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Overexpression of the Arabidopsis 14-3-3 Protein GF14λ in Cotton Leads to a 
“Stay-Green” Phenotype and Improves Stress Tolerance under Moderate 
Drought Conditions
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;
The Arabidopsis gene GF14λ that encodes a 14-3-3 pro-

tein was introduced into cotton plants to explore the physio-
logical roles that GF14λ might play in plants. The
expression level of GF14λ under the control of the cauli-
flower mosaic virus 35S promoter varied in transgenic cot-
ton plants, and lines that expressed GF14λ demonstrated a
“stay-green” phenotype and improved water-stress toler-
ance. These lines wilted less and maintained higher photo-
synthesis than segregated non-transgenic control plants
under water-deficit conditions. Stomatal conductance
appears to be the major factor for the observed higher pho-
tosynthetic rates under water-deficit conditions. The sto-
matal aperture of transgenic plants might be regulated by
GF14λ through some transporters such as H+-ATPase
whose activities are controlled by their interaction with 14-
3-3 proteins. However, since 14-3-3 proteins interact with
numerous proteins in plant cells, many metabolic processes
could be affected by the GF14λ overexpression. Whatever
the mechanisms, the traits observed in the GF14λ-express-
ing cotton plants are beneficial to crops under certain
water-deficit conditions.

Keywords: Drought tolerance — Leaf senescence — 14-3-3
protein — Photosynthesis — Stomatal conductance.

Introduction

The 14-3-3 proteins are a group of highly conserved regu-
latory proteins found in eukaryotic cells (Aitken et al. 1992,
Ferl 1996). They function as homo- or hetero-dimers and each
monomer can bind to an interacting protein (Liu et al. 1995,
Xiao et al. 1995, Obsil et al. 2001). There are over one hun-
dred proteins identified as their interacting proteins (Chung et
al. 1999, Finnie et al. 1999), and the binding of 14-3-3 proteins
to their interacting proteins may change the activities or subcel-
lular localization of those proteins, or mediate formation of
protein complexes (van Hemert et al. 2001). In plants, 14-3-3
proteins were shown to regulate primary metabolism, ion trans-
port, cellular trafficking, enzyme activities and gene expres-
sion (Ferl 1996, Aducci et al. 2002, Sehnke et al. 2002). For

example, 14-3-3 proteins regulate activities of plasma mem-
brane H+-ATPase (Borch et al. 2002), nitrate reductase (Huber
et al. 1996), sucrose-phosphate synthase (Moorhead et al.
1999), starch synthase (Sehnke et al. 2001), chloroplast and
mitochondrial ATP synthase (Bunney et al. 2001), and ion
channel proteins (Booij et al. 1999, van den Wijngaard et al.
2001, de Boer 2002). Recently 14-3-3 proteins were found to
interact with chaperone Hsp70 to form a guidance complex
with precursors in mediating chloroplast protein import (May
and Soll 2000, Sehnke et al. 2000, Jarvis and Soll 2002).

To explore the physiological functions of 14-3-3 pro-
teins in plants, various transgenic plants with over- or under-
expression of specific 14-3-3 protein genes were constructed in
the last several years and novel phenotypes observed. For ex-
ample, reduction of the Arabidopsis 14-3-3 proteins, GF14ε
and GF14µ, by using antisense technology resulted in in-
creased starch accumulation in leaves and increased growth
when plants were provided with ammonium nitrate (Sehnke et
al. 2001, Sehnke et al. 2002). In potato plants transformed with
an overexpression or antisense construct of a 14-3-3 protein
gene, the compositions of lipids, amino acids, and minerals
were changed (Prescha et al. 2002, Swiedrych et al. 2002,
Szopa 2002). Furthermore, overexpression of 14-3-3 proteins
in potato plants leads to increase in antioxidant activity by 45%
(Lukaszewicz et al. 2002) and delayed leaf senescence,
whereas reduced expression of 14-3-3 protein genes (by anti-
sense technology) in potato plants leads to early leaf senes-
cence (Wilczynski et al. 1998).

We have studied in the function of an Arabidopsis 14-3-3
protein, GF14λ (Zhang et al. 1995), and found that GF14λ
interacts with several proteins that include ascorbate peroxidase
3 (APX3) and ankyrin repeat-containing protein 2 (AKR2)
(Zhang et al. 1997, Yan et al. 2002). Because APX3 plays an
important role in protecting plants under oxidative stress and
water-deficit conditions (Wang et al. 1999, Yan et al. 2003) and
AKR2 is involved in both disease resistance and antioxidation
metabolism (Yan et al. 2002), we thought that GF14λ might
play important roles in plant antioxidation metabolism or under
drought stress conditions. In an effort to further study the phys-
iological function of GF14λ, we introduced GF14λ into cotton
plants and studied whether overexpression of GF14λ could
confer beneficial agronomic traits to this crop. Our data indi-
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cate that overexpression of GF14λ in cotton conferred a “stay-
green” phenotype in transgenic cotton plants. Furthermore,
these GF14λ-expressing cotton plants displayed increased
water-stress tolerance and maintained higher photosynthetic
rates under conditions of low water availability. These results
indicated that it is possible to create plants with desirable agro-
nomic traits by manipulating the expression of certain 14-3-3
protein genes.

Results

Molecular analysis of transgenic cotton plants
Twenty-six independently transformed cotton plants were

obtained by Agrobacterium-mediated transformation (Bayley et
al. 1992), and 24 of them contained the GF14λ transgene as
demonstrated by the presence of the specific PCR products
using the cauliflower mosaic virus (CaMV) 35S promoter-spe-
cific and the GF14λ-specific primers (data not shown). About

half of those 24 lines were fertile and produced seeds. Segrega-
tion analysis of kanamycin resistance vs. sensitivity for eight
independently transformed T1 seedlings showed that five of the
transgenic plants displayed a 3 to 1 ratio of resistance vs. sensi-
tivity, two plants showed a 1 to 1 ratio, and one plant showed a
7 to 1 ratio, indicating that most of these transgenic lines pos-
sess only one T-DNA insertion. Northern blot analysis indi-
cated that GF14λ transcript levels were variable in those single
T-DNA insertion lines (Fig. 1), yet all these lines showed
increased levels of 14-3-3 protein(s) when probed with the anti-
GF14λ polyclonal antisera in the Western blot analysis (Fig. 2).

Although the GF14λ cDNA did not cross-hybridize with
any cotton 14-3-3 genes, the anti-GF14λ antisera recognized
the endogenous cotton 14-3-3 protein(s). This was expected
because 14-3-3 proteins in eukaryotes are highly conserved
(Ferl 1996). The differences in 14-3-3 protein levels between
wild-type and transgenic plants shown in Fig. 2 is not likely
due to the variable expression level of the endogenous cotton
14-3-3 protein(s), because every transgenic plant consistently
demonstrated a higher level of 14-3-3 protein(s) than wild-type
and segregated non-transgenic plants (data not shown). It
appears that GF14λ-expressing plants have 2- to 3-fold more

Fig. 1 RNA blot analysis of wild-type (WT) and GF14λ-expressing
cotton plants (AFT11 to AFT50). The genes used as probes are listed
on the right. A duplicate filter was used for hybridization with the
18SrRNA gene as a loading control.

Fig. 2 Immunoblot analysis of wild-type and GF14λ-expressing cot-
ton plants. Lane 1, purified GF14λ (100 ng); lane 2, wild-type cotton
(WT, Coker312); lanes 3–7 (AFT11 to AFT50), five independent
transgenic cotton plants. The Rubisco large subunit, rbcL, was used as
the loading control.

Fig. 3 The “stay-green” phenotype of GF14λ-
expressing cotton plants (#2 and #4) as compared
to wild type and segregated non-transgenic
plants (#1 and #3).
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14-3-3 protein based on the densitometry analysis (data not
shown). However, there is no correlation between the level of
GF14λ transcript and the level of 14-3-3 protein(s) detected on
Western blot. For example, lines AFT11, AFT12, and AFT50
had significantly higher GF14λ transcript, yet they do not seem
to have much higher level of 14-3-3 protein(s) (Fig. 1, 2).

Overexpression of GF14λ leads to a “stay-green” phenotype in
transgenic cotton plants

The GF14λ-expressing plants, their segregated non-
transgenic plants, and wild-type plants were grown in a green-
house under well-watered conditions. GF14λ-expressing plants
displayed leaf senescence later than wild-type and segregated
non-transgenic plants did (Fig. 3). The first 4–6 oldest leaves in
wild-type and segregated control plants turned yellow about 2
weeks earlier than the corresponding leaves in transgenic plants
did. These phenotypic differences were observed between con-
trol plants (wild-type and segregated non-transgenic plants) and
every transgenic plant. We measured chlorophyll contents in
the third or fourth oldest leaves from both control and GF14λ-
expressing plants and found that indeed chlorophyll degrada-
tion occurred earlier in leaves of control plants when compared
with those in transgenic plants of the same developmental stage
(Fig. 4). Our data indicate that GF14λ expression in cotton
leads to delayed leaf senescence.

GF14λ-expressing plants exhibited improved drought tolerance
In the greenhouse, we simulated a slowly developing

drought as occurs in the field after a rain. During the first
drought cycle, severe wilting occurred for wild type and non-
expressing segregates when no transpired water was replen-
ished (0% replenishment), while the GF14λ-expressing plants
exhibited less wilting (Fig. 5A, C). After repeated cycles of
drought and recovery, leaf damage was evident for control
plants, but substantially less visible signs of injury were
observed for the transgenic plants (Fig. 5B, D), indicating an
improvement in drought tolerance with GF14λ expression.

Transgenic cotton plants maintain higher photosynthetic rates
under drought conditions

Under well-watered conditions, photosynthetic rates (A),
stomatal conductance (gs), and values of internal to atmos-
pheric CO2 concentration (Ci/Ca) were not significantly differ-
ent between GF14λ-expressing and control plants (Fig. 6), and
these values changed little during the experiment (data not
shown). Although a reduction in watering to 75% of total
replenishment caused a small decrease in gs, A for all plants
was not affected substantially (Fig. 6A). It was not until the end
of the 50% water replenishment stage that A for control plants
decreased significantly (P <0.01) to about 60% of that for well-
watered plants in association with an 84% decline in gs (Fig.
6A, B). In contrast, the GF14λ-expressing plants maintained A
close to the values of well-watered plants, with an average
reduction of only 22% in gs. For control plants at this watering
stage, the large reduction in gs resulted in a decrease in transpi-

Fig. 4 Chlorophyll contents of control and transgenic plants. Values
are mean ± SD (control plants, n = 8; transgenic plants, n = 4).

Fig. 5 GF14λ-expressing plants are more water-deficit tolerant. Con-
trol plants (A1, C1 and C2) wilted more than transgenic plants (A2, C3
and C4) did after one cycle of gradual water-deficit treatment. The
phenotypic differences between control plants (B1, D1 and D2) and
transgenic plants (B2, D3 and D4) became more evident after several
cycles of water-deficit treatments.
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ration, while gs and transpiration in transgenic plants remained
high (Fig. 6B, transpiration data not shown because it showed
similar patterns as gs). The decreased gs in control plants led to
an increase in water use efficiency (A/gs), while water use effi-
ciency for transgenic plants remained close to that for well-
watered plants (Fig. 6C). Values of Ci/Ca remained virtually
unchanged at the 50% replenishment stage for transgenic
plants, while they decreased for control plants (Fig. 6D).

Photosynthetic rates decreased significantly for both
GF14λ-expressing and control plants at the 25% water replen-

ishment stage (Fig. 6A). However, values of A for transgenic
plants ranged from 30% to 60% of the values for well-watered
plants. In contrast, values of A for non-transgenic control
plants were only about 20% of the values for well-watered
plants. Although gs was very low for all plants, A was still
higher (P <0.01) for the transgenic plants than for control
plants (Fig. 6A). With the exception of lines AFT12 and
AFT50, A/gs was similar for transgenic and control pants (Fig.
6C). Associated with the low gs was a decline in Ci/Ca values
from those values at the 50% water replenishment stage (Fig.

Fig. 6 Photosynthesis (A, µmol m–2 s–1, A), sto-
matal conductance (gs, mmol m–2 s–1, B), water use
efficiency (A/gs, C), and intercellular to ambient
CO2 concentration ratio (Ci/Ca, D) of transgenic
plants (AFT11, 12, 15, 19, 50) and non-transgenic
control plants under different stages of water-deficit
conditions. During the water-deficit treatments,
plants were watered with 100%, 75%, 50%, 25%
and 0% of the water needed to fully replenish con-
trol plants. Values are means ± SD, n = 4.
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6D), but no significant genotypic differences were observed.
When water was withheld for 3 d, A for all plants was below
20% of A for well-watered plants (Fig. 6A). Nonetheless, two
transgenic lines, AFT12 and AFT19, maintained higher values
of A (P <0.01) than control plants did. With no significant gen-
otypic differences in gs, A/gs was higher for AFT12 and
AFT19 than all other genotypes (Fig. 6B, C). Given the low A
and gs values, it is not surprising that Ci/Ca was high at this
watering stage (Fig. 6D). However, values for AFT12 and
AFT19 were significantly (P <0.05) lower than those for other
genotypes.

Discussion

Compared to control plants, the GF14λ-expressing cotton
plants display a “stay-green” phenotype under well-watered
conditions, which is likely due to delayed leaf senescence. This
finding is similar to the observation that transgenic potato
plants exhibit such a correlation between 14-3-3 protein levels
and leaf senescence. Plants with reduced expression of a 14-3-3
protein gene by antisense technology exhibit early leaf senes-
cence, whereas overexpression of a 14-3-3 protein gene leads
to delayed leaf senescence (Szopa 2002, Wilczynski et al.
1998). Since 14-3-3 proteins have been shown to bind to many
proteins in plant cells, it is likely that many metabolic proc-
esses have been affected in GF14λ-expressing cotton. For
example, many enzymes involved in primary nitrogen and car-
bon metabolisms, such as nitrate reductase, sucrose-phosphate
synthase, glutamine synthase, and glyceraldehyde-3-phosphate
dehydrogenase, interact with 14-3-3 proteins (Huber et al.
1996, Moorhead et al. 1999, Cotelle et al. 2000). Binding of
14-3-3 proteins to nitrate reductase and sucrose-phosphate syn-
thase reduces the activities of these two enzymes, which may
slow down nitrogen and carbon metabolisms and elongate veg-
etative growth. A reduced metabolic rate is likely a major fac-
tor in delayed leaf senescence in plants (Lim et al. 2003).
Another possibility is that phytohormone metabolism is altered
in the GF14λ-expressing cotton. It is reported that 14-3-3 pro-
teins bind to VP1 and EmBP1 proteins that mediate ABA-
induced gene expression (Schultz et al. 1998). ABA plays a
critical role in leaf senescence (Leung and Giraudat 1998), but
it is not clear how 14-3-3 proteins might affect ABA metabo-
lism at this time. The production of ethylene, another impor-
tant phytohormone that regulates senescence in plants (Abeles
et al. 1992), is 2- to 3-fold higher in transgenic potato plants
with reduced 14-3-3 protein content than in control plants
(Szopa 2002). Finally, it is known that 14-3-3 proteins support
cell survival by antagonizing pro-apoptotic proteins, such as
Bad protein, in animals (Masters et al. 2002). If GF14λ inter-
acts and antagonizes similar pro-apoptotic proteins in plant
cells, then over-expression of GF14λ should increase the cell
lifespan and delay senescence.

Wilting during the imposition of a slowly developing
drought was considerably less for GF14λ-expressing cotton

than for control plants. This observation was interesting consid-
ering that these plants maintained a greater gs and exhibited
greater rates of transpiration than control plants as drought pro-
gressed, especially at the 50% replenishment stage of water-
ing. Thus, the transgenic plants have a greater potential for
water loss than control plants during moderate drought condi-
tions. Yet, for some reason, the transgenic plants were able to
maintain greater turgor pressure and exhibited significantly less
leaf damage after repeated drought and recovery cycles. There-
fore, the transgenic plants were more drought tolerant than con-
trol plants. Whether GF14λ expression in cotton enhances
osmotic adjustment, provides increased desiccation protection
to leaf cells, or both, remains to be determined. It is known that
plant 14-3-3 proteins regulate trehalose-6-phosphate synthase
(Moorhead et al. 1999), the first enzyme in the conversion of
glucose-6-phosphate to trehalose that plays a protective role
during the desiccation process (de-Araujo 1996, Pilon-Smits et
al. 1998).

Compared to control plants at the 50% replenishment
stage, the lower A/gs and higher Ci/Ca for transgenic plants
strongly suggest that their higher A was due to their ability to
maintain a greater gs than control plants (Fig. 6). A major event
in stomatal opening is the activation of the H+-ATPase in the
guard cell plasma membrane, which creates a driving force for
passive K+ inward permeation and opens the K+-specific
inward-rectifying channel, leading to the K+ accumulation and
water influx in the guard cell, and thereby stomatal opening
(Outlaw et al. 1996, Palmgren 2001). Plant 14-3-3 proteins can
activate H+-ATPase by binding to its C-terminal regulatory
domain (Jahn et al. 1997, Olsson et al. 1998, Malerba and
Bianchetti 1999, Svennelid et al. 1999, Fuglsang et al. 1999),
and the nine amino acid residues directly involved in binding to
H+-ATPase in plant 14-3-3 proteins (Jaspert and Oecking 2002)
are completely conserved in GF14λ. Osmotic shock increases
14-3-3 proteins in the plasma membrane that form complexes
with H+-ATPase with enhanced H+ transport in cultured tomato
and sugar beet cells (Babakov et al. 2000, Kerkeb et al. 2002).
This mechanism may be the explanation for the greater gs
exhibited by the transgenic plants. The interaction between 14-
3-3 proteins and H+-ATPase may have also been a factor in the
resistance to wilting exhibited by the transgenic plants, because
turgor pressure is also regulated by the H+-ATPase in plant
cells (de Boer 2002). Since GF14λ was constitutively
expressed, cells in GF14λ-expressing plants may have retained
water better than cells in control plants as drought progressed.

At levels of watering below the 50% replenishment stage,
genotypic differences in gs became negligible, yet some lines
of GF14λ-expressing cotton plants, notably AFT12 and AFT19
at the 0% replenishment stage, continued to exhibit slightly
higher values of A than did controls. In fact A/gs for these lines
was also higher than that for controls. These data are sugges-
tive of some enhancement of desiccation tolerance in those two
lines. In conclusion, the “stay-green” phenotype and the
increased drought tolerance with respect to leaf survival and



Overexpression of the Arabidopsis GF14λ in cotton1012
photosynthesis exhibited by GF14λ-expressing cotton plants
are clearly beneficial traits for certain crops. Although an
understanding of the mechanisms by which higher levels of 14-
3-3 proteins affect drought tolerance is important, the results of
this study indicate that the manipulation of 14-3-3 protein lev-
els may be used to improve environmental stress tolerance in
some crops.

Materials and Methods

Vector construction and cotton transformation
The full-length coding sequence of GF14λ (Zhang et al. 1995)

was first amplified from an Arabidopsis cDNA library and subcloned
into the dephosphorylated BamHI site of the intermediate vector
pRTL-2 (gift of James Carrington, Washington State University),
which puts GF14λ under the control of the CaMV 35S promoter. Then
the construct was digested with HindIII and ligated into the HindIII
site of the binary vector pCGN1578 that contains the neomycin phos-
photransferase gene, NPTII, as the selective marker (McBride and
Summerfelt 1990). The overexpression construct was then introduced
into the Agrobacterium tumefaciens strain EHA101, which was used to
transform cotton according to the protocol of Bayley et al. (1992) with
the following modifications. Segments of hypocotyl and cotyledon of
cotton (Gossypium hirsutum L.) variety Coker 312 were infected for
2–3 d and then transferred to selection plates containing 50 mg liter–1

of kanamycin and 250 mg liter–1 of cefotaxime. Calluses grown in
these plates were transferred to liquid medium. After suspension cul-
ture, the transformed cells were transferred to agar-solidified medium
to induce somatic embryos. Once the embryos grew into seedlings,
they were transferred to soil and grown in a greenhouse.

Molecular analysis of transgenic plants
Putative transgenic plants were first analyzed by using the PCR

technique to detect the GF14λ transgene with the forward primer spe-
cific for the CaMV 35S promoter and the backward primer specific for
GF14λ. Positive plants were then analyzed by Northern and Western
blots to determine the expression level of the transgene. Cotton leaf
total RNAs were isolated using the method described by Song and
Allen (1997), and used in hybridization experiment following the pro-
tocol described previously (Yan et al. 2002). Cotton leaf proteins were
extracted by grinding about 100 mg of mature leave tissues in a mor-
tar in extraction buffer (50 mM NaPO4 pH 7.0, 1 mM EDTA). The
crude extracts were centrifuged in a microfuge at 14,000 rpm for
10 min at 4°C, and the supernatants were added to an equal volume of
2× SDS loading buffer (125 mM Tris-Cl, 2% SDS, 20% glycerol,
200 mM dithiothreitol, 0.01% bromophenol blue, pH 6.8). Protein
concentration was determined according to the Bradford method
(Bradford 1976) using bovine serum albumin as standard. Proteins
from GF14λ-expression plants and control plants were subjected to
electrophoresis in a 12% SDS polyacrylamide gel. Following electro-
phoresis, proteins were electro-transferred onto a nitrocellulose mem-
brane. Non-specific binding sites were blocked by 5% non-fat milk
(60 min). After washing with TTBS (20 mM Tris-Cl, pH 7.5, 140 mM
NaCl, 0.05% Tween), blots were probed with polyclonal antibodies
raised against GF14λ and the Rubisco large subunit (rbcL) for 2 h.
Then blots were washed three times (10 min each) with TTBS, incu-
bated with alkaline phosphatase-conjugated goat anti-rabbit secondary
antibody for 30 min, and washed again as above with TTBS. Finally,
the GF14λ and rbcL were visualized by adding substrates of alkaline
phosphatase (Bio-Rad Laboratories). The sequences of primers used in
PCR are as follows:

35S-1: 5′-GGGATGACGCACAATCCCACT-3′
GF14λ-1: 5′-AGAGATCCGATCACGTTTTGG-3′.

Segregation of T1 plants for kanamycin resistant and transgene
The cotyledon and first true leaf of T1 seedlings were treated

with 40 mg ml–1 of kanamycin solution with a cotton swab. The
resistant and sensitive plants were determined after one week using
wild-type Coke 312 as control. PCR analysis was used to confirm the
correlation between kanamycin resistance and the existence of the
transgene.

Water-deficit treatment and gas-exchange analyses
About fifty seeds of the T2 generation from each of the five inde-

pendently transformed cotton lines, AFT11, 12, 15, 19, and 50, were
planted in a tray of soil mixture (Ball Growing on Mix, Ball Seed Co.)
in the greenhouse. The temperature in the greenhouse was set at
30±2°C and natural light was used for plant growth. Fifteen to eight-
een kanamycin-resistant plants and 5–6 sensitive plants per independ-
ent transgenic line were selected for PCR analysis using the CaMV
35S promoter and the GF14λ-specific primers to confirm the presence
or absence of the transgene. These plants were used for the water-
deficit experiments.

Two experimental designs for water-deficit treatment were
employed. In the first design, a transgenic and a non-transgenic con-
trol plant (wild type or segregated non-transgenic line) were trans-
planted into each of three 11-liter pots to allow for comparisons of
visible features of transgenic and control plants under the same soil
water status. In the second design, transgenic and control plants were
planted in separate pots for gas-exchange analyses. Ten to twelve
transgenic plants of each line were transferred to 4-liter pots with one
plant per pot. Fifteen segregated, non-transgenic plants randomly
selected from different transgenic lines were also transferred to pots as
controls. These plants were watered three times a day and fertilized
once a week with Hoagland’s solution until plants reached about
40 cm in height. Eight plants with similar height were chosen from
each transgenic line and controls for the experiment. The eight plants
were divided into two sets. One set of four plants was used for the
water-deficit treatments, and the other set was used for well-watered
controls. The first fully developed leaf of each plant was used for gas-
exchange measurements. Growth conditions were the same for both
sets of plants, except the watering treatments.

The gradual development of water deficit was accomplished as
described previously (Yan et al. 2003). In brief, water deficit was
developed in the greenhouse during the summer by progressively
reducing the amount of water added on a daily basis. The treatment
schedule consisted of 3 d at 100% replenishment of water lost, fol-
lowed by 3 d at each reduced watering regime (75%, 50%, 25%, 0%
replenishment of the water lost by well-watered plants). In the first
experimental design, plants were fully re-watered in the morning after
3 d at 0% replenishment, and then the imposition of a gradually devel-
oping water-deficit was repeated. When the two plants in the same pot
showed discernible phenotypic differences after several cycles of
water-deficit treatment, they were photographed. For the second exper-
imental design, in the first cycle of water-deficit treatment, gas-
exchange measurements to determine rates of net photosynthesis,
stomatal conductance, transpiration and the ratio of the intercellular to
ambient CO2 concentration (Ci/Ca) were performed on the third day of
each watering stage for both water-deficit and well-watered plants
using a portable photosynthesis system (Model LI6400, Li-Cor, Inc.).
The experiment was repeated twice with similar results. The data from
the second replication are presented.
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Chlorophyll determination
Extracts of the third or fourth true leaves of control and trans-

genic plants on day 132 after germination were analyzed for chloro-
phyll contents using the method of Lichtenthaler and Wellburn (1955).
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