Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

Rongbin Hu, Yinfeng Zhu, Guoxin Shen & Hong Zhang

To cite this article: Rongbin Hu, Yinfeng Zhu, Guoxin Shen & Hong Zhang (2017) Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana, Plant Signaling & Behavior, 12:2, e1276687, DOI: 10.1080/15592324.2016.1276687

To link to this article: http://dx.doi.org/10.1080/15592324.2016.1276687

© 2017 The Author(s). Published with license by Taylor & Francis Group, LLC
Rongbin Hu, Yinfeng Zhu, Guoxin Shen, and Hong Zhang
Accepted author version posted online: 03 Jan 2017.
Published online: 03 Jan 2017.
Submit your article to this journal

Article views: 19

View related articles

View Crossmark data
Protein phosphatase 2A (PP2A) plays numerous roles in plants such as in cell cycle progression, root cortical cell elongation, tissue development, and plant responses to biotic and abiotic stresses.\(^2\)PP2A was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study, we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e., ppa2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between ppa2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane-bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5’s substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants.

SHORT COMMUNICATION

Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

Rongbin Hu\(^a\), Yinfeng Zhu\(^a\), Guoxin Shen\(^b\), and Hong Zhang\(^a\)

\(^a\)Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; \(^b\)Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China

ABSTRACT

Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study, we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e., ppa2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between ppa2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane-bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5’s substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants.

ARTICLE HISTORY

Received 9 December 2016
Accepted 18 December 2016

KEYWORDS

Chloride channel protein; plant phosphatase; salt stress; signaling

CONTACT

Hong Zhang

Rongbin Hu, Yinfeng Zhu, Guoxin Shen, and Hong Zhang.

This is a creative commons licensed article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
PP2A-C5 interacts with AtCLCc in vivo, we performed bimolecular fluorescence complementation (BiFC) experiments using N. benthamiana leaves. In this system, we first fused PP2A-C5 to nYFP (the N-terminal part of the yellow fluorescence protein) to form the nYFP-C5 fusion construct, and fused AtCLCc to cYFP (i.e., the C-terminal part of YFP) to form the CLCc-cYFP fusion construct. Then we introduced Agrobacterial cells into tobacco leaf cells through the infiltration technique and the Agrobacterial cells contained our gene constructs in 3 combinations: nYFP-C5 with cYFP constructs, nYFP and CLCc-cYFP constructs, and nYFP-C5 and CLCc-cYFP constructs. Only in the third combination we observed fluorescence signals in the infiltrated leaf tissues (Fig. 1C), indicating that it was the interaction between PP2A-C5 and AtCLCc that brought nYFP and cYFP together to produce green fluorescence in the tobacco leaf cells.

The physical interaction between PP2A-C5 and AtCLCc and similar salt tolerant phenotype of PP2A-C5-overexpressing plants and AtCLCc-overexpressing plants suggested a functional correlation. We then investigated the genetic relationship between PP2A-C5 and AtCLCc by overexpressing AtCLCc in the pp2a-c5-1 mutant background and we could not rescue the salt sensitive phenotype of the pp2a-c5-1 mutant, indicating that PP2A-C5 and AtCLCc function in the same pathway and AtCLCc functions downstream of PP2A-C5.1 Our data suggest that increasing PP2A-C5 expression might lead to higher activities of chloride channel proteins. This assumption appears consistent with the biochemical analysis of chloride (Cl⁻) concentrations in these plants. We observed the highest Cl⁻ concentration in PP2A-C5-overexpressing plants and AtCLCc-overexpressing plants, and the lowest concentration in the pp2a-c5-1 mutant.1 The Cl⁻ concentration in the pp2a-c5-1 mutant that overexpresses AtCLCc is similar to that of the pp2a-c5-1 mutant.1 To maintain the charge neutrality inside vacuoles of AtCLCc-overexpressing plants, we expected that AtCLCc-overexpressing plants should have higher levels of cations. Indeed our analyses of Na⁺ contents indicate similar results as Cl⁻ contents: PP2A-C5-overexpressing plants and AtCLCc-overexpressing plants contain the highest amount of Na⁺, whereas the pp2a-c5-1 mutant contains the least (Fig. 2).

Based on our study, we propose a working model to show how PP2A might participate in the salt signaling pathway in plant cells (Fig. 3). We believe that AtCLCc and AtCLCa are substrates of PP2A-C5 in plant cells and these vacuolar membrane bound chloride channel proteins exist in 2 forms: dephosphorylated form (active or high activity form) and phosphorylated form (inactive or low activity form). When PP2A-C5 is overexpressed in transgenic Arabidopsis plants,
Figure 3. A working model on how PP2A-C5 might be involved in salt signaling pathway in Arabidopsis. The specific PP2A holoenzyme containing the C5 subunit up-regulates activities of AtCLCc and/or AtCLCa on vacuolar membrane by removing phosphates from its substrate proteins, leading to more anions (i.e., Cl^- and NO_3^-) to move into vacuole, thereby resulting in increased salt tolerance or better growth and development under treatment of NaCl, KCl, and KNO3. AtCLCc, H^+ / Cl^- antiporter; AtCLCa, H^+ / Na^+ antiporter; V-ATPase, vacuolar ATPase; V-PPase, vacuolar pyrophosphatase.

Disclosure of potential conflict of interest

No potential conflicts of interest were disclosed.