle, at the lip of the shell. I derive a model of shell form that allows us to describe the mor-
phology of a shell in terms of independently definable biological parameters. These are (1) the
relative rates of shell production at different points around the aperture, (2) the total amount of
shell produced per time interval, (3) the growth rate of the aperture, (4) aperture shape, and (5)
the orientation of the animal within the shell. Describing shell form in these terms allows us to see
what biological changes must occur in development in order to change one shell morphology into
another and what constraints are associated with particular morphological transformations. The
model shows that it is developmentally easy to derive a slightly coiled limpet shell from that of a
high-spired ancestor, but difficult to take the next step to a fully conical limpet. Many, if not most,
real gastropod shells are not conical but rather have a convex or concave profile. I show that these
forms result from a decoupling of shell production rates from the growth rate of the animal within
the shell. The model also shows how truly different forms, such as vermetid snails and heteromorph
ammonites, escaped the confines of spiral growth—sometimes by rotating the body within the
shell, and sometimes by taking up a growth strategy that does not constrain them to coil. This
model is compatible with shell morphometric models that have been widely discussed in the lit-
erature but strives toward a different goal: understanding the relationships between the various
biological processes involved in shell development.
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Introduction

Gastropod molluscs are one of the most di-
verse groups of metazoans, with over 100,000
extant and fossil species described. Seemingly
at odds with this diversity is the fact that the
external morphology that they present to the
world, their shells, appear elegantly simple in
basic design. This simplicity has inspired re-
searchers for over a century (Moseley 1838;
Thompson 1968) to describe gastropod shells
in geometric terms.

Interest in the developmental processes that
construct these shells has more than an aes-
thetic basis. The considerable interest that has
arisen in recent years concerning the relation-
ship between developmental and evolutionary
mechanisms has pointed out the need for
model systems with which to study how se-
lection acts on the processes by which organ-
isms are built. Ideally, such a model system
would involve a highly diverse group of or-
ganisms for which we can study both the se-
lective pressures acting on phenotypes in par-
ticular environments and the developmental
mechanisms by which those phenotypes are
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built. I shall argue that gastropods provide
just such a system.

In the last 30 years, a number of researchers
have formulated mathematical models of gas-
tropod shell form (Raup 1966; Okamoto 1988;
Ackerly 1989a; Savazzi 1990; Stone 1995).
While these models differ with respect to the
kind of coordinate systems used (some using
a fixed, external, coordinate system while oth-
ers invoke a moving reference frame), all are
based in some way on moving a “‘generating
curve” through space so as to trace out the
shape of a shell. In each case, the goal is to con-
struct a set of equations that allow us to de-
scribe a variety of shell forms in terms of a
small number of parameters.

My goal in this paper is not to devise anoth-
er scheme for doing shell morphometrics, but
rather to identify some of the important bio-
logical factors influencing shell form and to be-
gin to investigate how these interact. Ulti-
mately, we would like to be able to look at two
different shells of related species and describe
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in order to derive both of them from a com-
mon ancestor.

0098-8373/98/2401-0009/$1.00



134

In order to do this, I will first describe a
“morphometric” model of shell growth that is
similar to those cited above (as it must be,
since the geometry of helices and tubes is not
at issue). Rather than use the parameters of
this descriptive model as comparators of shell
form (as other modelers have), [ use the model
to derive a set of terms, such as the pattern of
shell production around the aperture, that
have independent biological meaning and are
closer to the actual developmental determi-
nants of shell form. The relation between these
new parameters, which can be interpreted in
terms of physiological or developmental pro-
cesses, and shell form constitutes a simple de-
velopmental model. The rest of the paper is
concerned with applying these results to un-
derstand the developmental changes under-
lying the evolution of limpets, irregular shells,
and heteromorph ammonites.

Describing Shell Growth

Shell material is laid down by a strip of cells
running along the outer fold and outer epi-
thelium of the mantle (Wilbur and Saleuddin
1983). What we are after is a model of shell
growth that is based on the behavior of these
cells during ontogeny. First, though, we must
devise a description of shell form. In principal,
any of a number of shell models could serve
this purpose. I present a model below that is
structured so as to facilitate the derivation of
the developmental parameters that are the fo-
cus of the rest of the paper. This model follows
the trajectory of a point on the aperture (sim-

itar to Checa 1991).

New shell must be added as the animal in-
side grows. In the simplest case (I will con-
sider others later), the rate at which new shell
material is produced is proportional to the
growth rate of the aperture (which is itself re-
lated to the growth rate of the animal within
the shell); if the animal is not growing, it need
add no new shell. Letting A be the diameter of
the aperture (I shall refer to this as ““aperture
size;”’ any linear measure will do as I will as-
sume that aperture shape remains constant),
we write the rate of shell production, g, ,, ata
position p on the aperture at time ¢ as
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FIGURE 1. A shell showing the trajectory of a point u on
the aperture. The vectors illustrate the rates at which
new shell material is being laid down at each point.

o, = 0%, 2 )
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where o,* is characteristic of the point p on
the aperture and will allow us to compare rel-
ative rates of shell production at different
points.
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If the relative rates of shell production at dif-

ferent points around the aperture remain con-
stant, and the absolute rate scales as the
growth rate of the animal, then the trajectory
(see Fig. 1) of a chosen point on the aperture
is determined by the growth of the aperture
and the rate of shell production there and at
nearby points on the aperture. If a shell is
growing isometrically, then each point on the
aperture follows a ““generalized helix.”” A use-
ful result from differential geometry is that for
a generalized helix there exists, somewhere in
space, a vector that makes a constant angle
with respect to the curve (Nutbourne and
Martin 1988). On a gastropod shel, this vector
points the same direction for all trajectories; it
is the direction of the coiling axis. Invoking a
coiling axis is a convenience that is not nec-
essary, since we could parameterize our equa-
tions in other ways (Okamoto 1988; Ackerly
1989a), I use it because it facilitates calculating
the pattern of shell production and will pro-
vide a useful way to derive the developmental
parameters discussed below from measure-
ments on an actual shell. All that this deriva-
tion requires is that during a short time inter-
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val, dt, the path of a point on the shell follows
a generalized helix. Later, I will consider
kinds of growth that do not produce a con-
stant coiling axis but are nonetheless amena-
ble to the analysis presented below.

Let W be the distance of a point on the ap-
erture from the coiling axis (measured in the
same units as aperture diameter). Note that
this is different from Raup’s ““W"’, which is the
rate at which this distance increases for the
center of the generating curve. Because each
trajectory makes a constant angle with respect
to the coiling axis,

aw

P 2)

(since W and o are measured for the same
point on the aperture, I drop the subscript).
Define ¢ as the angular position around the
coiling axis, relative to the starting point. The
change in ¢ over the time interval dt satisfies
Tan(dd) x (o dt)/ W. However, since do is ar-
bitrarily small, Tan(dd) = dd, so,
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Since o is proportional to dA/dt (eq. 1), dW/dt
o« dA/dt; so W x A, Substituting this and equa-
tion 1 into equation 3, and letting y be a con-
stant, we get

do 14dA
dt  'Adt’

4

The constant vy is the same for every trajectory
on the shell and measures the degree to which
the shell is coiling. Strictly, if we project the
trajectory of a point on the aperture into a
plane that is normal to the coiling axis (what
we would see if we were looking straight
down on the shell), v is the curvature of the
projected trajectory divided by the rate at
which it is elongating. A more intuitive defi-
nition of y appears when we integrate equa-

tion 4 to get
A
¢ =7vln (;{:) G

where A, is the initial aperture size, set when-
ever we start following growth. Here we see
that y measures the change in position around
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the coiling axis as the aperture grows by a fac-
tor of e = 2.718, and the shell completes one
full coil in the time that it takes for the aper-
ture to grow by a factor of e2"/7. Equation 5
also confirms that the curve is a logarithmic
spiral, since W the distance from the coiling
axis, is proportional to aperture size (A) while
&, the angle around the axis, is proportional
to In(A).

Given this, we can draw a shell in a space
defined by the coiling axis. We can write the
trajectory of a point on a shell, as a function of
aperture size (A), in a space with axes (i, j, C)
where C is the coiling axis, as

%

iy = — 2 A cosy In(a /4]
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Cpa = 0" AG, 6)

(see Appendix 1). G, and G, are, respectively,
the sine and cosine of the angle between the
trajectory and the coiling axis (or any vector
normal to the coiling axis). This allows us to
construct a visual way to study the different
factors that influence shell form.

From the above equations, we can calculate
the distance, W, ,, of a point on a growing ap-

erture from the coiling axis as W,, = (i, 2
jui?)? or
o* AG
W, = —2A=—. 7
w,t m ( )

We can now define a system of cylindrical
coordinates based on the position along the
coiling axis, C, and distance from that axis, W,
More importantly, we can calculate the rate of
shell production, o, at any point in this space
from equations 1 and 6:
where r = ——

0-2 = r2(1 +,YZ)W2 + r2C2

One way to visualize this is to draw con-
tours of equal shell production in a space de-
fined by W and C. From equation 8, these con-
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FIGURE 2. Contours of equal rates of shell production in a space defined by the coiling axis, C, and distance from
that axis, W. A, Full three-dimensional surfaces, each of which represents the set of points with a particular value
of o (see equation 8 in the text). These surfaces are symmetrical around the C-axis. B, A slice of the same space
illustrating how the origin is defined relative to a shell and how the rates of shell production can be read off at each

point on the aperture. In this example, vy = 2.

tours are ellipses (Fig. 2) (similar to those in
Hutchinson 1990). Figure 2A shows elliptical
surfaces corresponding to three different val-
ues of o (derived by setting a value for o in
equation 8 and solving for all values of W and
C that correspond to it). Since these surfaces
are symmetrical under rotation around the C
axis, a two-dimensional representation (Fig.
2B) captures the geometry and shows how we
could place a shell in this space and read off
the rates of shell production at each point on
the aperture by noting which o contour that
point lies on. In Appendix 2, I use this con-
struction to show how to calculate shell pro-
duction rates for an actual specimen. The larg-
er the value of v, the more tightly coiled the
shell and the more elliptical the contour sur-
faces. If y = 0, as for a conical limpet, then the
contours corresponding to those in Figure 2A
are spheres and there is no distinct coiling
axis.

Alternatively, specifying the shape of an ap-

erture and the rates of shell production at each
point around it is sufficient to reconstruct the
contours in Figure 2. We can thus define a new
set of terms that, together, specify shell form.
These are (1) the pattern of shell production
(the relative rates at different points around
the aperture) (2) the total amount of shell pro-
duced per time interval, (3) the growth rate of
the aperture (r in equation 8), (4) aperture
shape, and (5) the orientation of the animal
within the shell (this last parameter is only
significant if it changes during growth; this
will be important when we consider irregular
shelis). These specify shell form as well as do
the parameters in equation 6. The relation be-
tween these new parameters and shell form
constitutes a simple developmental model—
allowing us to describe shell form in terms of
the biological factors that contribute to shell
growth, rather than purely abstract parame-
ters such as vy or the parameters in the equa-
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FiGURE 3. Three shells along with their corresponding aperture maps. The vertical lines on the aperture maps are
analogous to the vectors around the aperture in Figure 1 and represent the rates of shell production at different
points around the aperture. The largest values, on the left in each aperture map figure, correspond to the outer lip
of the growing shell where the rate of deposition is highest.

tions of Raup (1966), Okamoto (1988), Ackerly
(1989a), Tllert (1990), or Stone (1995).
Another way to think of this is to note that
the shell production parameters listed in the
previous paragraph have independent physi-
ological interpretations, whereas most of the
parameters in equation 6 or the other models
cited have no meaning other than as descrip-
tors of shell shape. We can thus start to relate
changes in shell form to physiological changes
such as a reduction in the total amount of en-
ergy devoted to shell construction (which
would change parameter 2 above and will be
important in the discussion of the evolution of
limpets, below) or the different metabolic de-
mands on different cells around the mantle.

Developmental Parameters

We can now begin to investigate the inter-
action between various biological processes
during shell construction. Here are the prin-
cipal factors that I will consider.

The Aperture Map.—The aperture map for a
particular shell represents the relative rates of

new shell production for each point around
the aperture. The idea was first discussed by
Huxley (1932). Figure 3 shows some shells and
their corresponding aperture maps (for each
map, the high point on the left corresponds to
the part of the aperture farthest from the coil-
ing axis; compare with Figure 1). From these,
we can see what changes in production rates
would have to take place in order to derive
any of these shell forms from any other.

The aperture map is most significant as a
determinant of shell form for shells in which
the inner edge of the aperture is on or close to
the axis of coiling. If this is not the case, then
very different shells may have very similar ap-
erture maps (Hutchinson 1990). I will discuss
this further below when considering irregular
shell forms.

For closed-coiled shells, where successive
whorls are in contact with one another, the ap-
erture map clearly must change drastically at
the point of contact with the existing shell.
Some snails truncate shell production at this
point, only secreting a nacre layer along the



138

surface of the previous whorl. Others continue
to produce a thick shell fused to the old whorl.
In the figures, I have ignored this truncation
to facilitate comparison of the shapes of dif-
ferent maps. Appendix 2 shows how to cal-
culate the aperture map from measurements
on a shell.

Total Shell Production.—Since the aperture
map only describes the relative rates of shell
production, we need to consider also the total
amount of new material produced. This
changes as the animal grows. I will argue be-
low that this is probably more evolutionarily
flexible than the map itself. This parameter
can sometimes change when the aperture map
does not, producing a predictable morpholog-
ical change.

Growth Rate—So long as shell production
scales with the growth rate of the aperture (as-
sumed in equation 1), and the aperture scales

; st i i A tha chell the
with the rest of the animal inside the shell, the

actual pattern of growth of the animal has no
effect on shape. If shell production scales dif-
ferently, though, then different growth trajec-
tories yield different shapes. I show below that
this is important in the production of shells
that do not form perfect conical spirals.

Aperture Shape.—This is, in principle, an in-
finite-dimensional character and in fact varies
widely among gastropods. The model pre-
sented here could be used to investigate the
relationship between any change in aperture
shape and the other developmental parame-
ters discussed. It does not, however, address
the biology determining aperture shape (see
Morita [1991] for a mechanical discussion of
aperture shape and Checa [1991] for a model
that allows differential growth of different
parts of the aperture).

Orientation of the Animal within the Shell.—
Rotation of the body within the shell reorients
the coiling axis. This is roughly fixed through-
out the growth of most gastropods, but will
emerge as an important factor in allowing the
growth of some distinctly non-snail-like
forms.

The parameters listed above are clearly not
the only biological determinants of shell form.
For one thing, the model discussed here does
not address the formation of sculpture on
shells, a distinct developmental process that
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clearly has great ecological and evolutionary
significance (Vermeij 1987). Nevertheless, a
model based on these factors provides a start-
ing point for a careful study of how variation
in some underlying developmental processes
translates into morphological variation. It also
illustrates just how elaborate such processes
are. Even for a structure as “simple’’ as a
coiled shell, the basic parameters listed above
interact in distinctly non-additive ways.

The model describes the relationship be-
tween these parameters. By itself, it tells us
nothing about how much variation exists in
natural populations. We can, however, make
some educated guesses. The following is an
example of one such guess; it is based purely
on theoretical results and thus ultimately will
require an empirical verification.

The growth rate of an animal can be
thought of as a single, global parameter that is

Tovmmvaren Lomemn Tncenn Tiam o ot e

KIiown, from br ccuii‘lB c)\ycuulcuts, to harbor
much quantitative variation, in everything
from fruit flies to farm animals. This means
that natural populations harbor many genetic
variants that influence the overall growth rate
of the organism rather than only the growth
of some particular part, and is one reason that
we sometimes see allometric relationships be-
tween closely related species that are similar
to those found within each species. Similarly,
the total amount of new shell produced (as op-
posed to the relative production rates at dif-
ferent points) can probably likewise be treated
as a single variable that may be influenced by
a number of genes that contribute to overall
metabolic rate.

By contrast, changing the pattern of shell
production (the “’shape’” of the aperture map)
would require many different, yet coordinat-
ed, changes in a number of different parts of
the mantle. Another way to look at this is to
say that the aperture map is a many-dimen-
sional character in the sense of Rice (1990).
(Mathematically, six pieces of information are
necessary to specify the map.) As Rice (1990)
argues, such high-dimensional characters
should evolve more slowly than low-dimen-
sional ones.

We thus might reasonably guess that
changes in form that require alterations in the
shape of the aperture map will be more dif-
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FIGURE 4. Deriving a coiled limpet from a high-spired shell. The shells in the middle and on the right produce
new material at one-half and one-fifth the rate of the one on the left. The dotted lines show what these aperture
maps would look like when scaled up, to facilitate comparison of the relative rates of shell production.

ficult to achieve in evolution than those that
simply require a change in one of the global
rate parameters. This latter change would be
an example of heterochrony, while changing
the map requires a fundamental restructuring

of a developmental process.

Regular Shells

So long as the aperture map and shape re-
main constant, and shell production is pro-
portional to growth rate, then the shell forms
a perfect conical spiral. Given a particular
form, we can now ask what other forms might
with a case for which we can say something
about the selective forces involved.

One trend that appears repeatedly in gas-
tropod phylogeny is the evolution of a limpet
body form from a high-spired ancestor (Ab-
bot 1986). I define a “limpet” here as a gastro-
pod with a cap-like shell that is uncoiled or
only slightly coiled and that pulls the shell
over it while attached to a surface rather than
retreating behind an operculum, I thus in-
clude such organisms as Crepidula among
“limpets.” Two properties of limpets make
them particularly successful in ephemeral and
disturbed environments. Because relatively
little shell material needs to be produced (rel-
ative to soft body mass), limpets can grow
very quickly compared to highly coiled snails.

A second consequence of reducing the amount
of shell produced is that the surface area of the
foot becomes larger relative to the surface area
of the shell. This is a particular advantage in
intertidal environments where strong cur-
rents and wave action put a premium on te-
nacity (Branch 1985).

Figure 4 shows a sequence of sheliis ieading
from a high-spired shell to a coiled limpet-like
form. Below each shell is its corresponding ap-
erture map. Note that while the absolute
amount of shell material produced per time is
lower for the limpet-like form, the pattern of
shell production is identical for all three
shells. A basic limpet body form, with a large
foot relative to shell surface area, can thus be
attained simply by globally reducing the
amount of shell material produced, other fac-
tors held equal.

Most familiar limpets, however, do not look
like the one in Figure 4, having a conical shape
instead. Figure 5 shows the comparison be-
tween a coiled limpet and a truly conical one.
Note that this transition requires a substantial
change in the aperture map. We can thus see
that while the shells of the coiled limpet and
the conical one are perhaps functionally sim-
ilar, they are developmentally quite different.
We can also see that, in terms of the develop-
mental changes that must occur, it is much
easier to derive a slightly coiled limpet from a
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FIGURE 5. Comparison of a coiled limpet and a purely conical one. Note that these two forms, which might be

functionally similar, are developmentally quite different.

high-spired (snail-like) ancestor than it is to
go all the way to a completely conical limpet.

In order to see why this is so, consider the
shell growth space discussed above (Figure
2A), in which the contours of equal shell pro-
duction are ellipses. The plane that contains
the aperture slices this space, and it is from
this slice that we read off the aperture map
(Figure 6). Recall that the eccentricity of the
ellipses in the shell growth space is deter-
mined by how much the shell coils, and re-
ducing the degree of coiling causes the con-
tours to expand horizontally. Figure 6 shows
how the relative rates of shell production can
be kept constant as we reduce the degree of
coiling, so long as the total amount of shell
produced also declines (think of each figure as
a slice of a space like that in Figure 2A; A
through C are slices that include the coiling
axis, D is the slice defined by the plane of the
aperture). As we move from Figure 6A to 6B
to 6C, the value of vy is reduced (correspond-
ing to reduced coiling), causing the contours
to become less elliptical. The contours do this
by expanding horizontally. Thus, the actual
rate of shell production at any point not on the
coiling axis goes down. We are most interest-
ed in the shape of the contours, so I have
drawn in those contours that have the same
horizontal scale with respect to the aperture
size. Thus, the outer contour in 6B actually

corresponds to a value of ¢ similar to the sec-
ond contour from the middle in 6A.

Figure 6D shows the shape of the contours in
the plane of the aperture for each case. These are
the same, even though the actual values of ¢ on
each contour are smaller as we go from A to B
to C. Thus the aperture map (the relative rates
of shell production) stays the same through this
uncoiling process, even though the total amount
of shell produced decreases. This strategy only
works to a point, though, after which further
uncoiling requires a change in the shape of the
aperture map (Fig. 7).

We might interpret the last result to imply
that when selection favors a limpet-like body
form, we should most often see the appearance
of coiled limpets rather than conical ones. A pre-
liminary study of gastropod phylogeny (Rice
and D. Lindberg unpublished) shows that this
is in fact the case: partly coiled limpets have
arisen at least 14 different times, while conical
forms appear to have arisen 4 times. The current
preponderance of conical limpets reflects not
the number of times that this form has ap-
peared, but rather the great success of a few
groups (particularly the Patellogastropods) af-
ter they had acquired this form. The success of
these few groups suggests that the conical lim-
pet form is no less functional than the slightly
coiled form, which has not led to as much in-
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FIGURE 6. Shell production diagrams showing how the
shape of the aperture map can remain constant as the
shell uncoils, so long as the overall amount of shell ma-
terial produced goes down (compare with Figure 4). A,
B, and C show slices along the C-axis of spaces like that
in Figure 2A. D shows the slice in the plane that contains

the aperture. By changing the tilt of the aperture relative
to the shell, the shape of the contours in the plane of the
aperture, and thus the aperture map, can be kept con-
stant even though the total amount of shell being pro-
duced is reduced. This only works to a point, though,
beyond which further uncoiling requires a change in the
aperture map.

crease in species numbers even though it has
arisen more frequently.

This last point highlights the different roles
played by developmental and environmental
(selection) processes in evolution. In this case,
development influences the probability that a
particular phenotype will arise; selection in-
fluences its fate once it has arisen.

Nearly Regular Shells

So far, I have assumed that total rate at
which new shell material is laid down is pro-
portional to the growth rate of the animal
within the shell. This condition, combined
with a constant aperture map, produces a per-
fectly conico-spiral shell, regardless of the ac-
tual growth of the animal. We can easily imag-
ine other rules for shell production, though,
that might lead to different kinds of shapes.
Modeling this requires that we represent both
shell production and aperture growth as sep-
arate functions of time (Appendix 1).

This is important, since many (if not most)
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shells deviate from the conico-spiral ideal
(Vermeij 1993). For example, consider the case
in which the total rate of shell production is
proportional to the size of the aperture, rather
than the rate at which it is growing (Appendix
1). In this case, the shape of the resulting shell
is a function of the growth curve of the aper-
ture.

Figure 8 illustrates the results of varying the

growth function followed by the aperture
while making the rate of shell production pro-
portional to aperture size, rather than growth
rate. When the aperture grows exponentially,
we still get a perfect cone, since here the size
of the aperture is proportional to its growth
rate. Other growth functions, however, pro-
duce different shell forms.

Linear growth of the aperture results in a
shell that slopes down, with an outline that is
more parabolic than conical. This pattern of
convex sloping sides to the shell is very com-
mon. If the aperture stops growing altogether,
but the animal continues to produce new ma-
terial, the shell forms a helix that maintains
constant distance from the coiling axis. Thus,
a logistic type growth function, with initial ex-
ponential growth followed by a relatively con-
stant aperture size, produces the beehive-
shaped shell of Cerion.

Given this, it is not at all surprising that
most of the shells that one looks at are not per-
fect conical spirals. Though linking shell pro-
duction to growth rate seems loglcal at flrst
glance, many factors could alter the balance.
Most snails house their gonads in the upper
whorls, calling for more space there when the
animal becomes reproductive Also, the apex
of the shell may be damaged by predators or
wave action, necessitating a shift forward even
if the body is not increasing in size.

Though these nearly regular shells deviate
somewhat from the conico-spiral ideal (an
ideal for shell modelers, not gastropods), they
are all readily identifiable as snails. There are
some shell forms, though, that seem truly to
break the rules, and one test of the theory pre-
sented here must be its ability to shed light on
how some forms escape the confines of tradi-
tional shapes and develop radically different
shells.
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FIGURE 7. Schematic diagram showing how the aperture map must change in the evolution of a limpet from a
high-spired ancestor. A substantial amount of uncoiling can be achieved with no change in the map, simply by
reducing the absolute rates of shell production but keeping the relative rates nearly constant. How far this process
can go is determined by the initial angle of inclination of the aperture. When the plane of the aperture is parallel
to the coiling axis, no further uncoiling is possible without a change in the aperture map.

Heteromorph and Freeform Shells

A number of ammonites exhibited complex
growth forms that often changed direction at
specific stages. Lumped together as ‘“hetero-
morphs,” these animals clearly had found
ways to break the rules followed by most
shelled molluscs.

Figure 9 shows two views of a specimen of
Didymoceras, a heteromorph that began life as
a conico-spiral and then abruptly switched to
a different growth pattern. At first glance, this
would appear to require a radical change in
the pattern of shell deposition. In fact, neither
the aperture map nor growth rate need
change at all during the growth of this animal;
all that is needed is for the animal to rotate its
body within the shell.

Figure 10 illustrates the consequences of
such a rotation. At the start of the fourth coil,
the aperture map begins to rotate clockwise

(relative to an observer inside the shell look-
ing out). This has the effect of shifting the axis
of coiling and causes the shell to grow down-
ward. After rotating through an angle of 1.2
radians, the aperture map begins to rotate
back (counterclockwise). This is what would
happen if each point around the mantle lip
continued producing new shell material at the
same relative rate that it always did, but the
entire mantle rotated—as though the animal
twisted itself first one way, then the other. The
black line represents the strip of shell laid

Some confirmation that this story describes
what Didymoceras actually did is provided by
sculpture on the shell. The specimen in Figure
9 has two rows of knobs (shaded in the figure)
running along the outer part of each whorl. As
the shell begins its aberrant growih, these
knobs follow the same kind of trajectory
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FIGURE 8. Shells resulting from different growth functions when the rate of new shell production is proportional
to aperture size (rather than growth rate). When the aperture (and, by inference, the animal inside) grows expo-
nentially, a perfectly conico-spiral shell results. Linear growth (or any function for which the ratio of growth rate
to body size decreases as size increases) produces a shell with convex sides. A sigmoid growth function builds a
shell that at first expands, then coils straight down the axis.

shown by the black line in Figure 10—rotating
first to the outside of the loop and then ending
up on the bottom. This is exactly the path that
would be taken by the mantle tissue under-
lying the knobs in the upper whorls if the an-
imal rotated as hypothesized. Of course, we
don’t know that the knobs were produced by

FIGURE 9. A composite specimen of Didymoceras (Yale
Peabody Museum specimens 6092 and 35001) showing
the final coil and sculpture on the shell. The solid lines
(specimen 6092) show the last regular whorl and the re-
gion in which the animal appears to have rotated within
its shell. Note the path followed by sculptural knobs
(shaded).

the same part of the mantle throughout
growth, but this seems likely and would make
sense of both the distinctive form of the shell
and the path taken by sculpture on it.

A similar process may have been used by

Lo

FIGURE 10. Approximation to Didymoceras generated
with a constant aperture map and growth rate. Rotating
the entire aperture map (corresponding to the animal
rotating within the shell) changes the axis of coiling.
This is what would result if, at the beginning of the
fourth whorl, the animal began rotating through an an-
gle of 1.2 radians, finished this rotation at the middle of
the fourth whorl, then began rotating back. The black
line tracks the strip of shell laid down by a particular
segment of the mantle.
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FIGUREe 11. A, The heteromorph ammonite Nipponites (after Klinger 1981). B, Approximation to Nipponites, gen-
erated with a constant aperture map and growth rate, in which the animal rotates within the shell by 2 radians
every 0.6 whorl. The last rotation is through an angle of 2.9 radians.

another heteromorph, Nipponites (Figure 11).
This shell has no fixed axis of coiling and nev-
er approximates a helical spiral. Figure 11
shows a reconstruction of Nipponites and of a
theoretical shell produced by repeatedly ro-
tating the aperture map. Note that this is sim-
ilar to what Didymoceras would look like if it
began its back-and-forth rotations at the first
whorl, instead of waiting until the last.

This trick of rotating the entire animal with-
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FIGURE 12. Two tubes with the same flat “aperture
map’’ but different shapes. These can shear to one side
or the other because the aperture is not growing and the
rate of “’shell” production is the same all around the ap-
erture.

in the shell may explain how some Vermetids
shift the coiling axis after they settle (Ackerly
1989b). Thus, the tricks used by Didymoceras
and Nipponites are not so radical as one would
guess. In addition to making sense of an oth-
erwise confusing form, this result hints that
the rarity of the Nipponites type shape is not a
consequence of developmental constraint; it
was an easy shape for loosely coiled ammo-
nites to attain. Not all Heteromorphs are so
easily explained; some clearly changed all
growth parameters at certain stages in ontog-
eny. It is interesting, though, that some of the
most bizarre looking forms are among the eas-
iest to generate.

There is another way that a shell can attain
irregular form without any change in the ap-
erture map. To see how, we must add one de-
tail to the model as presented so far.

The aperture map and growth rate deter-
mine shell form almost everywhere. The one
exception is when the aperture is not expand-
in a symmetrical pattern around the aperture.
At this point in growth parameter space, the
shell can “shear” in directions along which
the aperture map is flat, as shown in Figure
12. More importantly, as we approach this
point, the aperture map becomes less and less
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FIGURE 13. Macroscaphites redrawn and modified from
Thompson (1968). Note the progression {cxpressed as
change in the angle of the sculptural ribs) of the upper
lip during the straight phase of growth. The straight
lines indicate the plane of the aperture, as inferred from
sculpture.

of a constraint on shell form, as a wide range
of shapes can be produced with extremely
small changes in the pattern of shell produc-
tion. (This is not a problem for limpets, since
their aperture growth rate is so high as to sta-
bilize shell form even with a “’flat’’ aperture
map.)

This shearing effect may be at work in the
growth of vermetid ‘“worm snails.” Though
these exhibit a variety of growth patterns
(Gould 1994; Savazzi 1996), many begin life
tightly coiled, then undergo a period of ““un-
coiling” followed by freeform growth, in
which form is determined largely by the sur-
face on which the animal is growing. In some
species, such as Vermicularia pelucida, this hap-
pens gradually after settling, resulting in the
first couple of whorls being loosely coiled but
still following a
This breaks into freeform growth when the
shell becomes sufficiently loosely coiled cor-
responding to a sufficiently flat aperture map.
(Note that the previous arguments for the evo-
lutionary conservatism of the aperture map
do not apply to changes during development.)

The shearing process discussed above can
be seen clearly in the heteromorph Macrosca-
phites (Figure 13). This animal follows a plan-
ispiral ammonite pattern for a few whotls,
then suddenly grows out straight for a time,
after which it goes through another tight coil.
Macroscaphites is sculptured with regularly
spaced ridges that allow us to estimate shell
production rates (assuming that the spacing of
ridges corresponds to growth rates). We can
thus study a growth process that took place
during the Cretaceous and has no modern an-
alogue.

smoothly spiral trajectory.
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Though the aperture map must change
somewhat during the growth of Macroscaphi-
tes, this change is minimized by the shearing
process described above. Along the straight
section of the shell, the upper (in the picture)
part of the shell is still growing at a higher rate
than the lower part, just as the outer lip of the
whorl was growing faster than the inner lip
when the shell was coiling. Eventuaily, the up-
per lip of the aperture has grown so far out
ahead of the lower lip that the animal allows
another, tight, coil to take up the difference.
Note that, as it comes out of that last coil, the
inner and outer lips have again come into line.

Discussion and Conclusions

The goal of this paper is to describe shell
form in terms of parameters that have inde-
pendent developmental or physiological
meanings. Though I began with a mathemat-
ical description similar to traditional shell
models (Raup 1966; Okamoto 1988; Ackerly
1989a; Illert 1990; Savazzi 1990; Stone 1995), 1
do not use this as an end in itself, but rather
derive from it a set of descriptors that relate
shell form to other aspects of physiology and
development. These are the followmg. the
shape and growth rate of the aperture, the to-
tal rate at which new shell material is pro-
duced, the relative rates of shell production at
different points around the aperture (the ap-
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within the shell. (A similar approach, starting
with a description of shape and deriving other
biological parameters from this, has been
used by Levtrup and Levtrup (1988), who
studied one aspect of the aperture map, and
Checa (1991), whose model is useful if the ap-
erture changes shape during growth.)

To illustrate the consequences of this ap-
proach to modeling, consider the sequence of
shells in Figure 4. In terms of Raup’s (1966) pa-
rameters, the partly coiled limpet on the right
differs from the high-spired form by having a
lower rate of translation down the coiling axis
and a greater whorl expansion rate relative to
aperture size. In terms of Okamoto’s (1988)
model, the limpet has a lower generalized tor-
sion’ and curvature. Other models provide
similar geometric descriptors. These are per-
fectly good mathematical descriptions of the
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differences between the shapes, but note that
that is all that they are. Translation down a
coiling axis and generalized curvature have
no clear biological interpretation except in the
context of shell form.

By contrast, the model presented here
shows that the shell on the right can be de-
rived from the one on the left simply by re-
ducing the total amount of shell material pro-
duced (holding aperture growth rate con-
stant). The rate at which new shell material is
produced is a physiological parameter that
could be studied quite independently of shell
form, and related to other aspects of the ani-
mal’s biology, such as total energy budget or
resource allocation. Thus, rather than just de-
scribing the difference between the shapes, we
have taken a step toward explaining it in
terms of other, independently measurable, as-
pects of the animal’s biology.

This becomes significant when we consider
the perfectly conical limpet in Figure 5. The
model shows that deriving this form from a
highly coiled ancestor requires more than just
a uniform reduction in shell production—it
calls for a change in the relative rates of shell
production at different points around the ap-
erture. Thus we can see that a kind of physi-
ological change is necessary for the evolution
of a perfectly conical limpet that is not nec-
essary for the evolution of a partly coiled lim-
pet. The degree to which this constrains lim-
pet evolution depends on the genetic ease with
which this more elaborate physiological
change could be achieved. Though this model
does not address this genetic question, it sets
the stage for it to be studied.

In a sense, this model describes the ““natural
logic”’ (cf. ““natural history’’) of shells. Natural
logic here refers to the relationships that must
hold between different developmental and
physiological processes and between these
and phenotype. When combined with natural
history (the actual attributes of the animal and
its environment), this describes the opportu-
nities and constraints that evolution has to
work with.

This approach does not contradict other
shell coiling models. Morphometric descrip-
tions such as those cited above are still the best
way to describe shell form in terms of a small
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number of easily measured parameters. Rath-
er, the model presented here complements
such models by allowing us to relate changes
in their parameters to other aspects of the an-
imal’s biology, and to make testable predic-
tions about which aspects of morphology will
change together.

Stone (1995, 1996) presents a computer
model that allows one to draw shells that are
not perfectly conical, such as those in Figure
8. This model still describes shell form in
terms of rate of horizontal expansion, rate of
vertical translation, and so forth, but allows
these terms to vary allometrically as the pro-
gram proceeds. While this allows one to draw
shells such as the irregular forms in Figure 8,
it does not allow us to see that these forms
arise from a difference in the rate at which
shell production increases and the rate at
which the aperture grows—something that
the model presented here makes clear. Under-
standing this is significant if we wish to an-
swer questions about the evolution of these
forms.

Okamoto (1988) and Illert (1990) devise al-
gorithms that reproduce the various forms of
heteromorph ammonites. This is achieved by
pulling a generating curve through space
along a trajectory that is defined by a function
specifying its curvature and torsion, a similar.
approach is used by Ackerly (198%a). While
this produces an image that resembles Nip-
ponites (for example), it does not make it clear
that the animal could build such a form sim-
ply by rotating its body within the shell
(though Illert and Pickover [1992] show that
Nipponites can be described by a model with a
complex value of the torsion parameter, which
could be thought of as a rotation of the coor-
dinate axes, though they do not interpret it in
this way). Using the model presented here, we
can see that Nipponites and Didymoceras could
have achieved their unique forms without de-
vising any really new growth rules. Beyond
simply describing the shape, this model leads
to a hypothesis about what the animal was do-
ing that in turn makes a testable prediction
about the path taken by sculpture on the shell.
Figures 9 and 10 show that this prediction is
upheld by Didymoceras.

Another difference between the approaches
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is apparent when the models fail to describe a
particular form. Because Raup’s model was
parameterized in terms of the angular posi-
tion of the aperture around a coiling axis, it
could not describe a truly conical limpet. This
was never taken to mean that such limpets are
doing anything biologically novel, though,
only that we need a new set of parameters
(which other authors provided). By contrast,
when the biological model presented here
fails, as it does with a flat aperture map and
no aperture growth, it tells us something in-
teresting about biology, namely, that these pa-
rameters no longer constrain shell form and
the animal can take up freeform growth.

In one sense, the model presented here does
not resolve the problem of how shells grow,
but simply shifts the question to another level.
To a first approximation, we can break up the
study of development into two levels. The first
is the level at which gene products interact to
determine the behavior of cells and tissues.
The second level is that at which cells and tis-
sues interact to build a phenotype. Almost all
current research in development focuses on
the first level; this paper concerns the second.

It should be clear that, even for the simplest
of phenotypes, this second level of develop-
ment is rather complex. Even if we knew ev-
erything about which genes are involved in
development and how they are regulated, we
would still be a long way from knowing how
most phenotypes are built.

For the mollusc case (at least concerning
shell form), it is the first level that is missing.
What we do not know is how the aperture
map is determined at the cellular level, and
without this knowledge, we can only make
guesses (as I have done) as to the degree to
which it constrains phenotypic evolution.

A model system for the study of developmen-
tal evolution should be one for which we have
some understanding of both the processes by
which phenotypic characters are constructed
and the selective regimes acting upon them. Nu-
merous authors have investigated components
of the selective forces acting on gastropod shells
(Vermeij 1987), largely through the study of
their structural properties when attacked by
various predators. Thus with a developmental
model of shell form, this group should emerge
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as an excellent model system for the rigorous
study of phenotypic evolution.
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Appendix 1

The shape of a trajectory in three space can be described ex-
actly by specifying two values on it, the curvature (x) and tor-
sion (7). Curvature measures the degree to which the trajectory
curves (k = 0 for a straight line) and torsion measures the de-
gree to which the trajectory refuses to live in a plane (strictly, it
measures the rate of change of the plane in which a short seg-
ment of the trajectory lies as we move along the trajectory). Note
that this is a geometric description of a curve and is completely
unrelated to the developmental event called “'torsion’ that char-
acterizes gastropods. For a thorough discussion of these terms,
see Nutbourne and Martin (1988), or see Okamoto (1988) for an
application to shell form.

For a generalized helix, k * 7 and the curve makes a constant
angle with respect to some direction (Nutbourne and Martin
1988). This angle, 8, is given by

K
6 = Arctan(—).
T

For a trajectory on a shell, this is the angle made by the trajec-
tory and the coiling axis, as shown in Figure Al.

We define the coiling axis as C, and imagine the trajectory
projected into a plane normal to C. Now define two axes, i and
j, which lie in this plane such that i is in the direction of the
projected curve where it starts and j is normal to i.

If the pattern of shell production around the point of interest

(A1)

C

FIGURE Al. Formalism for describing the trajectory.
The dashed curve is the real trajectory, the solid curve
is its projection in the (i, j) plane.
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on the aperture does not change, then in a short time interval,
dt, the angle between the direction of growth and the i axis
changes by ydt. v is the curvature of the projected trajectory di-
vided by the rate at which it is elongating. The actual trajectory
on the shell is growing at a rate o, so the projection grows at
a rate o, ,sin(8).

From this, we can write down the differential equations de-
fining the trajectory in the space with axes i, j, and C as

di, ~ _dA B)sin(®

ot o, o cos(¢)sin(0)

4. Ay (d)sin(B)

— = O, ,—/ SIn S1N|

dt dt
ac, _ ,dA 0 A2)
a7 o ¢

where

T

K
il = TeT O o

These equations can be rewritten to eliminate the time differ-
ential:

i
dj; = 0, cos(dp)sin(0)

;’/: = &, Sin(¢)sin(d)

4, _ 0 A3)
" = g, gcos(0) (

Solving these yields equation 6.

The fact that vy is the same for all trajectories on a given shell
follows from the fact that every point on the aperture completes
one trip around the coiling axis in the same amount of time as
every other point.

If the rate of shell production scales with the size of the ap-
erture (rather than its growth rate), as for the shells in Figure 8,
then the growth equations change to

di

— = g* A, Hsin(®

it o*, A cos(yt)sin(8)

un . .

— = o*, Asin(y#)sin(8)

dt

dc,

2 = o*,A,cos(B). (A4)

The shell on the left in Figure 8 is built by letting A, = Age™. Such
exponential growth produces a conical spiral since s A,
so @ is still proportional to dA/dt.

Substituting A, = A1 + rt) into equation A4 produces the
middle figure in Figure 8, for which the aperture grows linearly
with time. The shell on the right of Figure 8 results from letting
the shell grow exponentially (as above) for a few whorls, then
holding aperture size constant by setting r = 0.

The heteromorph shells in Figure 10 were produced by fol-
lowing the growth equations given in the text, but rotating the
entire frame of reference around the aperture at specified times.
Specifically, the entire frame was rotated around a vector nor-
mal to the plane containing the aperture and situated in the cen-
ter of the aperture. This is equivalent to having the animal rotate
within the shell.

Appendix 2

There are two ways to calculate the aperture map from mea-
surements on a shell. In each case, we are only calculating rel-
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FIGURE A2.  Measurements used in calculating the aperture map for a specimen.

ative rates of shell production; absolute rates could only be
found by watching the shell grow. However, we can find the
shape of the aperture map and the rate of shell production rel-
ative to aperture growth rate. These, along with aperture shape,
are the principal determinants of shell form discussed in the
text.

The first, and most awkward, approach requires shells with
visible growth lines. Here, one can directly measure the dis-
tance between these lines to estimate the amount of shell ma-
terial produced at each point during the same time period. This
is difficult for small shells, but is the only option for truly ir-
regular shells such as some heteromorph ammonites.

For approximately regular shells, for which one can estimate
a coiling axis and a “'projected apex’ (Schindel 1990) (Figure
A2) for a couple of whorls, there is an easier way. Schindel
(1990) describes practical methods for locating the axis of coil-
ing and the projected apex of the shell.

Setting Z = (1 + v?), we can rewrite equation 8 as

Cl=rZWi4nQC?

where o, is the rate of shell production at a point i, W, is the
distance of that point from the coiling axis, and C, is the distance
along the coiling axis of the point from the projected apex (see
Figure A2). r, the growth rate of the aperture, is a constant at
each point around the aperture. As discussed above, 7y is the
same for every point on the aperture (since each point has
traced a path with the same number of coils) so Z is also a con-
stant that can be calculated as follows (refer to Figure A2).
Choose a point on the aperture and measure its distance from
the coiling axis and projected apex, calling these W and C, re-
spectively. Measure the angle a between the trajectory of the
chosen point and the plane normal to the coiling axis (Figure
A2). A good choice for this point will often be the lowest point
on the aperture, since it facilitates measuring « and minimizes

the effects of measurement error on the calculations below. With
these values, we calculate Z as
C*2 1
Z=
W*2 tan?(a)

AN
AS)
Once this is calculated for a single point, the same value of Z
can be used to calculate ¢,/ r for any other point, given values
of Wand C, as

Ul

= =VzZwry C? (A6)

r
This gives the shape of the aperture map.

We can also calculate the actual rate of shell production at a
point relative to aperture growth (as mentioned in the text with
respect to the evolution of limpets). To do this, measure the val-
ues of C for two homologous points, i and j, on the same trajec-
tory for which the value of o is known (Figure A2). The distance,
s, along the shell between these is given by

C - ¢

"~ sin(a)
Assuming that the aperture shape did not change over this in-
terval, the change in aperture size can often be estimated by
measuring whorl height at points / and j as 4; and A, respec-
tively. The per-size growth rate is then

AA A - A

A A
The ratio of s to AA/ A is what changes in the sequence leading
to a half-coiled limpet in Figure 4.

If the plane of the aperture is close to parallel with the coiling
axis, then W and C can be measured directly from a photograph
or drawing of a shell. If the aperture is inclined at an angle, then
it is necessary to look at the shell from different angles in order
to get correct values of W,

i



